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A B S T R A C T

Working Memory (WM) requires maintenance of task-relevant information and suppression of task-irrelevant/
distracting information. Alpha and theta oscillations have been extensively investigated in relation to WM.
However, studies that examine both theta and alpha bands in relation to distractors, encompassing not only
power modulation but also connectivity modulation, remain scarce. Here, we depicted, at the EEG-source level,
the increase in power and connectivity in theta and alpha bands induced by strong relative to weak distractors
during a visual Sternberg-like WM task involving the encoding of verbal items. During retention, a strong or
weak distractor was presented, predictable in time and nature. Analysis focused on the encoding and retention
phases before distractor presentation. Theta and alpha power were computed in cortical regions of interest, and
connectivity networks estimated via spectral Granger causality and synthetized using in/out degree indices. The
following modulations were observed for strong vs. weak distractors. In theta band during encoding, the power
in frontal regions increased, together with frontal-to-frontal and bottom-up occipital-to-temporal-to-frontal
connectivity; even during retention, bottom-up theta connectivity increased. In alpha band during retention, but
not during encoding, the power in temporal-occipital regions increased, together with top-down frontal-to-oc-
cipital and temporal-to-occipital connectivity. From our results, we postulate a proactive cooperation between
theta and alpha mechanisms: the first would mediate enhancement of target representation both during encoding
and retention, and the second would mediate increased inhibition of sensory areas during retention only, to
suppress the processing of imminent distractor without interfering with the processing of ongoing target stimulus
during encoding.

1. Introduction

Working memory (WM) is the ability to actively store and/or
manipulate mental representations, at the ready for immediate use
(Postle, 2006), and it is a key component of a wide range of high-level
cognitive functions such as learning, problem-solving, decision-mak-
ing, language comprehension. The operational stages of WM include an
encoding phase for loading information in memory, a retention phase
for maintenance of the memory trace, and a retrieval phase for infor-
mation recovery and use. Several WM tasks are used in the literature. In
some of them, the WM stages occur in parallel, such as in n-back tasks,
while in others the WM stages are temporally segregated, as in
Sternberg-like tasks. Common essential elements of WM are the selec-
tion of task-relevant information and the inhibition of irrelevant or

distracting information. To enhance this selective processing, WM
studies often involve manipulation of task-relevant and/or
task-irrelevant/distracting information.

A large body of electroencephalogram (EEG) and magneto-
encephalogram (MEG) studies points to the strong involvement of brain
oscillations in WM processes. Although both beta (13–30 Hz) and
gamma (>30 Hz) rhythms have also been investigated in relation to WM
(Hwang et al., 2005; Koshy et al., 2020; Proskovec et al., 2019; Schmidt
et al., 2019), the majority of the literature in the field focused on theta
band (4–7 Hz) and alpha band (8–12 Hz). Despite the extensive body of
research on these two rhythms, investigations that jointly examine both
theta and alpha band, encompassing not only power modulation but also
connectivity modulation, remain scarce, particularly in relation to dis-
tractor protection. Further examination of these aspects may yield
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additional insights into the brain mechanisms and subprocesses that
support WM functions. In the following, the key findings about theta and
alpha rhythms are reviewed, and the existing gaps that have prompted
the present investigation are stressed.

1.1. Theta and alpha oscillations in WM tasks

Theta activity was found to consistently increase during WM (see for
review Hsieh and Ranganath, 2014; Klimesch, 1999; Pavlov and
Kotchoubey, 2022; Sauseng et al., 2010). For example, enhanced theta
power across multiple areas (frontal, temporal and posterior) was ob-
tained in an intracranial EEG study during the encoding and retention of
visually presented verbal information (Raghavachari et al., 2001), and
in other non-invasive EEG studies during the encoding of lexical,
visuo-spatial, and audio-visual information (Jaiswal et al., 2010;
Sederberg et al., 2003; Xie et al., 2021). Moreover, theta activity,
especially in the frontal midline region, was observed to be positively
correlated with the WM load, i.e., the amount of relevant information to
be remembered (Jensen and Tesche, 2002; Meltzer et al., 2008; Onton
et al., 2005; Proskovec et al., 2019; Scheeringa et al., 2009). Also, an
increase in theta connectivity was reported between frontal and
temporo-parietal regions during information retention (Sarnthein et al.,
1998) and encoding (Kustermann et al., 2018; Sauseng et al., 2004),
even exhibiting a positive correlation with the WM load (Kustermann
et al., 2018). Theta oscillations in WM have been associated with
different mechanisms, possibly coexisting and acting in parallel (see for
review Hsieh and Ranganath, 2014; Sauseng et al., 2010); a general
mechanism of mental effort and executive control, common to
cognitive-demanding tasks and mainly related to midfrontal theta ac-
tivity (see also Cavanagh and Frank, 2014); a more memory-specific
mechanism, according to which theta oscillations across distributed
brain areas would coordinate the activation of different item represen-
tations (each locked to a different phase of the theta cycle). While pre-
vious studies manipulated the relevant items (targets), only a few studies
considered theta activity in relation to both distractors and targets (de
Vries et al., 2019; Riddle et al., 2020). These studies reported increased
midfrontal theta power associated with ignoring distractors (de Vries
et al., 2019), possible reflecting executive control increase, and sug-
gested a role of theta activity in prioritizing relevant representations
over irrelevant ones (Riddle et al., 2020).

As to alpha-band oscillations, the general view is that they have a
role in modulating cortical excitability. Alpha suppression is thought to
reflect an increase in neuronal excitability (or a release of inhibition),
while alpha enhancement reflects decreased excitability (or increase in
inhibition). Thus, alpha activity is considered a mechanism able to
flexibly inhibit brain activities not involved in the task at hand, to
protect task-relevant processes from possible intrusions (de Vries et al.,
2020; Frey et al., 2015; Jensen and Mazaheri, 2010). In the WM context,
alpha-band activity has been mainly investigated during retention,
showing an increase especially (but not only) in occipital regions,
stronger for successfully remembered stimuli compared to forgotten
stimuli (Khader et al., 2010), and positively correlated to memory load
and task demand (Jensen et al., 2002; Klimesch et al., 1999; Proskovec
et al., 2019; Scheeringa et al., 2009). These alpha effects have been
interpreted as reflecting disengagement of sensory areas to suppress
visual stream input that could disturb the maintenance of the encoded
representations. This interpretation is reinforced by results of other WM
studies (Jokisch and Jensen, 2007; Sauseng et al., 2009; Vissers et al.,
2016) that instructed or cued the subject about which items, displayed
during the encoding phase, have to be remembered (task-relevant items)
or ignored (task-irrelevant or distractors): during retention, more alpha
power increase was observed over the brain regions devoted to the
processing of irrelevant items, and it was associated with the suppres-
sion of representation of the disturbing information. One of these studies
(Vissers et al., 2016) also showed that alpha modulation was present not
only during retention (i.e., after items appearance) but developed before

items appearance once the cue was provided, thus supporting a prepa-
ratory role of alpha oscillations in expectancy of distracting and/or
target information. This is in line with other studies, outside the WM
context, that involve attentional cuing tasks and report post-cue alpha
power increase before stimuli presentation, selectively over brain re-
gions where potential distractors would be processed (e.g., see Doesburg
et al., 2016; Fu et al., 2001; Snyder and Foxe, 2010). In WM, other
studies show alpha power modulation prior to expected distractors (see
Noonan et al., 2018 for review). For example, in Payne et al. (2013), two
Gabor patches were serially presented to participants, who were
pre-cued about the patch to be remembered and ignored: the
to-be-ignored patch was preceded and accompanied by greater alpha
power. In a Sternberg-like task, distractors were displayed during the
retention interval, with presentation onset predictable in time:
parieto-occipital alpha power was found to increase in advance of dis-
tractor appearance (Sghirripa et al., 2021). According to a prevailing
model, alpha power modulation in posterior sensory cortices, as
observed in the previous studies, is affected by top-down influences from
frontal and parietal areas via long-range connections (Foxe and Snyder,
2011; Noonan et al., 2018). This hypothesis is substantiated by works
providing directed measures of inter-regional functional connectivity
during attentional cueing tasks and WM tasks (e.g., Doesburg et al.,
2016; Sauseng et al., 2005; Wang et al., 2016).

1.2. Motivation of the present study

Despite the extensive research, some aspects are still overlooked and
may benefit from additional investigations.

First, while variations in memory load or demand have been widely
investigated, only a few studies considered the load or strength of the
distractors and their influence on oscillatory dynamics (the distractor
strength representing the degree of similarity between distractors and
relevant items). Moreover, these studies report contradictory results. For
instance (but see also (Sauseng et al., 2009; Vissers et al., 2016) for
contradictory effects of distractor load), Bonnefond and Jensen (2012)
investigated the effects of predictable distractors with different strengths
(weak and strong) presented in the retention phase of a Sternberg task,
obtaining that the anticipation of strong vs. weak distractors was
accompanied by greater occipital alpha power before the distractor
onset. In a similar task by Sghirripa et al. (2021), no difference in
anticipatory alpha power was obtained across the two distractor con-
ditions. Performing additional studies may enrich the description of
alpha modulation by distractor strength, possibly also interpreting
previous discrepancies.

Second, theta activity has been scarcely explored in relation to dis-
tractors and their strength. To the best of our knowledge, only one study
(Fodor et al., 2020) examined theta in addition to alpha oscillations in a
Stenberg-like task using two types of non-predictable distractors (weak
and strong) presented during retention, but only the reaction to dis-
tractors was considered and not the preparation for predictable dis-
tractors. Since theta rhythm is known to have an important role even
during the encoding phase, it would be of high relevance to explore theta
activity modulations during the encoding of the memory set, when
different types of distractors that will interfere during retention can be
anticipated.

Third, several studies have investigated brain connectivity that
emerges during WM processes, both in alpha band and theta band (e.g.,
Kustermann et al., 2018; Sauseng et al., 2005, 2004; Wianda and Ross,
2019), also taking advantage of graph theory indices to characterize the
topological properties of the emerging connectivity patterns (Dai et al.,
2017; Toppi et al., 2017). However, we are not aware of any study that
investigates the impact of different types of distractors (e.g., weak vs.
strong) on theta and alpha connectivity patterns. Due to the importance
of brain connectivity in implementing cognitive tasks, an approach that
goes beyond the analysis of local oscillatory power and considers
interregional communications, has the potential to improve the
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characterization of the neural mechanisms that operate to handle
different types of distractors in WM processing.

The aim of the present study is to contribute to these so far under-
explored aspects, also in view of the prospective implications that may
derive from a better elucidation of how WM ‘resists’ to distractors.
Indeed, distraction resistance is recognized as a key factor for WM
functions and a main determinant of WM capacity. Deterioration of the
ability to effectively exclude distraction contributes to WM performance
reduction in aging and in psychiatric and neurological disorders, such as
attention deficit hyperactivity disorder (ADHD), mild cognitive
impairment, and schizophrenia (Anticevic et al., 2012; Aurtenetxe et al.,
2016; Lorenc et al., 2021; McNab et al., 2015). A better characterization
of the role of brain rhythms in handling distractors in the different
phases of WM could improve understanding of the basis of WM
impairment in these patients; it could also be relevant for ameliorating
WM dysfunctions, by allowing a more informed definition of training
protocols (e.g., via transcranial magnetic stimulation and oscillatory
entrainment) for possible modulation of the oscillatory patterns during
WM tasks.

To the above-mentioned aim, we recorded EEG signals during a
Sternberg-like task (as the one used in Sghirripa et al., 2021) where a set
of verbal items (letters) was visually presented during the encoding
phase. During the retention interval, either a weak distractor (set of
symbols) or a strong distractor (set of letters) was displayed, which was
predictable in time and nature. EEG sources were then estimated, and
we computed alpha (8–12 Hz) and theta (4–7 Hz) power in cortical re-
gions of interest, and inter-regional connectivity via spectral Granger
causality, summarized via Graph Theory-derived indices (in degree and
out degree centrality indices). We compared, at the source-level, the two
distractor conditions in anticipation of distractors, with emphasis on the
encoding phase as to theta band and on the retention period before the
distractor presentation as to alpha band. In particular, based on existing
literature, we were interested in evaluating the increase in theta and
alpha activity induced by strong relative to weak distractors. We ex-
pected that our approach might reveal different distractor-related in-
crease in cortical power and connectivity patterns, depending on the
frequency band and task phase.

2. Materials and methods

2.1. Participants

Twenty-one healthy volunteers (6 males, age 25.3 ± 2.3 years)
participated in the study. They had normal or corrected-to-normal
vision. Eighteen of them were right-handed. The study was carried out
in accordance with the Declaration of Helsinki and approved by the
Bioethics Committee of the University of Bologna (protocol number
29146, year 2019); written informed consent was obtained from all
participants before the beginning of the experiment. All data were
analyzed and reported anonymously.

2.2. Experimental protocol

The protocol consisted of a modified visual Sternberg task; the task
was inspired by the one adopted by Sghirripa et al. (2021). The structure
of each trial is schematically represented in Fig. 1. Specifically, each trial
started with a fixation interval (rest phase) randomly lasting between 2
and 2.5 s, during which a central fixation cross was presented on a
screen. A randomly selected memory set composed of five unique con-
sonants was then displayed for 2 s and the participant had to memorize it
(encoding phase). Then, the participant had to maintain the encoded set
for 5 s in total (retention phase). This phase was in turn composed of an
early retention phase of 2 s, a distractor phase of 1.5 s, and a late retention
phase of 1.5 s. During the early and late retention phases, the fixation
cross was presented on the screen. Conversely, during the distractor
phase, a distractor stimulus was presented. This could be a random set of
three unique consonants not presented in the memory set (in the
following denoted as strong distractor), or a set of three symbols “#” (in
the following denoted as weak distractor). At the end of the retention
phase, a probe consonant was presented on the screen, and the partici-
pant had to respond whether it belonged or not to the encoded memory
set, by pressing the left arrow key or the right arrow key, respectively,
with the index and medium fingers. The response provided by the
participant ended the current trial and started the following one. The
duration of the rest phase, the sequence of consonants defining the
memory set and the strong distractor were randomly sampled at each
trial. Participants were instructed to minimize eye and limb movements
and to answer as accurately as possible to the probe letter. All visual

Fig. 1. Modified visual Sternberg task: trial structure. The gray boxes show an example of the visual stimuli presented on the monitor in front of the participant
along the phases of the trial. Each trial started with a fixation interval (rest phase). Then, a memory set composed of 5 consonants was displayed (encoding phase) and
the participant had to encode it. When the memory set disappeared, the participant had to maintain it in memory (retention phase). This phase was subdivided into
three phases: an early retention phase, a distractor phase, and a late retention phase. During the distractor phase, a distractor stimulus (strong: set of 3 consonants,
weak: set of 3 equal symbols) was presented. Lastly, a probe consonant was displayed, and the participant had to respond whether it belonged or not to the memory
set (probe phase). On top of grey boxes, the two Time intervals Of Interest (TOI) are marked. Event-related spectral perturbations and connectivity at cortical level
were analyzed in the encoding TOI (last 1s-length interval of the encoding phase) and in the retention TOI (last 1s-length interval of the early retention phase). See
text for further details.
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stimuli (fixation cross, memory set, distractors) were shown on a
27inch-screen placed in front of the participant at a distance of
approximately 50 cm. The presentation of all visual stimuli was handled
by a custom MATLAB script (version R2023a, The Mathworks Inc.,
Natick, Massachusetts, United States). Keyboard responses were also
collected by the custom script for assessing response accuracy and re-
action time.

Trials were acquired in 20 separate recording blocks, with a short
break between blocks, to reduce participants’ fatigue. In each recording
block, 20 trials were acquired (400 trials in total). During each block,
only one type of distractor (strong or weak) was used, such that par-
ticipants could anticipate the strength of the distractor within blocks.
Importantly, also the onset of the distractor (appearing always 2 seconds
after the offset of the memory set) was predictable across trials. Ten
recording blocks (200 trials) were recorded for each distractor strength,
and the order of the distractor strength was randomly chosen across
blocks.

2.3. EEG data acquisition

Each participant wore an EEG cap with 61 electrodes (1 passive
ground electrode and 60 active g.SCARABEO electrodes, g.tec Medical
Engineering GmbH, Schiedlberg, UA, Austria) placed according to the
10/10 system. The reference electrode was placed on the right earlobe
and the ground electrode in AFz. Signals were amplified with a g.
HIamp80 RESEARCH amplifier (g.tec Medical Engineering GmbH,
Schiedlberg, UA, Austria), sampled at 512 Hz, and electrode impedances
were kept below 50 kΩ. A notch digital filter (stopband: 48–52 Hz) was
applied during recording.

2.4. Pipeline of EEG data analysis

For each participant, the following EEG pre-processing steps (see
Section 2.4.1) and analysis steps (see Sections 2.4.2 to 2.4.5) were
conducted.

2.4.1. Pre-processing
The pre-processing consisted of the following offline steps:

i. Linear detrending of signals belonging to each recording block.
ii. Band-pass filtering between 1–60 Hz (IIR elliptic filters; for the

low-pass: passband edge frequency =60 Hz, stopband edge fre-
quency = 80 Hz, order = 6; for the high-pass: passband edge
frequency = 1 Hz, stopband edge frequency = 0.5 Hz, order = 4;
stopband attenuation of at least 40 dB, passband ripple of no
more than 0.1 dB) and notch filtering at 50 Hz (second order IIR
filter, with notch at 50 Hz and -3 dB bandwidth of 2.2 Hz) of
signals belonging to each recording block. Notch filtering was
also applied offline since the visualization of the power spectral
density of the recorded EEG signals evidenced insufficient
attenuation of the power line noise by the filter applied during
recording.

iii. Identification of bad channels within each recording block via
random sample consensus method (Fischler and Bolles, 1981).

iv. Concatenation of electrode signals across recording blocks.
v. Removal of channels that were labelled as bad (step iii) at least in

one recording block, from the concatenated signals. On average,
3 channels (standard deviation, SD = 2) per subject were
removed, ranging from 0 to 7.

vi. Removal of artifacts (ocular, muscular, heart and channel noise)
via independent component analysis (ICA). ICA was computed
using the extended Infomax algorithm (Lee et al., 1999) applied
to the concatenated signals (free from bad channels). We visually
explored each IC (its time pattern, power spectral density and
scalp topological map) and ICs likely having artifact origin were
eliminated. On average, 18 ICs (SD = 3.8) per subject were

removed, ranging from 10 to 24. This large number of removed
ICs derived from the concatenation of all recording blocks, so that
the signal subjected to IC decomposition for each participant was
very long, overall lasting about 4300 s.

vii. Spherical spline interpolation of the bad channels removed in
step v.

viii. Epoching into 5s-length epochs, starting 1 s before and ending 4 s
after the presentation of the memory set, i.e., including the last
1s-interval of the rest phase, the encoding phase and the early
retention phase (in each epoch, time 0 s corresponded to the onset
of the memory set).

ix. Baseline correction of each epoch, by removing the mean value
computed over the rest interval from -1 s to 0 s, channel by
channel.

x. Common average re-referencing.

The adopted pre-processing pipeline was similar to the one used in
our previous study analyzing cortical power and connectivity in a
different task (Borra et al., 2023).

In the following, we present the analyses performed at the EEG
source level as to event-related spectral perturbation and connectivity.
Preliminary analyses at the electrode level did not provide any signifi-
cant results; therefore they are not presented. However, for complete-
ness, Supplementary Materials (see Section S1-1.1, Figs. S1 and S2)
report the time-frequency patterns of event-related spectral perturba-
tions, over the entire frequency range and in theta and alpha band,
computed at the electrode level.

2.4.2. EEG source imaging
Sensor-space signals (scalp signals) were transformed into source-

space signals (cortical signals) using MNE Python library (version
1.2.2) (Gramfort et al., 2013). To this end, we used the template head
anatomy FSaverage, together with the default electrode position
distributed with the template head model and already aligned to it. The
source space was restricted to the cortex and discretized into 20,484
vertices. The forward problem was solved via the boundary element
method with MNE default parameters. The inverse problem was solved
using eLORETA (exact Low Resolution Electromagnetic Tomography)
(Pascual-Marqui et al., 2011) with MNE default parameters, with an
identity noise covariance matrix, and with the dipole source orientation
constrained to be perpendicular to the cortex. By doing so, each cortical
vertex was associated with one source signal (20,484 signals).

2.4.3. Cortical parcellation: computation of quantities functional for the
following analyses at two spatial resolutions

We achieved a first reduction of the dimension of the source space
(20,484 time series) to a manageable number of signals by adopting the
parcellation of the cortical surface based on one existing atlas, available
in MNE Python library, specifically the Desikan-Killiany (DK) atlas
(Desikan et al., 2006), which considers 68 parcels (34 per hemisphere),
in the following denoted as DK parcels. The list of the 34 DK parcels and
of their abbreviations is reported in Table 1 (left column), and their
location over the cortex is displayed in Fig. 2. For each trial, a waveform
representative of the neural activity of each DK parcel was derived, by
averaging all signals of the vertices belonging to that parcel. To avoid
cancelling out the neural activity in case of many vertices within the
parcel having dipole orientations in opposite directions, the signs of
source signals that were not oriented as the “dominant direction” were
flipped before averaging (Ghumare et al., 2018). The dominant direction
corresponded to the first principal direction of the orientations of the
dipoles belonging to the parcel.

From the signals at the DK parcels, we derived event-related spectral
perturbations and functional connectivity quantities that served as
starting point for the subsequent analyses at two different spatial reso-
lution levels (see Sections 2.4.4 and 2.4.5). Specifically, the following
computations were applied to the DK parcels subject by subject.
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2.4.3.1. Event-related spectral perturbations. For each 5s-epoch, event-
related spectral perturbations (ERSPs) were obtained parcel by parcel
as follows. At first, the continuous wavelet transform of the parcel signal
was computed using complex Morlet wavelet as basis function. Wavelet
transform coefficients were then squared to obtain time-frequency
power representations. These representations were normalized using
the rest interval between -1 and 0 s as baseline (Grandchamp and
Delorme, 2011); specifically we computed the difference between the
power at each time-frequency point and the average baseline power at
the same frequency (i.e., the mean power value between -1 and 0 s at
that frequency), and divided the result by the same average baseline
power. Then, the ERSP was obtained by averaging the normalized

representations across epochs, separately for strong and weak distractor
conditions. The ERSP was averaged over the theta band (4–7 Hz) and
alpha band (8–12 Hz), obtaining theta-ERSP and alpha-ERSP for each
parcel as a function of time during the epoch from –1 s to 4 s, separately
for strong and weak distractor conditions.

Then, for each parcel, we considered theta- and alpha-ERSP within a
specific Time-interval Of Interest (TOI), separately for each distractor
condition. As the theta rhythm is known to be involved in encoding
useful information, and the alpha rhythm in inhibiting interfering in-
formation, we focused the analysis of theta-ERSP within the last 1s-
length interval of the encoding phase, i.e., from 1 s to 2 s (in the
following denoted as encoding TOI), and of alpha-ERSP within the last 1s-
length interval of the early retention phase, i.e., from 3 s to 4 s (in the
following denoted as retention TOI). We considered ERSP within 1s-
length TOIs (the last second of both examined phases) in order to
eliminate contamination by the evoked potentials elicited by the visual
stimuli immediately at the onset of the encoding phase and of the early
retention phase (that is, the appearance of the memory set at the onset of
the encoding phase and the appearance of the fixation cross at the onset
of the early retention phase).

2.4.3.2. Connectivity matrices. We estimated the directional influences
between the DK cortical parcels in the theta band and alpha band by
computing pairwise Granger causality (GC) (Granger, 1969) in the fre-
quency domain. By denoting with xi[n] and xj[n] two time series, here
corresponding to the cortical signals representative of the i-th and j-th
parcel, the system

[
xi[n]; xj[n]

]
can be represented using a bivariate

autoregressive model with order p (p = 30 in this study, as we adopted in
past studies (Borra et al., 2023; Magosso et al., 2021)). By
Fourier-transforming this time-domain representation, a spectral rep-
resentation is obtained. Then, the power spectrum of each time series (e.
g., xi[n]) can be computed according to Geweke (Geweke, 1982) and
decomposed into an intrinsic term and a causal term, the latter being the
term predicted by the other time series (e.g., xj[n]). The spectral GC from
the j-th to the i-th parcel at each frequency f , GCj→i(f), is defined as the
log of the ratio between the total power of xi[n] at f and the difference
between the total power of xi[n] at f and the causal power exerted by
xj[n] onto xi[n] at f . Thus, the quantity GCj→i(f) increases as the causal
power increases. At each frequency f , the spectral GC is represented by a
non-symmetric matrix with shape N× N (here N = 68), where the
off-diagonal ji-th value quantifies the directional influence from the j-th
parcel to the i-th parcel at that frequency (GCj→i(f)).

Spectral GC was computed within the same TOIs used for ERSPs, that
is within the encoding TOI for the theta band and the retention TOI for
the alpha band. We used these TOIs also for the connectivity analysis
since the first second of each phase (i.e., from 0 to 1 s and from 2 to 3 s)
was influenced by the transient due to the visual event related potential,
elicited by the appearance/disappearance of visual stimuli on the
screen. Moreover, to compensate for residual non-stationarities that
might occur also in the considered time windows, the evoked potential
was removed from each epoch before computing the Granger Causality
(Wang et al., 2008). For each subject and each distractor strength, the
cortical signals within TOIs were concatenated together across epochs,
separately for the encoding TOI and the retention TOI. Then, the spectral
Granger Causality was computed over the concatenated signals. By
doing so, the directional influences between the DK parcels in the
spectral domain were estimated separately for the strong and weak
distractor conditions and for the encoding and retention TOIs. From the
spectral GC obtained in the encoding TOI, theta-band connectivity was
computed by averaging the values of the GC spectrum belonging to the
theta band, separately in the strong and weak distractor conditions.
Similarly, from the spectral GC obtained in the retention TOI, alpha
band connectivity was computed by averaging the values of the GC
spectrum belonging to the alpha band, separately in the strong and weak
distractor conditions. This resulted into 4 connectivity matrices per

Table 1
List of the Desikan-Killiany (DK) parcels, together with the ROIs and
macro-ROIs used in the analyses. Left column: complete name of each DK
parcel and the corresponding label (34 parcels per hemisphere). Middle column:
complete name and label of each ROI (14 ROIs per hemisphere). Right column:
complete name and label of each macro-ROI, i.e., lobe (3 macro-ROIs per
hemisphere). The analyses were performed at the macro-ROI level and at the
ROI-level. See text for further explanations.

DK parcels
(34 per hemisphere)

ROIs
(14 per hemisphere)

Macro-ROIs
(3 per
hemisphere)

caudal anterior-cingulate
cortex (cAC)

anterior cingulate cortex (AC)

frontal (F)

rostral anterior-cingulate
cortex (rAC)

pars opercularis (pOP)
inferior frontal gyrus (IF)pars orbitalis (pOR)

pars triangularis (pTR)

caudal middle frontal gyrus
(cMF) middle frontal gyrus (MF)

rostral middle frontal gyrus
(rMF)

paracentral lobule (PAC) paracentral lobule (PAC)

precentral gyrus (PRC) precentral gyrus (PRC)

lateral orbital frontal cortex
(lOF)

orbital frontal cortex (OF)medial orbital frontal cortex
(mOF)

frontal pole (FP) superior frontal gyrus
extended (SFe)superior frontal gyrus (SF)

inferior temporal gyrus (IT) inferior temporal gyrus (IT)

temporal (T)

banks superior temporal sulcus
(BK)

middle temporal gyrus
extended (MTe)

middle temporal gyrus (MT)

superior temporal gyrus (ST) superior temporal gyrus
extended (STe)transverse temporal cortex

(TT)

entorhinal cortex (EN)

medial temporal gyrus (mT)
fusiform gyrus (FU)
parahippocampal gyrus (PH)
temporal pole (TP)

lateral occipital cortex (LO) lateral occipital cortex (LO)

occipital (O)cuneus cortex (CU)
medial occipital cortex (mO)lingual gyrus (LG)

pericalcarine cortex (PCL)

isthmus-cingulate cortex (IST)
posterior cingulate cortex
(PC)posterior-cingulate cortex

(PCG)

inferior parietal cortex (IP)
postcentral gyrus (POC)
precuneus (PCU)
superior parietal cortex (SP)
supramarginal gyrus (SMG)
insular cortex (IN)
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subject (each of size 68× 68), denoted as parcel connectivity matrices.
Each matrix consisted of 68*67 values, since all self-connections were
excluded.

2.4.4. Analyses at lobe-level (macro-ROIs, 3 per hemisphere): event-related
spectral perturbations, connectivity and centrality indices

Starting from the ERSP and connectivity quantities obtained in the
previous section (Section 2.4.3), we initially perform an analysis at
coarse spatial resolution, by considering macro-ROIs. Specifically, we
defined six macro-ROIs (corresponding to lobes), three per hemisphere,
by aggregating together the DK parcels belonging to the frontal lobe (F),
temporal lobe (T) and occipital lobe (O), in each hemisphere (see the
right column in Table 1; e.g. the frontal (F) macro-ROI in each hemi-
sphere was obtained by aggregating the 13 frontal DK parcels listed in
the left-column cells in correspondence to the right-column cell). Based
on the task at hand, we assumed that these are the main involved lobes,
and we neglected the parietal lobes. Event-related spectral perturba-
tions, connectivity, and in degree and outdegree indices were then ob-
tained for the macro-ROIs.

2.4.4.1. Event-related spectral perturbations. For each distractor condi-
tion separately (strong and weak), theta-ERSP of each macro-ROI in the
encoding TOI was obtained by averaging the theta-ERSP across the DK
parcels belonging to the macro-ROI, within the encoding TOI. The same
procedure was applied for obtaining alpha-ERSP of each macro-ROI in
the retention TOI. Then, for each rhythm and its associated TOI, we
computed the maximum value of the ERSP (theta: maximum value
within 1–2 s interval, alpha: maximum value within 3–4 s interval),
macro-ROI by macro-ROI, obtaining the maximum theta-ERSP in the
encoding TOI and maximum alpha-ERSP in the retention TOI, separately
for strong and weak distractor conditions (one scalar value per macro-
ROI per condition). These latter quantities were subjected to statistical
comparison across the two distractor conditions (see Section 2.4.6).

2.4.4.2. Connectivity. Connectivity from a macro-ROI (let’s say A) to
another macro-ROI (let’s say B) was obtained by averaging all the
connectivity values that emerged from the DK parcels belonging to the
macro-ROI A and targeted the DK parcels belonging to the macro-ROI B.
The choice of averaging the connectivity across the parcels to estimate
the connectivity at the macro-ROIs is supported by a recent study (Brkić
et al., 2023), suggesting that when elements are aggregated together,
higher accuracy in connectivity estimate is obtained by first computing
the connectivity for all elements to be aggregated and then by applying

the average. This procedure was applied for each distractor condition
(strong and weak) and for each band (theta in encoding TOI and alpha in
retention TOI). This resulted into 4 connectivity matrices per subject
(each of size 6× 6), denoted as macro-ROI or lobe connectivity matrices.
Each matrix consisted of 6*5 values, since all self-connections were
excluded. The lobe connectivity matrices were subjected to statistical
comparison across the two distractor conditions (see Section 2.4.6).

2.4.4.3. Centrality indices (in degree and out degree). For each macro-
ROI, indices derived from the graph theory were obtained from the 6 ×

6 connectivity matrices. For each band and distractor strength, we
computed two centrality indices: the in degree – i.e., the sum of con-
nectivity values entering in each macro-ROI (quantifying the overall
connectivity inflow) – and the out degree – i.e., the sum of connectivity
values departing from each macro-ROI (quantifying the overall con-
nectivity outflow). These indices were subjected to statistical compari-
son across the two distractor conditions (see Section 2.4.6).

2.4.5. Analyses at ROI-level (14 ROIs per hemisphere): event-related
spectral perturbations, connectivity and centrality indices

The analyses at lobe-level were useful to investigate coarse traits of
the effects mediated by the distractor strength. Subsequently, we per-
formed an analysis at higher spatial resolution, at the level of 28 ROIs
(14 ROIs per hemisphere), still covering the frontal, temporal and oc-
cipital lobes. The 14 ROIs per hemisphere were obtained by aggregating
adjacent DK parcels ensuring that each ROI contained no less than 150
vertices of the cortical tessellation utilized for the inverse problem so-
lution, thereby identifying a cortical zone rather than small parcels
(mean number of vertices across the 28 ROIs = 447, range = 162–780;
mean number of vertices across the 68 DK parcels= 275, range =

17–763, with 24 DK parcels having less than 150 vertices). The list of the
14 ROIs per hemisphere is reported in Table 1 (see middle column, e.g.,
the anterior cingulate (AC) ROI in each hemisphere was obtained by
aggregating the two DK parcels listed in the left-column cells in corre-
spondence to the middle-column cell, i.e. the rostral (rAC) and caudal
anterior cingulate (cAC) cortices). We adopted a less fine resolution than
DK parcels for our analysis, in order to mitigate the effect of spatial
blurring and localization inaccuracy in source estimation.

2.4.5.1. Event-related spectral perturbations. The same procedure as for
the macro-ROIs was adopted here. Specifically, for each distractor
condition separately (strong and weak), theta-ERSP of each ROI in the
encoding TOI was obtained by averaging the theta-ERSP across the DK

Fig. 2. Location of the DK parcels. The figure shows the cortical surface parcellation according to the Desikan-Killiany (DK) Atlas. Each parcel is labelled by its
abbreviation (label) as reported in Table 1 (see left column). Note that the analyses were applied at the macro-ROI level and at the ROI-level, i.e. at lower spatial
resolution than the DK parcels.
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parcels belonging to the ROI, within the encoding TOI. Alpha-ERSP of
each ROI in the retention TOI was obtained similarly. Then, as in the
case of the macro-ROIs, for each rhythm and its associated TOI, we
computed the maximum value of the ERSP (theta: maximum value
within 1–2 s interval, alpha: maximum value within 3–4 s interval), ROI
by ROI, obtaining the maximum theta-ERSP in the encoding TOI and
maximum alpha-ERSP in the retention TOI, separately for strong and
weak distractor conditions (one scalar value per ROI per condition).
These quantities were subjected to statistical comparison across the two
distractor conditions (see Section 2.4.6). For completeness, in Supple-
mentary Materials (Section S1-1.2), Figs. S3 and S4 report the ERSP for
exemplary frontal and occipital ROIs over the 5s-length epoch in the
entire frequency range, and in the theta (theta-ERSP) and alpha band
(alpha-ERSP). Moreover, Fig. S5 (Section S1-1.2) shows theta-band
ERSP in the encoding TOI and alpha-band ERPS in the retention TOI
across the 28 ROIs.

2.4.5.2. Connectivity. As for the macro-ROIs, connectivity from a ROI
(let’s say A) to another ROI (let’s say B) was obtained by averaging all
the connectivity values that emerged from the DK parcels belonging to
the ROI A and targeted the DK parcels belonging to the ROI B. This
procedure, applied for each distractor condition (strong and weak) and
for each band (theta in encoding TOI and alpha in retention TOI),
resulted into 4 connectivity matrices per subject (each of size 28 × 28),
denoted as ROI complete connectivity matrices. Each matrix consisted of
28*27 = 756 values, since all self-connections were excluded. Consid-
ering the large number of connections, from the ROI complete connec-
tivity matrices we derived the ROI sparse connectivity matrices via
statistical comparison between strong and weak distractor conditions, to
reduce the noise, as we similarly did in previous studies (Tarasi et al.,
2021; Ursino et al., 2022). Specifically, for each band, we performed a
two-tailed permutation t-test (Nichols and Holmes, 2002) on the 756
connections contrasting strong and weak distractor conditions across the
participants (see Section 2.4.6). Then, for each participant and for each
band we zeroed the entries in the complete connectivity matrices at the
positions corresponding to the connections that resulted not signifi-
cantly different (p ≥ 0.05) between the two distractor conditions,
retaining only the connections significantly different (p < 0.05). This
way, we obtained the 4 sparse connectivity matrices per participant, one
per each distractor condition and band. The sparse matrices were used
for computation of centrality indices at ROI-level.

2.4.5.3. Centrality indices (in degree and out degree). For each ROI, the in
degree index (sum of entering connectivity values) and out degree index
(sum of exiting connectivity values) were obtained for each band and
each distractor condition from the corresponding sparse connectivity
matrix. These quantities were subjected to statistical comparison across
the two distractor conditions (see Section 2.4.6).

2.4.6. Statistical analyses
All performed statistical analyses concerned pair-wise comparisons

between strong and weak distractors conditions across the participants.
Normality of distribution was tested using the Anderson-Darling test for
all variables. Since for each planned comparison, some of the variables
resulted in being non-normally distributed, we used non-parametric
tests. Significance level was set at 5%. Correction for multiple compar-
isons, when applied, was performed via the Benjamini–Yekutieli pro-
cedure (Benjamini and Yekutieli, 2001). In cases where tests did not
survive correction for multiple comparisons, uncorrected results were
reported. All tests were accompanied by effect size computation, to
characterize the magnitude of the reported effects.

The following statistical analyses were performed.

i. Analyses of behavioral results Comparison of reaction time and of
response accuracy between the two distractor conditions. A two-

tailed Wilcoxon signed-rank test was performed, separately for
each metric (reaction time and response accuracy). Effect size
was quantified using r (the value of the z-statistic returned by the
test, divided by the square root of the sample size). These tests
were performed to assess whether behavioral differences across
the two conditions were in line with those reported in similar
studies.

ii. Lobe-level analyses
All the tests performed at lobe-level were one-tail (strong >

weak) since we were interested in assessing the increase in theta
and alpha activity induced by strong relative to weak distractors.
a. Comparison of the maximum theta-ERSP in the encoding TOI

and maximum alpha-ERSP in the retention TOI between the
two distractor conditions, macro-ROI by macro-ROI. For each
band (alpha and theta), we applied a one-tail Wilcoxon signed-
rank test (strong>weak) to each macro-ROI. Correction for
multiple comparisons was computed within each band (6
comparisons, one per macro-ROI). Effect size was quantified
using r. These tests were performed to evaluate whether any
macro-ROI exhibited theta power increase during encoding or
alpha power increase during retention for strong vs. weak
distractors.

b. Comparison of theta and alpha connectivity matrices of the
macro-ROIs between the two distractor conditions. For each
band (theta and alpha), we applied a one-tail Wilcoxon signed-
rank test (strong>weak) to each connectivity. Correction for
multiple comparisons was computed within each band (30
comparisons, one per bivariate directed connectivity,
excluding self-connections). Effect size was quantified using r.
These tests were performed to evaluate whether any connec-
tivity exhibited increase in theta band during encoding or
exhibited increase in alpha band during retention for strong
vs. weak distractors.

c. Comparison of theta and alpha in/out degrees of the macro-
ROIs between the two distractor conditions. For each band
(theta and alpha) and centrality index (in degree and out de-
gree), we applied a one-tail Wilcoxon signed-rank test
(strong>weak), to each macro-ROI. Correction for multiple
comparisons was computed within each band and centrality
index (6 comparisons, one per macro-ROI). Effect size was
quantified using r. These tests were performed to evaluate
whether any macro-ROI exhibited in/out degree increase in
theta band during encoding or in alpha band during retention
for strong vs. weak distractors.

iii. ROI-level analyses
a. Comparison of the maximum theta-ERSP in the encoding TOI

and maximum alpha-ERSP in the retention TOI between the
two distractor conditions, ROI by ROI. For each band (theta
and alpha), we applied a one-tail Wilcoxon signed-rank test
(strong>weak) to each ROI. Correction for multiple compari-
sons was computed within each band (28 comparisons, one
per ROI). Effect size was quantified using r. These tests were
performed to evaluate whether any ROI exhibited theta power
increase during encoding or alpha power increase during
retention for strong vs. weak distractors.

b. Comparison of the complete theta connectivity matrices and
alpha connectivity matrices between the two distractor con-
ditions. For each band (theta and alpha), we applied a two-tail
permutation t test (5000 permutations) to each connectivity.
Effect size was quantified using Cohen’s d. This test was per-
formed, according to previous studies (Tarasi et al., 2021;
Ursino et al., 2022), to remove basal background noise, by
eliminating connectivity items in the complete connectivity
matrices that are just noisy (not significant), and moving to
sparse connectivity matrices. No correction for multiple
comparisons was applied since we wanted to keep as many
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connections as possible. Indeed, here we were not interested in
each specific connectivity value connecting single pairs of
ROIs. Rather we used the resulting sparse matrices for
computing centrality indices at ROI-level, to draw cues on an
average modulation of the connectivity pattern enter-
ing/exiting ROIs, induced by the different distractor strength.

c. Comparison of theta and alpha in/out degrees of the ROIs
between the two distractor conditions. For each band (theta
and alpha) and centrality index (in degree and out degree), we
applied a one-tail Wilcoxon signed-rank test (strong>weak) to
each ROI. Correction for multiple comparisons was computed
within each band and centrality index. Effect size was quan-
tified using r. These tests were performed to evaluate whether
any ROI exhibited in/out degree increase in theta band during
encoding or in alpha band during retention for strong vs. weak
distractors.

While here we focused on connectivity in theta band in the encoding
TOI, and connectivity in alpha band in the retention TOI, for
completeness in the Supplementary Materials (Section S2) we replicated
the analyses considering connectivity in theta band in the retention TOI
and connectivity in alpha band in the encoding TOI, both at lobe-level
and ROI-level. This was useful to also evaluate alterations in connec-
tivity patterns within a given band when shifting from memory encoding
to memory retention.

In the following, any macro-ROI or ROI belonging to the left/right
hemisphere will be denoted by adding ‘.L’ / ‘.R’ to the corresponding
label.

3. Results

3.1. Behavioral results

Top panels in Fig. 3 display the distributions of the reaction time and
response accuracy to the probe in case of strong and weak distractors,
separately. Bottom panels show the distributions (represented as violin
plots) of the difference of these metrics between the two distractor
conditions. Strong distractors were associated with a significant increase
in reaction times compared to weak distractors (mS-W = 0.028 s, SDS-W =

0.04 s, p = 0.005, r = 0.61). mS-W represents the mean across subjects of
the difference between the quantity in strong distractor condition and in
weak distractor condition, and SDS-W the standard deviation. The
response accuracy did not show a significant change across the dis-
tractor conditions, although it tended to be slightly lower for strong vs.
weak distractors (mS-W = -0.78%, SDS-W = -2%, p = 0.1148). These
behavioral data are in line with those observed in previous studies in
similar task conditions (Bonnefond and Jensen, 2012; Sghirripa et al.,
2021).

In the following, first we presented results at lobe-level, both as to
ERSP and connectivity, and then at ROI-level. In investigating modu-
lation of connectivity patterns by distractor strength, we were interested
in bottom-up connectivity patterns, i.e., along the direction from oc-
cipital to temporal to frontal, and in top-down connectivity patterns, i.e.,
along the direction from frontal to temporal to occipital.

3.2. Lobe-level analyses

Fig. 4 shows the results of the lobe-level analyses as to the theta band
during the encoding TOI. Theta ERSP showed a distributed increase of
theta activity, involving all considered lobes (occipital, temporal, fron-
tal) but clearly peaking at frontal lobes, both in strong and weak dis-
tractor conditions (left and middle columns in Fig. 4a). Comparison
between strong and weak distractor conditions revealed larger theta-
ERSP in right and left frontal lobes (F.R, F.L) close to significance
(right column Fig. 4a, F.L: mS-W = 0.17, SDS-W = 0.4, p = 0.0555, r =
0.35; F.R: mS-W = 0.13, SDS-W = 0.45, p = 0.0597, r = 0.34; uncorrected
p-values). Moreover, strong vs. weak distractors were associated with
increased bottom-up occipital-to-temporal connectivity in the left
hemisphere (Fig. 4b, mS-W = 0.002, SDS-W = 0.0071, p = 0.0143, r =
0.48; uncorrected p-value). This suggests that anticipation of strong vs.
weak distractor boosted the engagement of two theta-organized sys-
tems, with one working locally at frontal cortices and one working in a
bottom-up fashion. In degree and out degree indices of the macro-ROIs
showed no difference in the theta band during encoding.

Results concerning the alpha band during retention are presented in
Fig. 5. Alpha-ERSP showed a distributed increase of alpha activity too,
but assuming largest value at the occipital lobes with a right laterali-
zation, both in strong and weak distractor conditions (left and middle

Fig. 3. Reaction time and response accuracy obtained with different distractor strength (strong vs. weak). Reaction time and response accuracy distributions
are displayed, separately for strong and weak distractor conditions (top panels). Smaller dots represent the metrics for each subject; bigger dots and black horizontal
lines represent the mean value and the standard error of the mean across subjects. The distributions of the difference of the reaction time and response accuracy
between strong and weak distractor conditions are reported too (bottom panels), represented as violin plots, with the vertical black line inside each violin plot
denoting the mean value.
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columns in Fig. 5a). Interestingly, when tested statistically, alpha-ERSP
resulted significantly higher in the right occipital lobe than in the left
occipital lobe both in strong and in weak distractor condition (strong:
mR-L = 0.23, SDR-L = 0.52, p = 0.009, r= 0.56; weak: mR-L = 0.29, SDR-L
= 0.47, p = 0.001, r = 0.68; two-tail Wilcoxon signed-rank test). This
right lateralization held also for the temporal lobes (strong: mR-L = 0.24,
SDR-L = 0.66, p = 0.0421, r= 0.44; weak: mR-L = 0.32, SDR-L = 0.62, p =

0.0239, r = 0.49; two-tail Wilcoxon signed-rank test). No macro-ROI
showed alpha-ERSP difference between the two distractor conditions,
although it is noticeable a slight increase in the left occipital lobe in case
of strong vs. weak distractor (last row in Fig. 5a). Conversely, a salient
aspect here is that strong vs. weak distractors induced an increase in top-
down connectivity coming from frontal and temporal lobes and target-
ing selectively the left occipital lobe (Fig. 5b, connectivity F.L→ O.L: mS-

W = 0.0024, SDS-W = 0.0049, p = 0.0156, r = 0.47; connectivity T.R →
O.L: mS-W = 0.0017, SDS-W = 0.004, p = 0.0258, r= 0.42; uncorrected p-
values). This top-down connectivity modulation was accompanied by a

significant increase in the in degree index of the left occipital lobe
(Fig. 5c, mS-W = 0.0087, SDS-W = 0.02, p = 0.0119, r= 0.49, uncorrected
p-value), which showed an increase in the entering connectivity from all
other lobes in case if strong vs. weak distractors (although significant
only from F.L and T.R). The out degree index of the macro-ROIs showed
no difference in the alpha band during retention.

Connectivity results in the theta band during the retention TOI and in
the alpha band during the encoding TOI, at the lobe level, are reported
for completeness in Supplementary Materials (see Section S2, Fig. S6).

3.3. ROI-level analyses

ERSP results at the ROI level are shown in Fig. 6. As regarding the
theta band in the encoding TOI (Fig. 6a), significant or close-to-
significance higher theta-ERSP for strong vs. weak distractors was
found especially in frontal ROIs, in agreement with lobe-level analysis in
Fig. 4a (AC.R: mS-W = 0.18, SDS-W = 0.41, p = 0.059, r= 0.34; IF.L: mS-W

Fig. 4. Lobe-level results for theta-band during encoding: comparison of ERSP (panel a) and of connectivity (panel b) between strong and weak distractor
conditions. Panel a: The first two columns show the grand-average ERSP in the theta band mapped onto the lobes (maximal perturbation inside the encoding TOI,
lobe by lobe), separately for strong and weak distractor conditions. The gray portions in these two columns correspond to parietal lobes not included in this analysis.
The third column shows the difference between the two distractor conditions, reporting the result of the performed statistical test: only the lobes that exhibited a
significantly higher perturbation in strong vs. weak distractor condition (p < 0.05, uncorrected) are colored. Cortex views are reported by rows (rostral, dorsal, left-
medial, right-medial, caudal, respectively). Panel b: Theta-band connectivity at lobe level. Each node represents a lobe (F: frontal, T: temporal, O: occipital) and the
displayed directed edges indicate connections significantly higher for strong compared to weak distractors (p < 0.05, uncorrected).
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=0.24, SDS-W = 0.54, p = 0.0036, r= 0.57; PRC.L: mS-W = 0.14, SDS-W =

0.44, p = 0.0516, r= 0.36; PRC.R: mS-W =0.11, SDS-W = 0.28, p = 0.027,
r = 0.42; uncorrected p-values). This effect was observed also in pos-
terior cingulate ROI and inferior temporal ROI (PC.L: mS-W = 0.16, SDS-W
=0.47, p= 0.055, r=0.35; IT.L: mS-W = 0.15, SDS-W = 0.39, p = 0.0516, r
= 0.36; uncorrected p-values). Among these ROIs, cingulate regions
(AC.R, PC.L) and IF.L showed the highest difference in spectral pertur-
bations for strong vs. weak distractors. As regarding alpha-ERSP, when
considering strong and weak distractors separately (left and middle
columns in Fig. 6b), the same right-hemisphere lateralization was seen
as in lobe-level analysis, especially in temporal and occipital regions,
(see also Fig. S6 in Section S2 of Supplementary Materials, further
evidencing this right-hemisphere lateralization). When contrasting
strong and weak distractor conditions, significant higher alpha-ERSP in
case of strong vs. weak distractors was found in left temporal-occipital
cortices (IT.L: mS-W = 0.14, SDS-W = 0.2, p = 0.0036, r = 0.57; LO.L:
mS-W = 0.28, SDS-W = 0.7, p = 0.04, r = 0.37, uncorrected p-values),
with the left lateral occipital ROI (LO.L) exhibiting the highest

difference.
Figs. 7 and 8 show the results of the connectivity analysis at the ROI-

level, respectively for the theta band in the encoding TOI and alpha band
in the retention TOI. Specifically, each figure displays the ROIs that
exhibited a significantly higher in degree or out degree in strong vs.
weak distractors (panel a), and the connectivity patterns entering into
(panel b) and exiting from (panel c) some of these ROIs.

In case of the theta band in the encoding TOI, the strong condition
was characterized by a higher inflow (Fig. 7a, left map) in a few frontal
and temporal ROIs, and by a higher outflow (Fig. 7a, right map) from a
few frontal, temporal, and left occipital ROIs (in degree: corrected-p ≤

0.0696, uncorrected-p ≤ 0.0056, r ≥ 0.56; out degree: corrected-p ≤

0.0455, r ≥ 0.56). The higher theta inflow/outflow at frontal ROIs was
mainly due to increased connectivity from/to other frontal ROIs (see
Fig. 7b and Fig. 7c-left map). In addition, the higher theta-outflow at
temporal and occipital ROIs exhibited mainly a bottom-up pattern, from
temporal (MTe.L, IT.R) to frontal ROIs (Fig. 7b-right map and Fig. 7c-
right map), and from the left occipital (LO.L) to the right temporal cortex

Fig. 5. Lobe-level results for alpha-band during early retention: comparison of ERSP (panel a) and of connectivity (panels b-d) between strong and weak
distractor conditions. Panel a: The first two columns show the grand-average ERSP in the alpha band mapped onto the lobes (maximal perturbation inside the
retention TOI, lobe by lobe), separately for strong and weak distractor conditions. The gray portions in these two columns correspond to parietal lobes not included in
this analysis. The third column shows the difference between the two distractor conditions, reporting the result of the performed statistical test: only the lobes that
exhibited a significantly higher perturbation in strong vs. weak distractor condition (p < 0.05, uncorrected) are colored (note that no lobe exhibited significance
here). Cortex views are reported by rows (rostral, dorsal, left-medial, right-medial, caudal, respectively). Panel b: Each node represents a lobe (F: frontal, T: temporal,
O: occipital) and the displayed directed edges indicate connections significantly higher for strong compared to weak distractors (p < 0.05, uncorrected). Panel c:
Lobes with significantly higher (p < 0.05, uncorrected) in degree index in the strong vs. weak distractor condition (left panel) and connections entering into these
lobes (right panel) higher for strong vs. weak distractors (thicker lines denote significant connections, p < 0.05, uncorrected).
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(Fig. 7c-right map) (theta encoding sparse connectivity matrix: p ≤

0.0476, Cohen’s d ≥ 0.37, Cohen’s d ≤ -0.45). Finally, it is worth
mentioning that some of the ROIs showing higher theta power in the
encoding TOI for strong vs. weak distractors (e.g., AC.R, PC.L, PRC.R, IT.
L, see Fig. 6a) were also involved in the connectivity pattern changes
shown here.

As to the alpha band during retention, higher in degree and/or out
degree for strong vs. weak distractors was obtained in a few frontal ROIs
(AC.L, IF.L, OF.R), in temporal ROIs (STe.R, bilateral IT), and in a left
occipital ROI (mO.L) (in degree: p ≤ 0.028, r≥ 0.6; out degree: p ≤ 0.05,
r ≥ 0.6; corrected p-values). The connectivity entering to/exiting from
ROIs with significantly higher centrality indices exhibited some peculiar
patterns (Fig. 8b and c). In particular, the strong distractor condition
was associated with an increase in top-down connectivity, from frontal
and temporal regions (AC.L, SFe.L, bilateral IF, OF.R, bilateral IT) to-
wards left occipital regions (mO.L, LO.L, Fig. 8b right panel and Fig. 8c),
confirming the results at lobe level (Fig. 5b). Furthermore, also frontal-
to-temporal and temporal-to-frontal connectivity increased for strong
vs. weak distractors (Fig.8b-left map and Fig.8c-left map), evidencing
the involvement of recurrent (top-down and bottom-up) influences

(alpha retention sparse connectivity matrix: p ≤ 0.0492, Cohen’s d≥ 0.4,
Cohen’s d ≤ -0.32).

Connectivity results in the theta band during the retention TOI and in
the alpha band during the encoding TOI, at the ROI-level, are reported
for completeness in Supplementary Materials (see Section S2, Fig. S7 ).

4. Discussion

Protecting relevant information from distractors is crucial for suc-
cessful working memory and more generally goal-oriented behavior.
Deficits in protection-against-distraction seem to be key components of
WM impairment in healthy aging and in neurological disorders, such as
ADHD and schizophrenia (Lorenc et al., 2021). A better understanding
of the neural mechanisms underlying distraction resistance in WM may
not only enhance the comprehension of real-world human WM func-
tions, but also contribute to an improved characterization of neurolog-
ical disorders and cognitive decline, and to the definition of more
effective interventions and training procedures. In this study, we
analyzed the EEG source-level modulations of oscillatory power and
connectivity, both in alpha-band and theta-band, in anticipation of

Fig. 6. ROI-level ERSP results: comparison of theta-band ERSP during encoding (panel a) and of alpha-band ERSP during early retention (panel b) be-
tween strong and weak distractor conditions. In each panel, the first two columns show the grand-average perturbations mapped onto the ROIs (maximal
perturbation inside the TOI, ROI by ROI), separately for strong and weak distractor conditions. The gray portions in these two columns correspond to parietal lobes
not included in this analysis. The third column shows the difference between the two distractor conditions, reporting the result of the performed statistical test: only
the ROIs (in the frontal, temporal and occipital lobes) that exhibited a significantly higher perturbation in strong vs. weak distractor condition (p < 0.05, uncor-
rected) are colored. Cortex views are reported by rows as in Figs. 4a and 5a (rostral, dorsal, left-medial, right-medial, caudal, respectively).
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Fig. 7. ROI-level connectivity results: comparison of theta-band connectivity during encoding between strong and weak distractor conditions. Panel a:
ROIs with close-to-significance higher in degree (left panel, corrected-p < 0.07) and significantly higher out degree (corrected-p < 0.05 right panel) in the strong vs.
weak distractor condition, when considering theta-band connectivity in the encoding TOI. Panel b: Connections entering in a selection of ROIs with significant in
degree (from panel a). Red/blue arrows denote an increased/decreased connectivity in the strong vs. weak distractor condition; only significant connections (p
< 0.05) are displayed. Panel c: Connections departing from a selection of ROIs with significant out degree (from panel a). Red/blue arrows denote an increased/
decreased connectivity in the strong vs. weak distractor condition; only significant connections (p < 0.05) are displayed.

E. Magosso and D. Borra NeuroImage 300 (2024) 120835 

12 



Fig. 8. ROI-level connectivity results: comparison of alpha-band connectivity during early retention between strong and weak distractor conditions. Panel
a: ROIs with a significantly higher (p < 0.05, corrected) in degree (left panel) and out degree (right panel) in the strong vs. weak distractor condition, when
considering alpha-band connectivity in the retention TOI. Panel b: Connections entering in a selection of ROIs with significant in degree (from panel a). Red/blue
arrows denote an increased/decreased connectivity in the strong vs. weak distractor condition; only significant connections (p < 0.05) are displayed. Panel c:
Connections departing from a selection of ROIs with significant out degree (from panel a). Red/blue arrows denote an increased/decreased connectivity in the strong
vs. weak distractor condition; only significant connections (p < 0.05) are displayed.
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distractors with different strength during a visual Sternberg-like work-
ing memory task involving verbal items (letters). Here, we focused on
preparatory (proactive) oscillatory mechanisms that act in advance of
distractor presentation when the nature and timing of the distractor can
be anticipated, without examining oscillatory mechanisms in reaction to
distractor appearance. The analyses were first performed at a coarser
spatial resolution, considering macro-ROIs encompassing entire lobes,
in order to reveal some main characteristics of the effects of distractor
strength, and subsequently at a finer resolution (ROI-level).

4.1. Theta and alpha power modulation irrespective of distractor strength

First, general considerations can be derived from our results
regardless of distractor strength (Figs. 4-6 and Figs. S1-S5 in Supple-
mentary Materials). We obtained distributed increase in cortical theta
power during encoding (Figs. 4a, 6a, S5a, but also retention, see Fig. S1
and S3), irrespective of distractors, with clearly larger effects at frontal
regions, in particular prefrontal and anterior cingulate cortices. The
latter are considered the regions principally involved in scalp midline
frontal theta during working memory and other mental tasks (Cavanagh
and Frank, 2014; Hsieh and Ranganath, 2014; Meltzer et al., 2008;
Onton et al., 2005). Theta increase involving frontal but also other
distributed regions, both during encoding and retention, is in line with
previous studies (Jaiswal et al., 2010; Raghavachari et al., 2006, 2001;
Sederberg et al., 2003). Differently from theta activity, increase in alpha
power was limited to the retention phase, and assumed the highest
values at occipital regions (Figs. 5a and 6b, see also Figs. S2, S4 and
S5b), as commonly observed in visual WM tasks (Heinrichs-Graham and
Wilson, 2015; Jensen et al., 2002; Khader et al., 2010; Wianda and Ross,
2019). Thus, overall, our data replicated common theta and alpha effects
observed across previous WM studies. In addition, other interesting
considerations can be drawn. In particular, the alpha power increase
resulted biased towards the right hemisphere, in occipital and temporal
regions, in both distractor conditions (Figs. 5a and 6b, see also Figs. S2,
S4 and S5b). This result is reminiscent of alpha lateralization found in
verbal (Butler and Glass, 1974; Galin et al., 1982) and spatial tasks
(Loughnane et al., 2015), in particular in right-handed subjects, and
associated with task-dependent hemisphere dominance. In particular,
left occipital, temporal and also parietal lobes encompass areas that
have been functionally associated with verbal processes. Processing and
recognition of visually-presented verbal items (e.g., letters or digits)
have been related to a lateralized activation in left lateral occipital and
inferior temporal regions (Capilla et al., 2014; Flowers et al., 2004).
Letter-selective responses have been observed in left inferior parietal
cortex (Joseph et al., 2003). Moreover, the left transverse temporal
gyrus and supramarginal gyrus are believed to be important nodes for
phonological processing, also involved in grapheme-phoneme conver-
sion, and to serve as core areas for subvocal rehearsal of verbal infor-
mation (Deschamps et al., 2014; Fegen et al., 2015; Junker et al., 2023).
Considering alpha as a marker of inhibition, the less alpha power
observed during retention in these left regions can be interpreted by
assuming that these areas, being dedicated to the extraction and
encoding of features from the sensory input (visually presented letters),
were engaged during the retention period too, in order to reactivate the
representation of the no longer present input (de Vries et al., 2020). We
hypothesize that during the retention phase, these left occipito-temporal
areas were more subjected to antagonistic mechanisms than the right
regions: on one hand, an inhibitory mechanism (operated by alpha in-
crease) serving to disengage these areas to protect from impending in-
trusions, and on the other hand, an engagement mechanism (associated
with alpha decrease) serving to maintain active processing in these areas
for supporting memory trace maintenance. This interpretation remains
mainly speculative here but, interestingly, is supported by some previ-
ous studies reporting specific alpha responses in left hemispheric regions
during the storage of visually presented letters. For example, Hein-
richs-Graham and Wilson (2015), during the maintenance of a set of

displayed letters, obtained sustained alpha decrease in left middle and
superior temporal gyri and supramarginal gyrus, throughout most of the
maintenance phase. That study did not involve distractors presentation,
thus the competition between the two antagonistic mechanisms may
have been unbalanced towards alpha decrease. The study by Sghirripa
et al. (2021), involving a task similar to ours with anticipated dis-
tractors, reported a significant increase in scalp alpha power immedi-
ately before distractor presentation above right occipito-temporal and
parietal regions, whereas a minimal and non-significant increase was
observed over the corresponding left regions. In that case, at variance
with the previous mentioned study (Heinrichs-Graham and Wilson,
2015) and in line with our results (see Fig. 6b, first two columns), left
alpha power did not show a decrease, possibly because of a stronger
alpha inhibitory mechanism due to the anticipated distractors, con-
trasting alpha decrease. The antagonistic impact that different compo-
nents of a task may have on alpha activity has also been emphasized in
previous studies, although considering different types of tasks (Magosso
et al., 2021, 2019).

4.2. Effect of distractor strength on theta-band power and connectivity

Theta power during encoding increased mainly in frontal and
cingulate regions (Figs. 4a and 6a) for strong vs. weak distractors. The
scaling of frontal theta increase with cognitive demand and control has
been observed across several cognitive tasks (Cavanagh and Frank,
2014; Isabella et al., 2021; Womelsdorf et al., 2010). In WM tasks,
frontal theta was found to increase with WM load in cingulate and
prefrontal cortex (Onton et al., 2005; Proskovec et al., 2019); further-
more, higher frontal theta was reported in reaction to strong compared
to weak distractors (i.e., during or after distractor presentation) both in a
WM task (Fodor et al., 2020) and in target detection tasks (van Diepen
et al., 2016). Here, we show that even the anticipation of distractors of
different strength modulated theta activity, involving regions (such as
the anterior cingulate cortex) known to be crucially involved in brain
theta oscillations and associated with attentional and executive control
processes (Cavanagh and Frank, 2014; Clayton et al., 2015).

Frontal regions during encoding were modulated by the distractor
strength, not only in theta power but also in theta-band information
inflow and outflow, with strong distractors being associated with
stronger frontal-to-frontal connectivity (Fig. 7). Moreover, even if only
marginally involved in power modulation, temporal and occipital re-
gions exhibited increased exiting bottom-up connectivity (occipital to
temporal and temporal to frontal) and also higher outdegree during
encoding for strong vs. weak distractors (Figs. 4b and 7). The bottom-up
connectivity patterns observed in our results resemble a flow of infor-
mation from low-level sensory regions to higher-level regions for
encoding progressively complex features of the input. An interesting
aspect that emerges from our supplementary analyses is that the stron-
ger involvement of frontal-to-frontal connectivity and bottom-up con-
nectivity, for strong compared to weak distractors, appeared as a general
feature of the theta band, characterizing not only the encoding phase but
also the retention phase (Figs. S6 and S7 in Supplementary Materials). In
the latter case, the increase in bottom-up connectivity occurred even to a
greater extent (Fig. S7), and involved also increased occipital-to-frontal
connectivity. Thus, overall, encoding and retention seemed to recruit
similar theta-band mechanisms (local frontal mechanisms and bottom-
up mechanisms) to proactively face strong impending distractors. A
possible interpretation of these results is that the frontal theta mecha-
nisms were related to more general processes of attention allocation (not
strictly involving memory processes), while the bottom-up connectivity
from occipital and temporal regions was more related to encoding and
memory processes. In particular, the increase in local frontal power and
frontal-to-frontal connectivity might mark more sustained attention
allocation both during encoding and retention, associated with the
anticipation of the strong distractor. During encoding, the increased
bottom-up theta connectivity might reflect a stronger bottom-up relay of
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sensory information along the hierarchical ventral visual pathway up to
the prefrontal cortex, to enhance the ongoing representation of the
stimulus to be kept in memory. During retention, the increased bottom-
up theta connectivity might contribute to implement a stronger reac-
tivation of the same representations of the removed stimulus. This
interpretation, though tentative, has some counterparts in the literature.
Recent studies support a predominant bottom-up directionality of the
visual theta in the primate brain, from lower to higher levels of the vi-
sual cortex and to the temporal cortex (Spyropoulos et al., 2018), and
TMS studies indicated the involvement of a bottom-up network from
sensory to frontal regions in WM (Miyauchi et al., 2016). Moreover,
results of a task designed to differently modulate task complexity and
memory load, suggested frontal midline theta activity to be related to
general sustained attentional mechanisms and to be functionally disso-
ciated from long-range theta interactions (Sauseng et al., 2007). Other
WM studies hypothesized a functional separation between frontal theta
activity, as a correlate of general attentional processing, and a more
posterior theta-organized network for memory formation and mainte-
nance (Khader et al., 2010; Raghavachari et al., 2006).

4.3. Effect of distractor strength on alpha-band power and connectivity

Alpha power during retention increased for strong relative to weak
distractors in only a few occipital-temporal regions (Fig. 6b), precluding
to obtain any power effect at lobe level (Fig. 5a) Although we
acknowledge that our results may be affected by some amount of spatial
inaccuracy, it appears remarkable that the alpha-modulated ROIs
included the left lateral occipital cortex and the left inferior temporal
gyrus (see Fig. 6b), which are known to be engaged in letter processing
(and thus also in processing the strong distractors, too). Thus, our results
appear consistent with the hypothesis that alpha power has a role in
suppressing distracting information, via anticipatory inhibition of spe-
cific representational areas. Our results match the findings obtained in a
MEG study by Bonnefond and Jensen (2012), who used a task similar to
ours, except for the modality of the memory set presentation (letters
presented sequentially rather than simultaneously): the authors found a
significant anticipatory alpha power increase for strong vs. weak dis-
tractors in left parietal-occipital sensors, and localized the source in left
occipital-temporal cortices. In contrast to Bonnefond and Jensen (2012),
the more recent EEG study by Sghirripa et al. (2021), using a task like
ours (i.e., with the letters of the memory set presented simultaneously)
and performing only a sensor-level analysis, failed to find an alpha
power modulation by distractor strength and attributed this inconsistent
result to differences in task features related to the different way of
memory set presentation (simultaneously vs. sequentially). Here, we did
not find any effect at the scalp-level (as in Sghirripa et al., 2021), while
at the cortex-level our results resembled those obtained by Bonnefond
and Jensen (2012). Thus, based on our results, it may be possible that
differences in task features might lead to stronger alpha effects in one
case (sequential item presentation), detectable also at the sensor-level,
than in the other case (simultaneous item presentation), where the ef-
fects could remain masked at the scalp-level but emerge at the
source-level. Thus, source-level analysis may be able to capture effects
that are not or hardly detectable at the scalp-level, helping to reconcile
contrasting or dissimilar results.

The performed connectivity analyses suggested the involvement of
top-down alpha influences targeting left posterior sensory areas during
retention. Indeed, in contrast to the theta band, which is predominantly
characterized by a modulation of bottom-up connectivity, the alpha
band during retention exhibited a distinctive increase in top-down
frontal-to-occipital and temporal-to-occipital connectivity (Figs. 5b,
5c, 8) for strong vs. weak distractors, primarily targeting left occipital
regions. Top-down influences from frontal to posterior sensory areas
were reported previously across several tasks (working memory, vi-
suospatial, mental arithmetic tasks) (e.g. see Doesburg et al., 2016;
Magosso et al., 2021; Wang et al., 2016), and related to the inhibition of

sensory processing to gate out interfering sensory inputs. Here, we
confirm these findings and extend them by reporting for the first time a
modulation of top-down alpha-band connectivity according to distractor
strength. Top-down alpha connectivity increase during retention was
also accompanied by an increase in bidirectional (bottom-up and
top-down) frontal-temporal connections (Figs. 8b and c). Bidirectional
top-down and bottom-up alpha influences were reported previously as
characteristic of an internal attention task relative to external attention
(Magosso et al., 2021), and could contribute to reduce visual interfer-
ence. Thus, overall, during retention, increased theta-band bottom-up
influences would operate to enhance the internal memorized represen-
tation in anticipation of strong distractors, and increased top-down (but
also bottom-up) alpha-band influences would operate to protect this
internal representation by inhibiting the processing of impending dis-
tractors. Remarkably, this recurrent pattern of increased connectivity
both top-down and bottom-up, for strong vs. weak distractors, was
specific to the alpha-band and the retention phase only and did not occur
during encoding (no ROI exhibited an increase in in degree or out degree
indices for strong vs. weak distractors in alpha band during encoding;
see Supplementary Materials). In this way, during encoding, bottom-up
theta-band influences operate to strengthen the representation of the
ongoing task-relevant stimulus, without alpha-mediated inhibitory in-
fluences over sensory regions, which could decrease the processing of
the ongoing target stimulus.

4.4. Limitations and future directions

This study presents some limitations that can be overcome in future
investigations.

First, we acknowledge that EEG source localization improves with
high electrode density and when using individualized head models
(Michel and Brunet, 2019), while here we adopted a template head
model and we used 60 electrodes, with data rank further reduced by the
procedure for artifact removal. For this reason, we avoided the analysis
at small cortical parcels, and we focused on modulation of power and of
connectivity patterns at the level of larger cortical patches, founding
some promising matching between our results and existing literature.
Indeed, as discussed above, results of power and connectivity analyses
across distractor conditions pointed to areas (mainly frontal areas and
cingulate cortex for theta-band, left temporal-occipital cortex for
alpha-band) in line with the current knowledge about the phenomena
under investigations and matching existing findings. Undoubtedly,
future investigations utilizing a greater number of electrodes and
subject-specific head models may be useful for performing analyses at a
finer spatial scale and for improving the present findings.

Another possible limit is that we might have underestimated the
effect of strong vs. weak distractors, since all trials in every block was
included in the analyses, without disregarding the first trial of each
block.

Another aspect concerns the lack of investigation of other rhythms.
Indeed, there are findings that suggest a role of beta rhythm (13–30 Hz)
in WM processes (Hwang et al., 2005; Koshy et al., 2020; Proskovec
et al., 2019; Schmidt et al., 2019), and our data too exhibited the
involvement of part of the beta-band (in particular of the low beta-band)
during retention (see Figs. S1-S4 in Supplementary Materials). More-
over, gamma rhythm (30–100 Hz) and theta-gamma coupling are known
to be key mechanisms supporting the simultaneous representation of
multiple items (Lisman and Jensen, 2013), and enhanced gamma os-
cillations have been widely related to WM functions (see Roux and
Uhlhaas, 2014 for a review). Thus, future studies could examine the
effects of distractor strength on beta and gamma oscillations, thereby
enhancing the functional interpretation of these two rhythms and the
mechanistic comprehension of protection from distractors.

Finally, behavioral data were used to check whether the participants
were actually engaged into the task, as confirmed by the high response
accuracy, and by values of both accuracy and reaction time comparable
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with those reported in previous studies (Bonnefond and Jensen, 2012;
Sghirripa et al., 2021). We also tested for the existence of a correlation
between electrophysiological measures (power or connectivity in theta
band or alpha band) and behavioral performance (reaction time and
accuracy) across subjects. Unfortunately, the tests performed did not
provide significant results. This is at variance with the study by Bon-
nefond and Jensen (2012) who found a negative correlation between the
reaction time and the occipital alpha power immediately preceding the
distractor presentation. It is possible that differences between our
experimental protocol and that of Bonnefond and Jensen (2012)
contributed to this discrepancy. Indeed, in that study, the items of the
memory set were presented sequentially and not simultaneously (as
here); moreover, the interval separating the probe and the pre-distractor
retention (where alpha power was evaluated) was only 1.13 s, while in
our study the probe was separated from the pre-distractor retention by 3
seconds. The sequential presentation of the items to be remembered
could be a more demanding condition than simultaneous presentation,
and may have facilitated the emergence of a behavioral effect. More-
over, we claim that due to the relative long interval from the phases we
examined and the behavioral performances (> 3 s), a trustworthy
analysis of the relationship between behavior and oscillatory measures
in our task would require considering the other phases not included in
the present investigation, i.e., the distractor presentation phase and the
late retention phase. Indeed, while in this study we limited the investi-
gation to the oscillatory mechanisms in the phases preceding the dis-
tractors, also the oscillatory states in reaction to the distractors (during
and after distractor presentation) likely affect behavioral performances
in a relevant manner.

5. Conclusions

In conclusion, the present study investigates the modulatory effect of
the strength of anticipated distractors on theta and alpha oscillatory
mechanisms during a WM task, focusing on the increase in power and
connectivity induced by strong vs. weak distractors. Novelty points
concern the joint investigation of both rhythms and connectivity anal-
ysis. Indeed, previous studies have investigated oscillatory alpha power
in relation to anticipated distractor strength (albeit with some discrep-
ancies in results), but they neglected theta power investigation and did
not explore the impact of distractor strength on connectivity patterns in
any band. We found that the strength of anticipated distractors modu-
lated power and connectivity in both bands, with connectivity modu-
lation exhibiting distinctive patterns in the encoding and retention
phases. During encoding, theta power in frontal regions was enhanced
by strong distractors and associated with increased frontal-to-frontal
and bottom-up occipital-to-temporal-to-frontal connectivity. This mod-
ulation of theta connectivity was even strengthened during retention.
These theta mechanisms could mediate increased attentional control
and enhancement of target stimulus representation, both during
encoding and retention. During retention, but not during encoding,
alpha power increased in occipital-temporal regions for strong vs. weak
distractors and was associated with increased top-down frontal-to-oc-
cipital and temporal-to-occipital connectivity. These alpha mechanisms
during retention likely mediate increased inhibition of sensory areas to
suppress the processing of an imminent strong distractor, protecting the
stored target representation, but without operating increased inhibitory
influences during encoding, to prevent deterioration of the ongoing
target representation.

Overall, we postulate that the preparation for distractors involves
two components: an enhancement of target representation and an in-
hibition of the processing of imminent distracting information. In this
view, theta-band and alpha-band mechanisms cooperate proactively to
actualize these components via a dynamical organization of functional
communication patterns, simultaneously operating at different fre-
quency bands. This study may contribute to enhance our comprehension
of the functional significance of theta and alpha rhythm, and to a better

understanding of the relationships between oscillatory activity and WM
functions and dysfunctions, an issue that could have relevant implica-
tions for the treatment of WM impairment in neurological patients.
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