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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Energy signature regression is used for 
M&V with monthly,daily and hourly 
data. 

• Energy signature models are retrained 
as “digital twins” with rolling horizon. 

• TOWT regression model is reformulated 
to enhance interpretability. 

• A regression model is developed to 
characterize GAHP performance. 

• Energy savings due to smart heating 
controllers (TRVs) and GAHPs are 
verified.  
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A B S T R A C T   

The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refur
bishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a 
substitute for conventional technologies with the aim of reducing carbon emissions and determining operational 
energy and cost savings, together with other benefits. Measured building performance, however, often reveals a 
significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this 
reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of 
savings and continuous performance improvement. In this research, interpretable regression models are built 
with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of 
verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption 
heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of 
modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against 
its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of 
Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and 
GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible 
extensions of the use of energy signature modelling, highlighting implications for energy management and 
innovative building technologies development.  
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1. Introduction 

The transition to low carbon energy systems poses challenges in 
terms of energy efficiency. The electrification of end-uses is widely 
recognised as a key component for achieving complete decarbonisation 
[1], even though the shift of impacts [2] should not be underestimated. 
At the same time, the use of hydrogen as a substitute for natural gas (and 
other fuels) in order to achieve decarbonization goals presents a number 
of challenges, cost being amongst the most significant ones [3]. 

In general, the evaluation of the impact of energy efficiency mea
sures has to be conducted using reliable methods, considering the rele
vant investments needed [4,5], and can constitute the starting point for 
other more in depth evaluations, using detailed calibrated simulations 
[6]. 

Innovative heating technologies are part of this research and gas 
absorption heat pumps (GAHPs) can be used as an alternative to con
ventional and condensing boilers. A GAHP is a thermal machine that 
uses natural gas combustion process as heat source to feed an absorption 
cycle. In the cycle, heat is subtracted from outdoor air (heat source) and 
released to water in the heating system (heat sink), with higher effi
ciency compared to a condensing boiler. GAHPs can provide similar 
services compared to air source heat pumps (ASHPs) but are fed by 
natural gas instead of electricity. Therefore, GAHP technology can be 
considered as an option for the replacement of condensing boilers, even 
though it creates a potential lock-in condition in the long-term, due to 
the use of fossil fuels and higher temperature heating systems. 

In operation terms, GAHP performance depends on the temperature 
of the heat source (i.e. outdoor air temperature) and of the heat sink (i.e. 
water temperature in the heating system) and, while testing standards 
exists [7] for this technology, field testing is necessary to evaluate per
formance degradation (compared to data measured in standard test 
conditions) determined by operation at part load conditions. Recent 
studies have considered, in particular, the part load performance testing 
of GAHPs [8] and the comparison of GAHP technology [9] with other 
options in heating systems . The results of these studies are compared 
with the ones obtained in our case study. Additionally, smart heating 
controller, such as Smart Thermostatic Radiator Valves (TRVs) are often 
reported as a promising technology, and studies indicate a certain po
tential [10,11], which has to be verified because it depends on multiple 
factors and, in particular, on operational patterns and user behaviour. In 
this sense, it is crucial to understand actual operation strategies to 
overcome the information gap [12] regarding building performance. 

The identification of operational (as well as design) issues using 
digital replicas of objects/processes/services is part of current research 
in several fields and a multiplicity of “digital twin” definitions are pre
sent across different studies [13], in which sometimes the difference 
between model and digital twin is blurred [14]. Further, this topic is 
attracting a lot of attention also in building and energy sectors [15], due 
to the increasing use of Artificial Intelligence (AI) and Machine Learning 
(ML) tools; however, while sophisticated ML techniques such as deep 
learning have been effective in multiple applications [16], they lack 
interpretability [17], which is today an open challenge [18]. As show by 
Chen et al. [19] sophisticated machine learning approaches used in 
building energy management employ, in most of the cases, post-hoc 
techniques such as LIME and SHAP [20] to interpret their results, but 
it is very difficult to inspect the model algorithmic logic in a simple and 
transparent way. This represents an issue from multiple points of view, 
including AI/ML ethics [21] and trust by practictioners in the energy 
sector. 

The case study chosen for this research is Hale Court sheltered 
housing development, run by Portsmouth City Council, which has been 
retrofitted as part of the EU Horizon 2020 project THERMOSS [22]. Hale 
Court development comprises 80 flats divided in two blocks, North and 
South, each with independent heat networks. The analysis concentrates 
on the North block which has been monitored before and after retrofit 
interventions and has been retrofitted in two steps, first with the 

installation of Smart TRVs and then with the installation of GAHPs. 
Monitored data are split into three periods, namely before retrofit, after 
Smart TRVs installation and after GAHPs installation and plant room 
upgrade. The performance before retrofit represents the baseline for the 
evaluation of the energy savings achieved by new technologies. Multiple 
models are created incrementally in an integrated workflow, where 
novel formulations are tested with data at monthly, daily and hourly 
resolution, to provide temporal scalability, while retaining (intrinsi
c/ante-hoc [20]) interpretability of regression-based approaches and 
providing insights on the performance of new technologies installed and 
on the building as a whole. The origin of the integrated workflow used in 
this research is described in Section 3, while the technical details of its 
implementation are specified in Section 4. 

2. Nomenclature  

3. Literature review 

Data-driven methods for energy monitoring and management must 
address two important issues in present and future perspectives: 
providing a reliable assessment of the actual impact of different tech
nologies in terms of efficiency and enabling persistence of saving and 
continuous improvement of management practices, following the con
siderations expressed in the introduction regarding the applications of 
digital twins [13,15]. 

For this reason, the starting point in this research are the regression- 
based approaches proposed by Measurement and Verification (M&V) 
protocols at the state-of-the-art such as ASHRAE 14:2014 [23], effi
ciency value organization (EVO) [24], federal energy management 
program (FEMP) [25], whose evolution is indicated with the term 
Advanced M&V or M&V 2.0 [26]. This evolution involves the use of 
more sophisticated algorithms, more granular data (e.g. smart metre 
readings), greater accuracy and faster feedback. In this sense, the term 
"digital twins" is used because of their ability to reproduce actual 
behaviour on a dynamic basis and to provide useful analytics for the 
identification and solution of operation issues. 

In this research, the regression-based approaches proposed by 
ASHRAE 14:2014 [23] and by ISO 50,006:2014 [27] are used as a 
baseline (most consolidated approaches, with typical recurring energy 
demand characteristics for different building types and climates), to 
enable a meaningful comparison of efficiency measures monitored in 
different periods and estimated using different types of models, which 
are chosen because of their characteristics, which will be illustrated later 
in this section. Further, all models presented in this research employ 
energy signatures as defined in ISO 16,346:2013 [28], i.e. they model 
the average power obtained by dividing the energy with respect to the 
amount of operating hours in the time interval considered, namely 
monthly, daily, hourly. This choice is based on the necessity to achieve a 
certain degree of temporal scalability for the models, which can be 
exploited also in visual analytics to compare long-term measures 
(low-frequency data) and short-term measures (high frequency) in a 
meaningful way. Indeed, regression-based approaches are widely 
recognized in the building energy management sector, with a variety of 
applications from simple and intermediate level [29] to advanced ones 
[30]. 

First of all, M&V approaches used in building energy management 
are based on energy interval data (dependant variable) and on weather 
data (independent variables), along with other independent variables (e. 
g. dummy variables to model different occupancy and operational re
gimes, extracted from contextual information). The most important in
dependent variable for weather normalization of energy consumption is 
outdoor air temperature [23,31,32] and univariate regression formula
tions are preferred by practitioners [33] for whole-building statistical 
modelling. While this approach can lead to less accurate models 
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compared to more sophisticated techniques, it is nonetheless insightful 
due to its interpretability [34]. 

The applicability of regression-based approaches is not limited to 
whole building energy monitoring, but it can be extended further with 
the use of additional variables, beyond outdoor air temperature which is 
needed for weather normalization of energy demand. In regression for 
co-heating tests [35,36] (building fabric performance characterisation), 
for example, solar radiation on horizontal surfaces is used to account for 
the solar gains component in the thermal energy balance of building 
zones, with tests lasting around 15 days on average [37]. Furthermore, 
differencing outdoor air temperatures in a time series with daily interval 
(i.e., taking differences between one day and the previous day) sim
plifies the quantification of the influence of the building fabric’s inertia 
[38,39]. Additionally, heating system supply temperature is used in 
combination with outdoor air temperature to characterise the perfor
mance of air source heat pumps (ASHPs) for control purpose [40,41]. 

Amongst the regression-based techniques leveraging hourly interval 
data, time of week and temperature (TOWT) algorithm was proposed 
initially by Price [42] to analyse electric load shape and its variability. It 
has been used then for the quantification of changes in electricity use 
due to demand response [43] and in the context of utility scale efficiency 
programs [44]. TOWT was successfully tested as well in the advanced 
M&V testing portal of efficiency valuation organization (EVO) [45], a 
portal for open and independent testing, with electricity consumption 
data from 367 buildings located in various regions of North America. 
TOWT is a software R package named RMV2.0 [46]; in this package, a 
gradient boosting machine method is implemented as well [47]. How
ever, TOWT is much easier to use, with only one hyper-parameter to be 
tuned. At present, various open software packages exists that implement 
TOWT and other regression-based techniques, namely R package 
NMECR [48], Python package OpenEEmeter [49] that implements 
Caltrack methods [50], or the recent EENSIGHT [51]. Further, extensive 
reviews have been developed around the problem of energy baseline 
modelling [52], whole-building statistical energy consumption models 
[33], use of physics-driven and data-driven approaches for measure
ment and verification in building retrofits [53,54], and more, in general, 

interpretable energy analytics in the construction sector [55,56]. 
Finally, as show by Chen et al. [19] sophisticated machine learning 
approaches used in building energy management employ, in most of the 
cases, post-hoc techniques to interpret their results such as LIME and 
SHAP [20]. Instead, regression-based approaches are selected for this 
study due to their intrinsic (ante-hoc) interpretability. 

4. Methods 

The model formulations used in this research have been developed 
for different applications, as indicated in Section 3, but they share a 
series of similarities that make them suitable for implementation in an 
integrated workflow, illustrated in Section 4.1. The integrated workflow 
starts with simple baseline regression models using energy signature as 
dependant variable and outdoor air temperature as independent vari
able, tested in the different monitoring periods reported later in Section 
5. After that, the regression models are modified by means of additional 
variables to improve their goodness of fit. The simple baseline models 
are then used to test model retraining with a rolling horizon of 15 days of 
data and to check the outdoor air temperature response of time of week 
and temperature (TOWT) algorithm, which is reformulated and bench
marked against its original implementation. A regression model is used 
as well to characterise the performance of gas absorption heat pumps 
(GAHP), using an additional variable as well. Finally, criteria for model 
acceptability according to measurement and verification (M&V) guide
lines are reported in Section 4.2. 

4.1. Regression-based approaches for M&V and their extensions with 
additional variables 

In the preparation phase, before training models, data have been 
processed to remove missing values using interpolation, due to the 
minimal gaps found in measured data. Hourly outdoor air temperature 
and solar radiation data collected were already sufficiently accurate for 
this type of applications, while natural gas half-hourly data were cleaned 
by using a moving average filter aimed at de-noising (e.g. removing 

Table 1 
Nomenclature.  

Variables and parameters 
Symbol Quantity Unit 

a0 regression coefficients heating component, intercept kW 
a1 regression coefficients heating component, temperature dependence term kW/K 
a2,a3 regression coefficients heating component, solar radiation dependence and differenced temperature depence term m2,kW/K 
aj regression coefficients, j is the hour of the week kW 
bk regression coefficients, k is the temperature segment kW/K 
co regression coefficient TOWT, intercept kW 
d0,d1,d2 regression coefficients Qth model kW,kW/K,kW/K 
e0,e1,e2 regression coefficients GUEmax model -,1/K,1/K 
Cv(RMSE) coefficient of variation of RMSE - 
GUE gas utilization efficiency - 
GUEmax maximum gas utilization efficiency - 
gue part load fraction of GUE - 
Isol total solar radiation on horizontal surface (direct and diffuse) average hourly value on monthly base kW/m2 

Locc load when the building is occupied kW 
Lunocc load when the building is not occupied kW 
MAPE mean absolute percentage error - 
NMBE normalized mean bias error (expressed in percentage) - 
QNG natural gas energy kWh 
Qth thermal energy kWh 
qh energy signature heating (natural gas) kW 
R2 determination coefficient (expressed in percentage) - 
T(i)k outdoor air temperature value for the segment k at time interval i, TOWT model  
tow,j time of week binary variable, TOWT model - 
SE standard error kW,- 
Xh dummy variable (binary 0–1) heating - 
θe outdoor air temperature ◦C 
θe,diff outdoor air temperature differenced ◦C 
θe,sup water heating system supply temperature ◦C 
ε error term kW  
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small oscillations around the actual value that depend on measurement 
errors) and aggregated at hourly interval. As introduced in Section 3, the 
simple regression models used as baseline are derived from ASHRAE 
14:2014 [23] and consider outdoor air temperature θe as fundamental 
input but are then reformulated with the inclusion of additional 
variables. 

Amongst the additional variables there is total solar radiation on 
horizontal surface Isol and differenced daily average temperature θe, diff 
(i.e. the difference between outdoor air temperature in one day and the 
day before) for the reasons expressed in Section 3. Further, to be able to 
model piecewise linear shapes, dummy variables (0–1) such as Xh are 
used as an interaction term (i.e. multiplied by other variables θe, Isol, θe, 

diff) following the same rules and conventions illustrated in previous 
research [57]. 

These rules involve the selection of change-point temperatures 
within credible ranges (change-points represent the balance-point tem
peratures for the building [58,59] and are a function of building char
acteristics and operation strategies, so they are physically constrained) 
and the inclusion of a constraint in model output. In fact, energy sig
natures are positive quantities and using a piecewise linear formulation 
can lead to small negative values when signature is near 0, which have to 
be removed. The formulations of monthly and daily energy signature 
models are reported in Table 2. 

In order to assess the degree of uncertainty that may be introduced 
when only short-term measures are available and the risk of overfitting, 
baseline models are tested with incremental re-training with a 15-days 
rolling horizon, for the reasons discussed in Section 3. This process is 
similar, in principles, to a cross-validation of models, where the entire 
dataset is subsetted into smaller datasets with 15 days of data each, and 
the individual models are then compared to the original model trained 
on the entire set. 

Moreover, additional dummy variables are used also in time of week 
and temperature (TOWT) approach. TOWT has been used before by the 
authors to model electric load profiles in highly variable conditions 
[60]. However, in this paper a novel formulation is proposed and 
benchmarked with R package RMV2.0 [46] implementation. TOWT 
model formulation is simple in principle, as it is composed by two 
sub-models (piecewise linear), one for occupied Locc (high demand) and 
one for unoccupied Lunocc (low demand) periods, as shown hereafter: 

Locc =
∑n− 1

j=1
bktow,j +

∑m

k=1
bk
(
T(i)k

)
+ c0 (5)  

Lunocc =
∑n− 1

j=1
bktow,j +

∑m

k=1
bk
(
T(i)k

)
+ c0 (6) 

However, due to its structure, two strategies are needed to perform 
the temporal (Time Of Week) and temperature segmentation. The 
temporal segmentation is intrinsically dependant on the temperature 
segmentation as occupied/unoccupied periods are identified in an 
automated way, considering the electric load with respect to outdoor air 
temperature. In this research, as explained before, we focus on energy 
signature of natural gas consumption qh instead of electric load. 

Temperature segmentation is conducted in such a way that conti
nuity in the temperature response computed by the model is preserved, 
using the algorithm reported in [43]; in this way constraints are imposed 
“indirectly” to retain continuity, while using a conventional regression 
algorithm, which doesn’t include constraints. Additionally, temperature 
response is the point of contact between the regression models in Table 2 
and TOWT, as will be shown graphically in Section 6.3 by means of 
energy signatures. 

In Table 3 the fundamental characteristics of the approach originally 
implemented in RMV2.0 and the reformulation proposed in this research 
are indicated, summarizing the elements added or changed in each step 
of the modelling workflow. 

Other software implementations of TOWT are available, for example 
the Python package Caltrack/OpenEEmeter [50] and the R package 
NMECR [48], reported before in Section 3. The latter provides the 
possibility to define temperature change-points arbitrarily as well as 
temperature segments with an equal amount of data points (i.e. based on 
quantiles of data), but keeps the same weighting approach using days as 
hyper-parameters, as in RMV2.0, while Caltrack/OpenEEmeter employs 
a monthly weighting approach. 

In the last step of the research workflow, the GAHP performance is 
characterised using GUE (Gas Utilization Efficiency), which is the 
parameter describing its thermal conversion efficiency. GUE is defined 
as the ratio between the delivered thermal energy and the fuel energy 
(and substantially similar to the Coefficient of Performance for an 
electric heat pump) and gue correspond to its Part Load Fraction (PLF) as 
follows: 

GUE =
Qth

QNG
(7)  

gue =
GUE

GUEmax
(8)  

where Qth and QNG are respectively the heat output (kWh) and gas en
ergy input (kWh) of the period under consideration, gue is the ratio 
between the actual GUE value in part-load conditions and the maximum 
value measurable in steady-state conditions (i.e. in standardized test 
conditions). Qth and QNG can be expressed also in terms of power (kW), 
by dividing the quantity by the time interval (hours in this case). The 
energy content of the gas is calculated with the measured gas volume 
(m3) and lower heating value (kWh/m3). In this case, our goal is to 
create a simple approach to predict Qth and GUE in variable operational 
conditions (i.e. realistic operation), thereby obtaining a model useful for 
energy management purpose. First, GAHPs performance data (i.e. Qth 
and GUE) available from technical datasheets are interpolated using the 
approach explained in EN 15,316–4–2:2017 [61]. Technical data sheets 
report the results of steady-state test conditions at full load [7]; the gap 
between GUEmax (determined by the regression) and the actual 
measured GUE is discuss later in relation to metered energy demand. 
The input data for the two multivariate regression models (one for Qth 
and one for GUEmax) are θe outdoor air temperature ( ◦C) and θsup supply 
temperature of the heating loop ( ◦C), while the output data are Qth 
expressed as thermal power output (kW) and GUE, defined before. The 
models are formulated as follows: 

Qth = d0 + d1θe + d2θsup (9)  

GUEmax = e0 + e1θe + e2θsup (10)  

4.2. Statistical criteria for model acceptability according to M&V 
principles 

As introduced in Section 3, Measurement and Verification (M&V) 
approaches at the state-of-the-art [23–25] provide thresholds of 
acceptability for the models using statistical indicators such as 
Normalized Mean Bias Error, NMBE, and Coefficient of Variation of Root 

Table 2 
Formulation of monthly and daily energy signature models tested.  

Model 
name 

Input 
variables 

Interval Formulation  

θe θe Monthy/ 
daily 

qh = Xh(a0 + a1θe)+ b0 + ε (1) 

θeIsol θe, Isol Monthy/ 
daily 

qh = Xh( a0 + a1θe + a2Isol)+

b0 + ε 
(2) 

θeθe,diff θe,θe,diff Daily qh = Xh(a0 + a1θe + a2θe,diff ) +

b0 + ε 
(3) 

θeIsolθe,diff θe, Isol,θe,diff Daily qh = Xh(a0 + a1θe + a2Isol +

a3θe,diff )+ b0 + ε 
(4)  
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Mean Square Error, CV(RMSE), summarized hereafter in Table 4. In this 
research monthly, daily and hourly data are used and thresholds of 
acceptability for daily data is assumed to be in the range between 
monthly and hourly, with a simple average between the two values 
provided by ASHRAE Guidelines 14:2014 [23], as proposed by Meng 
et al. [62]. The coefficient of determination R2 (defined in the range 
between 0 and 100%, or 0–1, with a strong correlation when greater 
than 75%), is considered as well, because it is reported for example in 
ISO 50,006:2014 [27], but its limitations have to be acknowledged. In 
fact, its limitation reside in the fact that R2 is inherently related to the 
slope of the model (e.g. the dependence on θe, Isol, θe, diff for the models in 
Table 2). Higher slopes have a tendency to show a higher value of R2 

even though the variance of the predicted variable is the same. As a 
result, when evaluating a model, it is critical to use other metrics in 
addition to R2, but it is reported for the sake of completeness. 

5. Case study description 

As explained in the introduction, Hale Court is a sheltered housing 
development run by Portsmouth City Council, built in 1984. Hale Court 
consists of 80 flats with a mix of studio, 1 bedroom, 2 bedroom and 3- 
bedroom flats. The building complex is composed of two blocks, North 

and South, and essential data are summarized in Table 5, while the plan 
is reported in Fig. 1. 

Hale Court has been refurbished during the EU Horizon 2020 project 
THERMOSS [22]. The retrofit intervention has been concentrated on 
two energy efficiency measures in particular Smart Thermostatic Radi
ator Valves (TRVs) and Gas Absorption Heat Pumps (GAHPs) that have 
been installed, contextually to a general upgrade of the plant room, with 
the installation of a monitoring system. The periodization of the retrofit 
intervention and monitoring strategy is reported in Table 6. In this 
research, the analysis refers to the North block, where the savings due to 
both Smart TRVs and GAHPs can be assessed. More in detail, the 

Table 3 
RMV2.0 implementation of TOWT compared to the reformulation proposed.  

Workflow step Component TOWT – RMV2.0 TOWT – reformulation 

Data preparation Temporal segmentation Time of week variable (tow,j) is a binary variable (or dummy 
variable), n-1 is the number of hours of the week (i.e. 168–1 =
167), the last term (168th) is included in the intercept term c0. 

Time of week variables for Holidays are modelled as Sundays.  

Temperature 
segmentation 

Temperature variable T(i)k is a continuous variables with 
arbitrary temperature scale (Celsius or Fahrenheit), m is the 
number of segments chosen when binning the temperature 
data (i.e. m-1 change points for the piecewise linear function 
used to represent the temperature response component). 
The default change points are (40, 55, 65, 80, 90 F/ 4.4, 12.8, 
18.3, 26.7, 32.2 ◦C). At least 1 change point should be present 
and at least 20 data point above the highest and below the 
lowest change-point need to be included. Temperature 
segmentation is performed as described in [43]. The same 
temperature segments are used for occupied/unoccupied 
modes. 

Temperature variable T(i)k is computed with the same 
algorithm as in the original implementation [43], but the 
change points are derived from the analysis of the distribution 
of outdoor air temperature, creating an even number of 
segments, with the central change-point corresponding to the 
median of data (50 percentile). 
Depending on the distribution of data, temperature segments 
may have different widths below/above the median value. At 
least 6 segments are suggested. The same temperature 
segments are used for occupied/unoccupied modes. 

Model training Detection of occupied/ 
unoccupied hours (high/ 
low demand) 

The occupied/unoccupied periods are detected by running a 
regression model with two variables Heating Degree-Days 
(HDD) and Cooling Degree-Days (CDD) and an intercept term. 
The time of the week period which are underpredicted for a 
certain percentage of time are assumed to be occupied. The 
default percentage is 65 (threshold equal to 0.65 in model 
settings). Degree-days are computed with base temperatures 
of 50 and 65, respectively for heating and cooling. 

The occupied/unoccupied periods are detected by running a 
regression model with respect to temperature using the 
temperature segmentation criterion proposed above. The 
threshold considered is equal to 0.65 as the default in the 
original implementation.  

Overall model The overall model is the weighted sum of models generated in 
multiple runs, which are dependant on the hyper-parameter 
choice. 

The overall model is created as the sum of one regression 
model for occupied periods, one model for unoccupied 
periods and a model for residuals, considering only Time-Of- 
Week (TOW) dependence.  

Hyper-parameters One hyper-parameter is present, representing the time scale, 
expressed in days, of the weighting function used to combine 
different regression models created. 

One hyper-parameter is present, expressed in weeks or 
months, to determine the additional temporal segmentation 
needed to model residuals as a TOW function, without 
temperature response. 

Visualization and 
interpretation of 
results 

Temperature 
dependence 

Temperature dependence of load is shown as a scatterplot. Energy signature is plotted with respect to outdoor air 
temperature at different time intervals (monthly, daily, 
hourly). The energy signature interpretation is used to derive 
additional insights and to compare the piecewise linear 
temperature response obtained by TOWT reformulation with 
the ones obtained using other regression-based approaches.  

Time series Time series of measured data are plotted with respect to 
predicted ones. 

No changes.  

Weekly patterns Weekly patterns of operations are shown with a 2D heatmap. No changes.  
Residuals Residuals are plotted in time and with respect to outdoor air 

temperature. 
No changes.  

Measured vs predicted A scatterplot of measured vs predicted data is used to 
highlight possible deviations. 

No changes.  

Table 4 
Thresholds of acceptability for M&V models as calibrated with monthly, daily 
and hourly data.  

Interval Metric ASHRAE Guidelines 14/Meng et al. 

Monthly NMBE ±5  
Cv(RMSE) 15 

Daily NMBE ±7.5  
Cv(RMSE) 22.5 

Hourly NMBE ±10  
Cv(RMSE) 30  
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refurbishment of heating system for the North Block plant room has 
involved:  

• keeping the existing gas boilers;  
• removal of the original domestic hot water heaters;  
• addition of a cascade of 3 GAHP;  
• incorporation of thermal storage;  
• reconfiguration of piping layout. 

The sizes of the heat generators installed in the plant room are re
ported in Table 7. 

From the point of view of control, the strategy adopted is fixed point 
with compensation (but no-weather compensation) so the hot water 
temperature in the primary loop oscillates between 60 and 65 ◦C in 
operation. Such a high temperature is necessary because, as it can be 
seen in the scheme in Fig. 2, it has to serve both the space heating and 
the domestic hot water demands for the dwellings. The terminal units of 
heating system are radiators. The impossibility to reduce supply tem
perature is a major limitation to the achievement of the full efficiency 
potential for the heating system and GAHP technology, as will be dis
cussed later in Section 6.4. 

6. Results and discussion 

Following the application of the methods introduced in Section 4 to 
the case study described in Section 5, in this section multiple model 
implementations are discussed. In Section 6.1, regression models at the 
state of the art (which represent the most consolidated techniques, used 
for measument and verification) are used as baseline and then modified 
with the inclusion of additional independent variables, assessing their 
performance improvement. After that, in Section 6.2, the robustness of 
baseline models for the different periods of monitoring (reported in 
Table 6) is tested by re-training them with a rolling horizon of 15 days. 
Then, in Section 6.3 a reformulation of the Time Of Week and Tem
perature (TOWT) approach is proposed and benchmarked against the 
original formulation. Finally, the GAHP performance is characterised 
using regression as well in Section 6.4, providing an additional valida
tion to the savings estimated. Overall, the results indicate how it is 
possible to provide an integrated workflow, starting from a simple 
baseline model and further research potential is described in Section 6.5. 

6.1. Testing regression models θe, θeIsol, θeθe,diff, and θeIsolθe,diff 

The initial steps of the research are presented hereafter, indicating 
how baseline models, originally included in ASHRAE 14:2014 [23] and 
modified as shown in literature [57], can be used as a starting point to 
enable a meaningful comparison. Then additional independent variables 
are added to the models, following the logic described in Section 3 and 4. 

The first model tested is model θe from Table 2 and the test is 
developed using natural gas demand signature as predicted variable, 
because the electricity demand is practically constant before and after 
retrofit, as can be clearly seen in Fig. 3. In this figure, there is no tem
perature dependence for the operation of auxiliaries, i.e. they are 
running practically in a constant way (on average) during the year and 
they are not analysed further. Nonetheless, the application of regression- 
based techniques to highly variable electric load profiles has been 

presented in previous research [60]. 
Instead, if the slope obtained by the energy signature model fitting in 

Fig. 4 for natural gas demand is considered, it is possible to see how the 
heating system capacity installed is oversized compared to the actual 
needs, even when extrapolating for very low temperatures. 

The change-points of the piecewise linear regression model in the 
different monitoring periods are in the range 19.5–20.0 ◦C. 

These values are much larger than the one normally encountered in 
buildings [62], but there reasons behind this high value is the very high 
average temperatures in living rooms and bedrooms, in the range 
22.9–23.5 ◦C. It is worth noting that the base temperatures used for the 
normalization of energy demand in Display Energy Certificates (DEC) is 
15.5 ◦C and the one reported in technical standardization for the 
calculation of the part load ratio of heat pump operation [63] is 16 ◦C; 
both temperatures are very far from the measured one in this case and 
this confirms the importance of developing tailored regression models 
that reflect the actual behaviour of a building. 

The constant part of the natural gas signature (above the change- 
point temperature) represents the average demand for domestic hot 
water (DHW), as it corresponds to summer months when there is no 
heating demand and just DHW demand. In Table 8 the results of natural 
gas demand signature analysis are reported, indicating in general a good 
fit of the models in all the three periods, interpreting them in light of the 
thresholds of acceptability reported in Table 4, R2 and Mean Absolute 
Percentage Error, MAPE. The Normalized Mean Bias Error NMBE is 0 in 
the cases with daily data. This is due to the fact that regression tech
niques tend to have a value equal to 0 because of their formulation 
(minimization of sum of the squares of the differences between measures 
and model predictions). The more relevant statistical parameter in this 
case is CV(RMSE), considering also the limitations of R2 reported before 
in Section 4.2. 

Figs. 5 and 6 depict the results of the regression predictions plotted in 
time (with monthly and daily intervals, together with the deviations) for 
the entire monitoring period (33 months) for both buildings. It can be 
seen that, despite their simplicity, the models can fairly accurately 
approximate the temporal pattern, with only a few points where the 
difference between measured and predicted consumption is significant. 

The period when the heating plant was retrofitted with the instal
lation of GAHPs represents the data gap. Furthermore, more days were 
excluded from the data cleaning process in the time series with daily 
data due to incomplete records. The next step involved the analysis of 
deviations between measured data and model prediction, to verify if 
there is a recurring pattern in them. In this case there is no apparent 
pattern in deviations. 

Finally, the time series of differences between the measured and 
predicted (by the models fitted in the previous period) natural gas 
consumption was computed using the method described in ISO 
50,006:2014 [27]. According to this standard a “baseline” model is 
trained first and the used for performance verification in the “reporting” 
period. The same data are then aggregated using cumulative sum to 
obtain the total amount saved (i.e. the actual savings achieved with 
respect to period 1 and period 2 operation). 

From the analysis of the time series of savings and cumulative sav
ings reported in Fig. 7, it can be seen how during the pandemic period 
(the last part of the monitoring period) domestic hot water usage 
increased, probably due to an higher demand of water for cleaning and 
sanification purposes. In Table 9 the calculation of the performance 
improvement is reported, expressed in terms of percentage of energy 
demand reduction compared to a baseline value in the different moni
toring periods, described in more detail in Table 6. 

To obtain an appropriate comparison [27] in typical climate condi
tions, the energy demand as been calculated on a yearly basis, using the 
piecewise linear regression models developed and a standard weather 
data file for the location (weather normalization), considering the same 
domestic hot water demand of the pre-pandemic period (normalization 
of user behaviour). 

Table 5 
Hale Court building blocks data.  

Total floor area North block: approximately 1300 m2 

South block: approximately 2100 m2 

Number of flats North block: 32 
South block: 48 

Type of flats Studio, 1 Bed, 2 Bed and 3 Bed 
Year of construction 1984 
Resident demographics Sheltered housing, residence for elderly citizens  
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On the one hand, the impact of smart TRVs (7.2% reduction of nat
ural gas demand) is modest but essentially in line with values found in 
literature, which indicates respectively a range 5–10%, determined by 
simulation in the UK residential context [10], and 7.1–23.3%, measured 
empirically in Poland with a long-term field evaluation [11]. Following 
the comparison with other case studies, it appears evident that the 
saving potential of TRVs has not been exploited completely in this case 
and their operational settings can be improved. This fact has been 
clarified by a more in depth data analysis of operational patterns con
ducted within the same project, which is not presented in this case as it 
goes beyond the scope of this paper. In general, these results confirm the 
need of evidence on the impact of smart controls in the residential sector 
[9] and an adequate consideration of their cost-benefit ratio. The energy 
demand reduction determined by Smart TRVs and GAHPs together is 
25.8% and the relative improvement determined by GAHPs is 20.0%. 
This aspect will be analysed more in detail in Section 6.4, where 
regression-based technique is used for GAHP performance 

characterisation and validation of energy savings. 
The model testing procedure is continued by including additional 

variables which lead to models θeIsol, θeθe,diff, and θeIsolθe,diff, defined in 
Table 2 in Section 4.1. As shown by the results in Tables 10, 11, and 12 
for model θeIsol, θeθe,diff, and θeIsolθe,diff respectively, the addition of var
iables improves the statistical indicators more or less uniformly (as it 
would be normally expected). However, the improvements in R2, MAPE, 
and CV(RMSE) in this specific case is insignificant, justifying the use of 
model θe as a reference for the digital twin implementation due to its 
simplicity. Clearly, in cases of buildings with high solar gains and/or 
high thermal inertia (following the arguments reported in Sections 3 and 
4), models with additional variables may guarantee a significant 
improvement of the predictive ability. 

6.2. Testing regression model θe with rolling horizon retraining 

In this section, the results obtained by fitting model θe using daily 
data interval are presented but, differently from Section 6.1, a rolling 

Fig. 1. Hale Court – North Block/South Block - Floorplan Ground Floor.  

Table 6 
Hale Court retrofit intervention periodization.  

Period Building 
blocks 

Dates (monitoring phases) 

1 Before any intervention North block/ 
South Block 

From Dec 2017 to Dec 2018 

2 Post first intervention & 
Pre second 
intervention 

North block/ 
South Block 

Jan 2019 – July 2019 
Smart Thermostatic Valves 
installation in January 2019. 
January and February 2019 
present anomalies in energy 
consumption 

3 Post second intervention 
(split into two parts, 
commissioning and actual 
operation) 

North block Phase 1: Plant room upgrade and 
GAHP installation, July to Sep 
2019. 
Phase 2: Commissioning of 
GAHP, Sep 2019 
Phase 3: October 2019/January 
2020 the system is running with 
GAHP and boilers 
Phase 4: February 2020 just 
GAHP for testing purpose  

Table 7 
Heat system generators data.  

Technology Variable Unit Value 

Gas Boilers Model type – REMEHA GAS 110 Eco  
Thermal power output kW 115 × 2  
B oiler max. design 
temperature 

◦C 80  

Typology – Condensing 
Gas Absorption 

Heat Pump 
Model type – GHP AWO 38  

Thermal power output 
A7W50 

kW 114.9 (3 appliances 
cascade configuration)  

Gas Utilization 
Efficiency A7W50 

– 1.52  

Natural gas power 
input A7W50 

kW 75.6  

M ax. heating water 
flow temperature 

◦C 65  

P ermissible Ambient 
Temperature 

◦C − 20 to +40  
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horizon of 15 days is chosen, following the considerations described in 
Section 3. The results of the series of θe models fitted is compared to the 
θe model fitted to the entire series of data and reported in Section 6.1. 
This modelling approach has, in principles, two main objectives. 

The first one is reproducing the use of regression in a “digital twin” 
fashion where model coefficients are periodically recomputed and 
model is recalibrated. The second one is performing a cross-validation of 

models’ results for the different monitoring periods, subsetting the 
entire dataset into individual sets of 15 days of data, for which the 
variability of coefficients’ estimates is analysed and the potential over
fitting risk is evaluated. 

The daily ranges were selected with a maximum temperature of 16 
◦C to accurately estimate the heating dependant part of the model, 
despite the fact that the balance point for the building is in the range 

Fig. 2. Schematic Layout of Heating System in Hale Court North.  

Fig. 3. Electricity demand signature – monthly (left) and daily (right) data.  

Fig. 4. Natural gas demand signature – monthly (left) and daily (right) data.  
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Table 8 
Results of analysis for natural gas demand signature – Model θe.  

Interval Period Energy indicators Statistical indicators   

Energy measured (M) Energy predicted (P) R2 MAPE NMBE CV(RMSE)   
kWh kWh % % % % 

Monthly 1 332,722 332,672 97.93 4.89 − 0.02 6.35  
2 93,466 93,474 97.54 20.44 0.02 18.25  
3 242,586 242,829 91.11 11.60 0.10 11.55 

Daily 1 320,182 320,182 91.42 13.04 0.00 13.89  
2 84,955 84,955 85.48 12.17 0.00 13.89  
3 177,111 177,111 55.80 18.33 0.00 19.59  

Fig. 5. Time series of natural gas demand (left) and deviations (right) – monthly data.  

Fig. 6. Time series of natural gas demand (left) and deviations (right) – daily data.  

Fig. 7. Time series of natural gas savings and cumulative sum of savings.  
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19.5–20.0 ◦C (points which are near to the change-point would give 
more unstable estimates). Because of the possibility of exploiting its 
approximated physical interpretation (as in co-heating tests, for 
example), the slope of the regression for heating demand is analysed 
(parameter a1 for the models reported in Table 2 in Section 4). The re
sults in Table 13 show that, on average, the coefficients’ estimates ob
tained with the daily θe model fitted to the entire dataset are not very 
different from the ones obtained with rolling horizon model retraining 
(subsets), indicating the effectiveness of the approach. 

6.3. Testing towt model reformulation and benchmarking with 
implementations at the state-of-the-art 

As indicated in Table 3, a major difference between the state-of-the- 
art implementation of TOWT in RMV2.0 and the reformulation proposed 
resides in the fact that temperature is subsetted with respect to the 
median (i.e. 50 percentile of data) and that the width of the temperature 
segments is dependant on the range (min-max) of the available data 
(may be different in the left and right side of the temperature distribu
tion). The alternative implementation of TOWT proposed in this 
research makes use of a piecewise linear function to distinguish between 
periods of high and low consumption, denoted as occupied and unoc
cupied hours in RMV2.0, which uses instead a regression with respect to 

Heating Degree-Days (HDD) and Cooling Degree-Days (CDD). This 
formulation, employing energy signature, enables the comparison be
tween piecewise linear models in Table 2 (in this section only model θe is 
considered for simplicity) and the component of TOWT model which 
represents the outdoor temperature dependence of load/signature. 

Separated signatures are fitted for periods of high consumption 
(flagged as occupied in the original formulation) and low consumption 
(flagged as unoccupied in the original formulation). As can be seen in 
Figs. 8, 9 and 10 on the left-hand side, for the three periods of moni
toring, there is a good agreement between the piecewise linear 
temperature-dependant component of the TOWT and the model θe, with 
some exceptions during summer when the TOWT fits better the actual 
conditions and in winter when temperature is low and there is reduction 
of the slope, compared to the simplest regression model. Overall, the 
model reformulation proposed fits data well and within the limits for 
model acceptability given by ASHRAE14:2014 and reported in Table 4. 

Indeed, the scalability of energy signature visualisation as a function 
of outdoor air temperature enables the comparison of model estimates 
from monthly, to daily and hourly data, for example in Figs. 4 (monthly 
and daily interval) and Fig. 8-10 (hourly interval). This feature is 
particularly relevant if there is the necessity to compare long-term/low- 

Table 9 
Energy demand reduction using model prediction – Weather and behaviour 
normalized.  

Period Description Overall 
reduction 

Relative 
reduction 

1 Before retrofit 0 (baseline) – 
2 TRVs installation 7.2% 0 (baseline) 
3 GAHPs and plant room 

upgrade 
25.8% 20.0%  

Table 10 
Results of analysis for natural gas demand signature – Model θeIsol.  

Interval Period Energy indicators Statistical indicators   

Energy measured (M) Energy predicted (P) R2 MAPE NMBE CV(RMSE)   
kWh kWh % % % % 

Monthly 1 332,722 332,692 97.95 4.96 − 0.01 6.33  
2 93,466 93,457 99.79 8.19 − 0.02 5.54  
3 242,586 242,772 93.25 10.13 0.08 10.07 

Daily 1 320,182 320,182 91.81 13.13 0.00 13.58  
2 84,955 84,955 86.79 12.00 0.00 13.25  
3 177,111 177,111 55.99 18.35 0.00 19.55  

Table 11 
Results of analysis for natural gas demand signature – Model θeθe,diff.  

Interval Period Energy indicators Statistical indicators   

Energy measured (M) Energy predicted (P) R2 MAPE NMBE CV(RMSE)   
kWh kWh % % % % 

Daily 1 320,182 320,182 92.48 12.50 0.00 13.01  
2 84,955 84,955 86.37 11.89 0.00 13.46  
3 177,111 177,111 57.51 17.87 0.00 19.21  

Table 12 
Results of analysis for natural gas demand signature – Model θeIsolθe,diff.  

Interval Period Energy indicators Statistical indicators   

Energy measured (M) Energy predicted (P) R2 MAPE NMBE CV(RMSE)   
kWh kWh % % % % 

Daily 1 320,182 320,182 92.87 12.60 0.00 12.67  
2 84,955 84,955 87.66 11.60 0.00 12.80  
3 177,111 177,111 57.70 17.88 0.00 19.16  

Table 13 
Results of regression model θe with digital twin approach – Estimates of the slope of 
regression model, when θe >16 ◦C, parameter a1.  

Period Monthly θe Daily θe Daily digital twin θe (15 days rolling 
horizon)    

Min Average Max  
kW/K kW/K kW/K kW/K kW/K 

1 − 3.01±0.15 − 2.88±0.05 − 3.37 − 3.03 − 2.26 
2 − 3.13±0.29 − 2.81±0.11 − 3.23 − 2.86 − 2.56 
3 − 2.27±0.28 − 1.61±0.11 − 2.18 − 1.73 − 1.47  
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frequency measures and short-term/high frequency measures in a 
meaningful way. Further, there are multiple insights that can be derived 
by interpreting energy signature slopes and change-points, as discussed 
in Section 3. 

Finally, in numerical terms, the reformulation of TOWT fits data well 
for the selected periods, as indicated in Table 14. In this case the Mean 
Absolute Percentage Error (MAPE) indicator is excluded because hourly 
time series may have data that are near or equal to 0 (i.e. if the system is 
turn-off for a period of the day) and MAPE is not an appropriate 
indicator. 

The results achieved are very similar to the ones which can be ach
ieved with TOWT implementation in RMV2.0 with 15 days hyper- 
parameter, as reported in Table 15, even though the weighting 
approach implemented in RMV2.0 determines a much larger number of 
model runs, reported in Table 16, in particular if the hyper-parameter is 
set to 1 day. In fact, the RMV2.0 implementation requires an initial run 
to distinguish between occupied and unoccupied hours using a degree- 
days model, after which the time series is segmented based on the 
hyper-parameter to produce a matrix of coefficients used to weight 
multiple regressions. 

Instead, the proposed reformulation requires as well one initial 
model run to fit the piecewise linear temperature component required to 
distinguish between high (i.e., occupied) and low (i.e., unoccupied) 
consumption hours. After that however, two model runs are required to 
determine the piecewise linear component for high/low consumption 
hours, as depicted in Figs. 8-10 on the left, and finally a single model run 
is required to develop a Time Of Week (TOW) model for the residuals. 
The residuals are differentiated by month in this case, as this is the 
hyper-parameter used in the new formulation proposed. The lower 
amount of models fitted aims to reduce clearly the computational effort 
but also the risk of model overfitting and limiting the number of model 
parameters. A weighting approach with hyper-parameters expressed in 
months is present in the Caltrack/OpenEEmeter [50] implementation of 
TOWT, which keeps however a modelling approach for temperature 
segmentation similar to RMV2.0 [46]. 

6.4. Testing regression model for GAHP performance characterization in 
variable conditions 

In this section the energy demand reduction determined by the 
GAHPs (20.0% as indicated in Table 9 in Section 6.1) is analysed more in 
depth, considering the actual physical behaviour of the heat pump 
technology. In Table 17 the results obtained by fitting the two models 
reported in formulas 9 and 10 in Section 4.1 are reported, respectively 
for Qth and GUEmax. 

It can be observed that, while being simple, models fit data well with 
a high value of the coefficient of determination R2 and a small standard 
error for both Qth and GUEmax. 

The results of model predictions for Qth and GUE are then plotted in 
Fig. 11 (on left and right side respectively) against the calculated GAHP 
data, determined by means of interpolation, using data from technical 
datasheets. The charts indicate also the single regression lines for each 
supply temperature (50, 55, 60, 65 ◦C) and it can be seen how the slopes 
are just moderately different each other; this justifies the creation of a 
single regression model with two input variables θe and θsup. The model 
applicability can be extended further by means of dummy variables (i.e. 
to handle change points and non-linearity), in analogy with the models 
presented in Table 2. This is not required, however, in this case. 

In a research published by Schmitt-Gehrke et al. [8] multiple types of 
GAHPs were tested in partial load conditions, calculating the gue, whose 
values range typically between 0.80–0.90 This parameter accounts for 
part load performance degradation and is defined similarly to Part Load 
Fraction (PLF) for electrical heat pumps, as explained before at the end 
of Section 4.1. The values found in this study are coherent with the ones 
found in that research. If, for the sake of verification and in a very 
simplistic way, the average outdoor air temperature conditions of 14 ◦C 
is assumed (for monitoring period 3) with a supply temperature in the 
range 60–65 ◦C (given the fixed point control and the absence of weather 
compensation) a GUEmax of around 1.4 is obtained, looking at Fig. 4. 
Then, if a gue equal to 0.85 is considered (within the range specified 
above from literature focused on part load GAHP testing), the final 
corrected GUE is around 1.2, which is essentially compatible with the 
measured performance improvement achieved by the GAHP (20.0% 
compared to condensing boilers) because the existing condensing 
boilers, in these operating conditions, have an efficiency that is near to 1 
(0.97–0.98, thereby a GUE of around 1.2 is compatible with a 20% 
savings). In this case study building in fact, condensing boilers are not 
working in condensing mode due to the high temperature of supply 
(around 60–65 ◦C) as reported in Section 4. Clearly, a more in depth 
analysis requires the correct weighting of GUE with respect to outdoor 
air temperature and load conditions, with a method substantially similar 
to the one specified in technical standardization [63,64] for the calcu
lation of Seasonal Coefficient of Performance (SCOP) for electrical heat 
pumps and with the correction for part load performance in the different 
conditions. Nonetheless, the method presented in this research provides 
a quick and simple way to verify performance, that gives results similar 
to the ones obtained in other studies where a 10 to 15% improvement of 
the annual heating efficiency for GAHP with respect to other options was 
found [65]. This percentage of performance improvement with respect 
to natural gas boilers is fundamentally constrained by the supply tem
perature of the heating system, as can be seen from the ranges of GUE 
values presented in Fig. 11. In other words, in buildings with higher 
supply temperatures the relative performance improvement is neces
sarily smaller than in buildings with lower supply temperatures. This 
fact is important and needs to be considered when planning a retrofit 
intervention because optimistic assumption on GAHP performance may 

Fig. 8. Natural gas demand signature (left) and time series (right) with hourly data, TOWT model – Period 1.  
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compromise the return of the investment, which depends on the actual 
energy savings achieved. 

6.5. Further research potential 

Multiple areas of development are possible starting from the results 
presented and discussed in Section 6. The first area of improvement 
involves the integration of the different techniques in a seamless 
workflow where temporal scalability is exploited effectively. For 
example, using daily data it becomes possible to understand if there are 

igure 9. Natural gas demand signature (left) and time series (right) with hourly data, TOWT model – Period 2.  

Fig. 10. Natural gas demand signature (left) and time series (right) with hourly data, TOWT model – Period 3.  

Table 14 
Results of analysis for natural gas demand signature, hourly data – TOWT model 
reformulation – 1 month hyper-parameter.  

Period Energy indicators Statistical indicators  

Energy measured 
(M) 

Energy predicted 
(P) 

R2 NMBE CV 
(RMSE)  

kWh kWh % % % 

1 319,408 319,408 91.65 0.00 14.70 
2 86,772 86,772 88.72 0.00 13.01 
3 186,636 186,636 66.56 0.00 17.04  

Table 15 
Results of analysis for natural gas demand signature, hourly data – TOWT model 
implemented in RMV2.0 and different hyper-parameters.  

Period Hyper- 
parameter 
(days) 

Energy indicators Statistical indicators   

Energy 
measured 
(M) 

Energy 
predicted 
(P) 

R2 NMBE CV 
(RMSE)   

kWh kWh % % % 

1 30 319,408 318,951 90.43 0.24 15.25 
1 15 319,408 319,321 92.26 0.11 13.71 
1 1 319,408 319,751 99.44 0.00 3.69 
2 30 86,772 85,995 82.24 0.22 16.83 
2 15 86,772 86,081 85.10 0.12 15.42 
2 1 86,772 86,499 98.98 0.00 4.03 
3 30 186,636 187,399 61.85 − 0.43 19.39 
3 15 186,636 187,170 69.90 − 0.29 17.22 
3 1 186,636 186,650 97.88 − 0.02 4.57  

Table 16 
Comparison of the number of model runs between TOWT in RMV2.0 and the 
model reformulation.  

Period Days TOWT – RMV2.0 TOWT - reformulation   

Hyper-parameter Hyper-parameter   
30 days 15 days 1 day 1 Month 

1 386 14 27 387 4 
2 124 6 10 125 4 
3 234 9 17 235 4  

Table 17 
Regression model R2 and Standard Error (SE).  

Metric Qth GUEmax  

Unit Value Unit Value 

R2 % 97.3 % 97.4 
SE kW 2.21 – 0.03  
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particular weekly patterns (i.e. difference between operational regimes 
and occupancy in different days of the week, or if there is a significant 
difference between weekdays and weekend). Then, using hourly and 
sub-hourly data it become possible to characterize the building dynamic 
thermal behaviour and operating schedules; this can help optimise 
operational settings. In general, the presence of both short-term/high- 
frequency measurements (daily, hourly, sub-hourly) and long-term/ 
low-frequency ones (monthly, across multiple years) can greatly 
improve the robustness of the performance assessment and optimise the 
effort spent in the analysis process. Overall, further potential research 
developments are summarised in Table 18, considering the areas and 
specific applications. As can be seen in the table, the use of approximate 
physical interpretation is a relevant element which helps in setting 
appropriate boundaries and constraints in the modelling process, while 
providing a greater sense of trust in models’ outputs. Further, this 
peculiar characteristics of interpretable methods can help bridge the 
current state of the art research on whole-building energy model cali
bration [6] by means of a multi-level process [66], where lumped 
physical properties are identified [67] and used in simplified physical 
models to optimize operation and enhance building flexibility [68] 
dynamically. 

7. Conclusion 

In this research, multiple formulations of lean and interpretable 
(regression-based) “digital twins” for building energy performance 
monitoring have been proposed. First of all, potential improvements 
with respect to model formulations at the state-of-the-art have been 
shown with the use of additional variables. Then, the robustness of 
models has been tested by retraining them with a 15 days rolling hori
zon, indicating a reasonable level of stability of models’ coefficients 
estimates. Further, a reformulation of the time of week and temperature 
(TOWT) model has been proposed, which achieves good performance 
with an enhanced interpretability, using energy signature visualisation. 
Finally, GAHPs performance has been characterised using regression as 
well. 

Overall, it was shown how interpretable regression-based ap
proaches can be used effectively at multiple temporal scales of analysis 
and, therefore, how they can work reasonably well even with limited 
information such as monthly data, making them suitable for quick and 
inexpensive performance assessment (i.e. using utility bills and outdoor 
air temperatures). Nonetheless, models’ performance can be improved 
by increasing the data granularity from monthly to daily and then to 

hourly/sub-hourly and by including additional variables. In particular, 
the use of hourly/sub-hourly data makes it possible to characterize the 
building dynamic thermal behaviour (e.g. outdoor air temperature 
response) and operating schedule (e.g. time of week model component) 
and this, in turn, can be used to optimize operational settings. Finally, by 
exploiting model temporal scalability it becomes possible to alternate 
short-term/high-frequency measurements (daily, hourly, sub-hourly) 
and long-term/low-frequency ones (monthly, across multiple years) in 
an optimal way. 

In the monitoring process, energy savings were normalised by 
weather and operational conditions to verify them. Smart TRVs reduced 
energy demand by 7.2% and TRVs and GAHPs combined reduced it by 
25.0%. TRVs savings were in the lower part of the expected range 
(5–20% see Section 3), but better system tuning could increase this 

Fig. 11. Regression model for the calculation of thermal power output Qth and GUEmax for the GAHP in variable conditions.  

Table 18 
Further potential research developments with respect to areas and applications.  

Research area Applications Potential development 

Modelling 
techniques 

Automated modelling 
workflow 

Data pre- and post-processing can 
be developed further. An 
automated forward model 
selection (i.e. including 
additional variables 
incrementally) can be combined 
with cross-validation.  

Regression-based 
formulation leveraging 
approximated physical 
models 

Building balance-point 
temperatures correspond to 
change-points in piecewise 
regression and slopes are closely 
related to overall heat transfer 
coefficient. 

Building 
technologies 

Whole-building performance 
analysis/model calibration 

Approximate physical models and 
analytical formulations can be 
used to define boundaries of 
acceptability and constraints for 
model parameters, leveraging 
energy balance at multiple levels 
in the building system.  

Construction technologies, 
air-tightness and ventilation 

Overall heat transfer coefficient 
of building zones can be 
identified via regression.  

Technical systems Building balance-point 
temperature (change-points of 
piecewise regression) influences 
heat pump weather compensated 
control and efficiency (COP, 
GUE).  
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value. As indicated in Section 6.4, the GAHPs’ relative energy demand 
reduction of 20.0% is realistic given the monitoring period’s operating 
conditions. GAHP technology may be a viable alternative to conven
tional and condensing boilers, but it would need to be run on hydrogen 
or synthetic fuels to meet low-carbon emission targets and this repre
sents a factor of uncertainty in a future perspective. 

Possible research developments include both the enhancement of the 
modelling procedure described in this paper and its implementation in a 
particular set of applications. The first aspect involves the seamless 
incorporation of modelling techniques into a workflow that aims to 
provide both numerical and visual analytics through the use of forward 
model selection and cross-validation procedures (to enhance robustness 
of estimates and reduce overfitting risk). The second aspect involves the 
formulation of regression models based on an approximated physical 
interpretation (i.e. a "grey-box" approach), which can provide additional 
insight into the performance of the building as a whole (including sup
porting whole building energy model calibration), as well as construc
tion technologies, technical systems, and operational strategies. In fact, 
despite the fact that these modelling strategies may be less accurate and 
powerful than other machine learning approaches at the state of the art, 
an approximate physical interpretation is relevant in light of the inter
pretability objective, which is also at the core of this research, because 
the analytics derived from models can be more easily understood in 
human terms, ideally promoting a greater sense of trust in the models’ 
output. 
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