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Abstract— Reconfigurable intelligent surfaces (RISs), which
can be implemented using metasurface technology or reflect/
transmit antenna array technology, have garnered significant
attention in research studies focused on both their technologi-
cal aspects and potential applications. While various modeling
approaches have been proposed—ranging from electromagnetic
simulations and analytical integral formulations to simplified
approaches based on scattering matrix theory—there remains
a great need for efficient and electromagnetically consistent
macroscopic models that can accurately simulate scattering from
RISs, particularly for realistic simulations of RIS-based wireless
networks. Building on previous work based on the character-
ization of the RIS through a surface impedance (or ‘“spatial
modulation”) function and a few parameters, in the present
article we propose a fully ray-based approach for the compu-
tation of the re-radiated field that can be easily embedded in
efficient, forward ray tracing (also known as “ray launching”)
models. We validate the proposed model by comparison to
well-established methods available in the literature. Results show
that, although the considered method is based on a completely
different formulation and is much more efficient than integral
formulation methods, results are almost indistinguishable in some
benchmark cases.

Index Terms— Macroscopic modeling, metasurface, ray
launching, ray tracing, reconfigurable intelligent surface (RIS).

I. INTRODUCTION

NTIL recently, the design of wireless systems has been
based on a probabilistic approach where the propagation
channel was considered a largely unknown, random process
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that engineers had to cope with during the design of transmitter
and receiver chains or network architecture. In the last years,
Reconfigurable Intelligent Surface (RIS) technology has been
proposed as an opportunity to broaden the design approach,
allowing for the first time to engineer the wireless propa-
gation channel. Interesting applications for 6G networks are
envisioned to ease coverage limitations at mm-wave and THz
frequencies and to perform basic operations on the signal
“at the speed of light,” limiting therefore the use of active
repeaters and digital signal processing, with a reduction in
latency and energy consumption [1].

An RIS is an electrically thin slab that can be realized
either as a metasurface using electrically small, printed scat-
tering elements, or as a reflect-array or a transmit-array
with half-wavelength spaced printed antenna elements. Using
control networks employing p-i-n diodes, varactors, or other
methods, an RIS can dynamically tailor its local reflection
or transmission properties and therefore can manipulate the
reradiated field characteristics and wavefront shape [1], [2].

The scattering behavior of an RIS can be accurately sim-
ulated using microscopic modeling approaches (e.g., using
Electromagnetic simulation or microwave network theory),
that are based on a detailed description of the RIS microstruc-
ture. Unfortunately, microscopic models are complicated
to use and require considerable computational resources.
Therefore, they cannot be used for efficient, large-scale
simulation of wireless links or systems employing RIS
technology [3], [4].

Thus, path-loss models or channel models for RIS-assisted
links have been developed and used for performance eval-
uations in recent years, see for example [5], [6], [7]. Such
models however, being based on a discrete periodic approach
that assumes independent scattering elements (unit cells) char-
acterized by a given scattering coefficient and pattern, either
overlook or only approximately take into account coupling,
parasitic modes, and other nonidealities [3].

Several other approaches have been proposed in the lit-
erature to try to solve the above-mentioned limitations and
to achieve a good trade-off between good electromagnetic
consistency and low computational complexity. Some Authors
propose hybrid approaches where electromagnetic simulation
is used to derive a far-field radar cross section of the RIS
to be inserted in ray tracing simulation [8]. Such approaches,
although efficient, cannot be used to model near-field effects
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such as focusing, which represents one of the most important
RIS applications. Very promising are macroscopic modeling
approaches that overlook the microscopic structure of the RIS
in order to directly address the specific wave transformation it
realizes [9], [10], [11], [12], [13]. These approaches assume
that the metasurface can be homogenized and described
in terms of an effective surface function— -e.g., a surface
impedance or a surface (or spatial) modulation function—that
determines such a wave transformation based on Maxwell’s
equations. The function can be derived from theory, i.e.,
from the wave transformation the RIS is intended to realize,
or from experiment, i.e., from measurements on the wave
transformation that an existing RIS actually realizes.

In particular, in [13], a realistic macroscopic model for
evaluating multimode reradiation from generic, finite-size RIS
is introduced. The model is based on a hybrid approach
combining a Huygens-based method to model anomalously
reradiated modes with well-established ray-based methods
to model specular reflection and diffuse scattering that are
inevitably present in real-world nonideal metasurfaces. In par-
ticular, diffuse scattering can model the noise-like reradiation
effect of mechanical and electrical nonidealities such as devia-
tion of the RIS from a flat surface, phase-tuning errors, or even
phase-discretization effects due to the use of a limited number
of bits in the control circuit. Specifically, the Huygens-based
and the ray-based methods are combined through a parametric
power-balance constraint that ensures energy conservation
between the incident field, scattered field, and dissipation
inside the slab.

In the present work, we build on the foregoing macroscopic
and parametric approach to develop a ray-based, efficient
approach also for anomalous reradiation, therefore achieving
a fully-ray based macroscopic RIS model that can be easily
integrated into efficient ray-launching (RL) algorithms for
large-scale simulation such as the one proposed in [14].
In particular, we suitably extend geometrical optics (GO)
theory [15] to the case of a reflective RIS illuminated with
an astigmatic wavefront. Diffraction is modeled through the
uniform geometrical theory of diffraction (UTD) [16], [17],
and a new formulation of the UTD diffraction coefficients is
proposed that can be applied to any reradiation mode of a
RIS and easily implemented in RL tools, following the same
approach of [17].

Differently from the study in [18], where a ray-based
description of reradiation from locally periodic, finite meta-
surfaces was first proposed, we assume to model reradiation
with a forward ray tracing approach, therefore avoiding the
complex and time-consuming critical point search step.

In Section II of this article, we describe our approach
more in detail, briefly addressing the model’s parametric
foundation, which is shared with the model described in [13],
some basic concepts of GO that we have used, and then
describing how the ray reradiated from a generic surface
location (anomalously reflected ray) or from the surface edge
(anomalously diffracted ray) are computed in terms of direc-
tion and field. The model is then validated in Section III
by comparison with some reference models available in the
literature.
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II. PROPOSED APPROACH

We propose a macroscopic, ray-based approach that uses
the spatial modulation function introduced in [3] and [13],
to model RIS reradiation. In the following, we make use of
GO concepts such as ray, locally plane wave, local wave-
front curvature, and spreading factor. [15]. In [18] and [12],
an image-ray tracing approach for locally periodic metasur-
faces is proposed, where “critical points” are identified using
an iterative procedure, in order to trace reflected or transmitted
rays for specific transmitter and receiver positions. In the
present work, we propose a discrete RL approach where the
RIS is discretized into surface elements, rays are launched
toward each one of them, reflected/diffracted according to the
spatial modulation function at the considered position, and
re-launched in space without any need for a critical-point
search phase. Therefore, the method can be inserted into
a discrete, parallelized RL algorithm as the one presented
in [14] for efficient field-prediction over an area or vol-
ume: in this case, the sub-set of RIS-reradiated rays hitting
the desired target area or volume will have to be deter-
mined and their field can be mapped onto the target domain
using some efficient computer graphics method. Surface dis-
cretization resolution, i.e., the size of each surface element
(or “tile”), determines the spacing of the rays and therefore
the resolution of the computed field, similar to what shown in
[19, Fig. 4], for the traditional discrete ray launching model
therein described, and should be therefore chosen according to
a trade-off between accuracy and computation speed. However,
discrete RL computation time can be drastically reduced using
parallelization techniques [14], [19]. In this work, we leverage
the macroscopic approach presented in [13], Section II, but
we propose a more efficient, fully ray-based reradiated-field
computation method in place of the Huygens-based methods
there described. The basic assumptions, as in [13], are the
following.

1) The homogenized surface properties vary slowly at the
wavelength scale (slowly modulated RIS).

2) Because of 1), we use the concept of spatial modu-
lation coefficient (SMC) often called also “reflection
coefficient.”

3) The reradiated field can be described as a discrete set
of reradiation modes (e.g., Floquet’s modes of a locally
periodic metasurface).

4) We address the computation of radiative near field and
far-field, but we neglect for the time being the effect
of evanescent modes (i.e., surface waves) and vertex
diffraction.

On the base of the foregoing assumptions, we describe each
reradiating mode field as a set of rays reflected or diffracted at
each surface element. In the rest of this section, after recalling
basic GO concepts, the computation of:

1) reradiation angle;

2) field;

3) spreading factor.

Is described as a reflected or edge-diffracted ray of a single
re-radiation mode. For a complete field computation, the pro-
cedure will have to be iterated for all the propagating modes.
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For the sake of brevity, only reflecting RISs are considered:
although the extension to transmissive RISs, that reradiate
mainly in the forward half-space, is quite straightforward,
it will be addressed in future work.

A. Relevant GO Background

According to GO theory, a propagating wave in free space
can be described in terms of rays, i.e., lines that are everywhere
orthogonal to the wavefront and therefore represent wave
paths. In the high-frequency regime, the Electromagnetic field
of a propagating wave can be approximated as [15]

E(r) ~ Ey(r)e /% ¥®
H(r) >~ Hy(r)e ko v® €]

where r is the position vector of the generic observation
point P, kg = 2mcy/f is the free space wavenumber, Eq(r),
Hy(r) are slowly varying complex vectors, representing the
local amplitude and polarization of the wave, and i (r), also
called eikonal function, is an optical-length function that
depends on the actual shape of the wavefront. In particular,
the gradient of the eikonal function Vi, is normal to the
wavefront and then defines the local ray direction, while the
Hessian matrix of i, indicated as VV1/, takes into account
the local curvature of the wavefront. The Hessian matrix of
the eikonal function is often indicated with the symbol Q
and called the curvature matrix of the local wavefront [20],
[21]. By substituting (1) in Maxwell’s equations, the following
relations are obtained (locally plane TEM wave) [15]:

Vy - E=0 Vy -H=0nyH=Vy xE )

where n = /uo/€o is the free-space impedance, and the
symbols “” and “x” stand for the dot scalar product and
the cross vector product, respectively. Moreover, it can be
proved that in a homogeneous medium, the ray trajectories
are rectilinear. In particular, in free space, the generic ray has
constant direction § = V1, whereas the wavefront has an
astigmatic shape so that the E-field propagating along a single
ray can be written as [20]

E(s) = E(0)A(s)e /%o

plet (Q)) .
——e¢
pdet {9(0)}

where s is the local coordinate along the ray, i.e., the
distance between the current point and the reference point
s = 0, E() is the field at the reference point, and
A(s) = \/pdet {Q(s)}/pdet {Q(0)} is the so-called spreading
(or divergence) factor, that derives from power conservation
on a ray tube and depends on the actual wavefront’s shape.
In (3), the notation pdet{—} stands for the pseudo-determinant
of the square matrix, i.e., the product of its non-zero eigen-
values.

The curvature matrix of an astigmatic wave can be expressed
in the following way [17], [20]:

=E(0) 3)

Q) = XX, + XX, (€]

- p1+s p2t+s
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with p; and p, being the principal curvature radii at the
reference point, corresponding to the two principal curvature
directions Xl,fiz. In (4) and in the following, the dyadic
product is used for ease of notation, which is equivalent in
linear algebra to the multiplication of a column vector by a
row vector, i.e.,

ab = ab’

where the superscript ()7 stands for the transpose operator.

According to (4), in free space, the wavefront diverges as
it propagates without changing shape, i.e., the two principal
directions remain the same while the curvature radii linearly
increase with s as p; + s and p, + 5.

By definition (4), Q(s) is a rank-2 symmetric matrix, and
the wave principal curvatures k| = (p; +5)7', ko = (p2 +
sA)‘zAare its nonzero eigenvalues, while the principal directions
Xj, X, are the corresponding eigenvectors. This means that,
by adopting the local ray-fixed reference system (Xl, X,, S),
Q(s) is diagonalized in the form

1

0
p1+s |
Q(s) = 0 ol (3)
p2t+s
0 0 0

As a consequence of (4); (S)Athe following property holds,
as the principal directions X;, X, lay on the transverse plane
with respect to the ray direction §

Qs=§'Q=0. ©6)

Finally, according to (3) and (5), the spreading factor for an
astigmatic wave can be expressed as a function of the principal
curvature radii in the form

P1P2
A = |[— 7
= o Tt @

As it can be seen from (7), the GO field has singularities on
the wave caustics, i.e., for those points along rays so that
s = —p; or s = —pp. GO theory cannot be applied to
compute the field in the vicinity of a caustic: in such a case,
different methods based on asymptotic evaluation need to be
applied [22].

In the following, according to the GO approach, we leverage
the locally plane wave assumption to model reflection and
diffraction at each surface element of a RIS, while we account
for the wavefront’s actual shape through the spreading factor,
that gives the actual attenuation-trend of field’s intensity with
distance. In practice, we linearize both the incident wavefront -
with a local plane—and the effect of the RIS on it—with
the local phase gradient—in order to simplify computation
steps (i) and (ii) above, whereas the actual curvatures of the
wavefront are considered for step (iii).

B. Anomalous Ray Reflection

Anomalous ray reflection is modeled according to a 3D
version of the generalized law of reflection [23], which takes
into account that, in general, incidence plane and reflection
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Fig. 1. Total phase gradient and anomalous ray reflection at the generic
surface element.

plane can be different. For the sake of simplicity, we limit
the analysis to flat surfaces, but the extension to the case of a
curved RIS is possible.

Let us then consider a flat RIS of normal n, and let be
r’ the position of the generic surface element. The position
vector can be expressed as a function of 2 local coordinates
on the RIS plane (see Fig. 1), i.e.,, I = r'(u, v). When a ray

impinges on the surface with propagation direction § so that

—§ - fh = cos®;, where 6; is the incidence angle, the field

acquires an incidence phase gradient on the surface due to
the inclination of the locally-plane wavefront of the ray with
respect to the RIS. This phase gradient is

V' = —kosin6; § 8)

where the unit vector §. defines the orientation of the incidence
plane with respect to the RIS surface (see Fig. 1).
Equation (8) can be rewritten in the equivalent form

P, § =§i—ﬁ(ﬁ.§’) —sing, § = — X 9)
where P; is the tangent projection operator, defined as

P, :1—ﬁﬁ (10)

and 1 is the identity matrix.

Then, according to a macroscopic approach, the RIS applies
the additional phase gradient V x™ of the considered reradia-
tion mode so that the total phase gradient at the considered
surface location becomes

Vx=Vyx +Vy" (11)

Anomalous reflection direction takes place according to
that total phase gradient. The reflection plane is parallel to
the phase gradient direction (see Fig. 1); however, as surface
points with a greater phase will reradiate before those with
a phase lag, the resulting locally-plane wavefront will have
the opposite orientation with respect to the total phase gra-
dient V. It can be easily shown (see Appendix I) that the
projection of the reflected ray direction on RIS plane is given
by
\S

P,§ =sin6,.§ =P, § — =
R T ko ko

(12)
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where 6, is the reradiation angle, and §; defines the reflection
(or reradiation) plane, that generally for a RIS is different from
the incidence plane, as shown in Fig. 1.

Observing that |§"| = 1, the reflection unit vector can be
written using a single compact equation

) Vy™(y ) er/Z
g _pg_ Yx®) )+\/1—|13T§l——x LI

- ko ko
Vx(r [ Vxa) 2,

(r) 41— x( )| a
ko ko
which expresses the generalized law of reflection.

As in [3] and [13], the reradiated field can be computed

using the SMC, that takes into account the overall reradiation
properties of the RIS. According to this macroscopic approach,
we assume that the following boundary condition holds for
every point of the RIS surface:

E'(r') = T(r)E'(r).

(13)

(14)

In (14), instead of a scalar coefficient we make use of the
coefficient I written in dyadic form, in order to take into
account the polarimetric effect of the RIS. Such coefficient is
defined as
D(F) = Ly (<)) = a7 ()" ) . R
= A"(r)e/" (") (RM&E + RTEE)  (15)

where A™ and x™ are the amplitude and phase modulation

of the considered reradiation mode, while the matrix R" =
Ry é’héﬁ + R7T& & is used to account for the polarization
transformation realized by the RIS [17], [24]. The unit vectors
)" and &’ are used to decompose the incident/reflected
field into perpendicular (TE) and parallel (TM) components
with respect to the incidence/reflection plane on a ray-fixed
reference system (see Fig. 1), and are easily computed as

ALLT

__alr A Alr ALy al,r
e, =S8 xn e =€ xs". (16)

Usually, the phase modulation coefficient x™ varies on the
wavelength scale, while the amplitude modulation coefficient
A™ varies on a larger scale and may take into account nonlocal
effects along the RIS surface. In general, A™ and x™ cannot be
arbitrarily chosen but must satisfy proper constraints in order
to be representative of a realistic RIS design, as discussed
in detail in [3]. A RIS able to control the polarization,
here modeled through the dyadic R™, can be alternatively
represented as a tensor impedance sheet (see for example
[25, pp. 57-59]). Additional terms may be introduced in (15)
to take into account additional losses caused by parasitic
effects and diffuse scattering, as discussed in [13]. In the
following, we assume that the SMC T is known, either from
the design stage or estimated through measurements.

After defining the local reflection direction §" and applying
the SMC to the incident field, the last step consists in the
computation of the field along the reflected ray, including the
spreading factor. This can be derived through the curvature
matrix by applying a local phase matching procedure on the
RIS surface, following a method similar to the one presented
in [20], and also used in [17] to derive the spreading factor
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of the reflected wave from a curved PEC surface. Differently
from [20], here we express wave curvatures using 3 x 3 non-
diagonal curvature matrices, avoiding the use of a ray-fixed
local reference system on the incident and reflected wave to
diagonalize them, that would need multiple matrix transforma-
tions. As a starting point, by substituting (1) and (15) in (14),
we get

Ej () /%% () = 1y () B (1) L () —0v' (] (17
and then

B4(F) = To(s)Ep (1) (182

koy" (¥') = ko' (v') — x™(r') (18b)

Equation (18b) is a phase-matching relation that involves
the phase of incident and reflected fields, and the phase x™
imposed by the RIS. By expressing each phase term through
its Taylor series expansion about a reference point r, on the
RIS, a simple relation between the local curvature matrices of
the incident and reflected fields can be derived, as shown in
Appendix 1

19)

t-Qt=t- [[Q" - klovvx'"(rg)]t]

where t = r’ — 1y is any vector tangent to the RIS surface
at ry, and VVx™ is the Hessian matrix of the phase profile
x™ imposed by the RIS, computed in rj,.

In order for (19) to be satisfied, the tangent projection of
the incident curvature matrix, plus the curvature imposed by
the RIS, must equate the tangent projection of the reflected
curvature matrix, i.e.,

. 1
l_)rQrI_)r = I_)r |:QI - k_VVXm:|1_)r- (20)
B B 0

Equation (20) only provides the tangential component of Q".
The normal component is determined by imposing (6) for the
reflected ray, i.e.,

Qs =0.

In particular, by combining (6) and (20), through simple

algebraic manipulations the final expression of Q" can be

found

2y

|
Qr — LT |:Q1 _ k_ovvxmi|L

where L is a linear transformation operator, having the fol-

L = l—jrﬁA .
N - S -n

According to GO rules, after reflecting on the RIS the wave
continues to propagate along a rectilinear trajectory and the
curvature radii increase proportionally to the path length, as the
medium above the RIS surface is homogeneous. If the incident
ray hits the RIS in the point 1/, the GO field on a observation

lowing form:

(22)
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point r = r’' + s §" along the reflected ray is then expressed
by

EV (r) — lj(r/)El (r/) Ar (S) e*jko\rfl"l

—jk()X

= LB () | o (23)

pi+s) (03 +3)

with p{, p5 being the principal curvature radii of the reflected
wave at r’, i.e., the reciprocals of the nonzero eigenvalues of
the reflection curvature matrix Q", computed through (21), and
s the local coordinate along the reflected ray.

It is worth noting that generally, according to (21), RIS
reflection changes the wavefront shape into an astigmatic wave
even in simple cases, like with a spherical wave incident on
a constant phase gradient RIS, i.e., with VVx™ = 0. For
instance, let us consider the case of an anomalous reflector
configured with constant anomalous angle 6,, and reradiation
plane coincident with the incidence plane (i.e., A¢ = 0 in
Fig. 1). If such a RIS is illuminated by a spherical wave,
i.e., with ,o{ = pé = s/, using (21) it can be easily shown
that the reflected wave has curvatures p| = s’ and p} =
s’ cos? 6,/ cos? 6;: the curvature perpendicular to the incidence
plane is unchanged, while the one laying in the incidence plane
is modified by anomalous reflection. Therefore, the spherical
wavefront shape is unchanged only in the case of specular
reflection.

C. Anomalous Ray Diffraction

Besides the GO contributions for the RIS scattered field,
edge diffracted ray-fields are also included in the model.
This type of contribution is important to smooth out the
abrupt field discontinuity predicted by GO when crossing
the shadow boundaries and to predict a nonzero field in the
GO shadow region. Since an exact solution for the truncated
RIS canonical problem is not available, the edge diffracted
field has to be evaluated by resorting to an approximate
solution. Similar to the approach adopted for the diffraction
from arbitrary impedance wedges, two methods are possible;
one can either resort to a PO approximate formulation and
derive ray contributions from its asymptotic evaluation [26],
or develop heuristic solutions [27], [28] by modifying the
UTD coefficient [17]. While in [18] the former methodology
was pursued, here we follow the latter which is more popular
and effective for the application to ray-tracing and propagation
prediction because of its simplicity. Since the total phase pro-
gression along the RIS edges results from the combination of
both the incident wave illumination and the surface impedance
modulation, edge diffracted rays are launched toward anoma-
lous directions, similar to what happens for GO reflected rays.

Namely, according to a generalized law of diffraction, the

diffracted ray direction § must obey to (see Appendix II for
the proof)
cosp=5§"-¢=¢-¢
v VXY 4 , Loy
=(s - e=cosf — ——— 24
( k() ) ﬂ k() de ( )
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Diffraction plane .

d, ¢ ~d
Incidence Ma/ne A, £ ys
= Ay

Anomalous Keller’s cone

Fig. 2. Anomalous Keller’s cone and edge-fixed reference system for incident
and diffracted ray.

where B is the aperture angle of the Keller-Rubinowicz diffrac-
tion cone, B’ is the incidence angle with respect to the edge
and € is the unit vector along the edge, as shown in Fig. 2.

Looking at (24), it is evident that the additional term
corresponding to the spatial modulation modifies the cone
aperture with respect to the standard case, thus leading to
an anomalous diffraction. Moreover, the transverse component
of the reflection direction §" with respect to the edge direc-
tion € gives rise to an anomalous reflection shadow boundary
(ARSB). This applies of course to any reradiation mode of
the RIS.

Therefore, one can proceed similar to the standard UTD
case, by recalling that the diffracted wave is astigmatic with
one caustic on the edge, and that the diffracted field is
computed as [17]

ol
s(p? +3)

In (25), D is the dyadic diffraction coefficient, and p? is the
edge-caustic distance, i.e., the distance between the caustic at
the edge and the second caustic of the diffracted ray.

For a straight edge, p¢ is related to the incident wave
curvature radius on the edge-fixed incidence plane, i.e., pé,
through the following equation (see Appendix II for the proof):

1 1 si 21 2.,m
Py SI-nzﬂ - -1 2 ’ Xz : (26)
P P, sin“p kosin“B  Oe

Looking at (26), it is evident that the curvature of the inci-
dent wave on the edge-fixed diffraction plane is modified by
anomalous diffraction, similar to what happens for anomalous
reflection. If the RIS has a constant phase gradient along the
edge, such curvature p¢ is also constant along the edge.

Diffraction must also compensate for the incident field that
vanishes at the incidence shadow boundary (ISB). However,
the incident ray boundary is not modified by the surface
impedance modulation of the RIS across the edge. This means
that, in addition to the anomalous Keller’s cone, also an
ordinary Keller’s cone of diffracted rays originates at the
diffraction point Qf (see Fig. 3), i.e.,

do . @ 27)

E‘(s) =D -E'(Qp) e/t (25)

cosf =§-e=38§

with §% direction of the diffracted ray laying on the ordinary
Keller’s cone. For those diffracted rays, the incident field
curvature is not modified by diffraction on a straight edge,
ie., p? = p! [17].

Regarding the dyadic diffraction coefficient D in (25), it is
expressed as a combination of unit vectors parallel and per-
pendicular to the incidence and diffraction edge-fixed planes,

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

Keller’s cone

Ordinary

\ Keller’s cone
ISB
0

Fig. 3.
edge.

Ordinary and anomalous Keller’s cones for a given point along the

as in [17]. However, different from the standard UTD, two
separate diffraction coefficients are defined for the anomalous
and ordinary diffracted rays. Therefore, we extend the formu-
lation of the UTD diffraction coefficient to the case of a RIS
in the following way:

D' = D'(-B - ¢¢))
D' = (-D; B'8' — D; ¢'¢)r

(28)
(29)

where D' is the scalar diffraction coefficient that applies to
the diffracted rays on the ordinary Keller’s cone, D; and Dj,
are the “soft” and “hard” scalar diffraction coefficients [17]
for the anomalous diffraction. In (29), D] and Dj are also
multiplied by the SMC T to properly compensate for anoma-
lous reflection on the ARSB, following the heuristic approach
adopted in [27] and [2§] f9r a nonperfectly conducting wedge.

The unit vectors (¢, /3 ) form a right-handed triplet with
the 1n01dence direction §' (see Fig. 2) and similarly, (¢ ﬂ)
and (¢d /3 ) form a right-handed triplet w1th the ordinary

and anomalous diffraction directions §7¢ and §¢, respectively.
Therefore, they are easily computed as
PRy A ad . A ad
5 exs A exs 4 _ €XS
=- bp=—"7"— O =—77
|exs‘| le x s9o| le x s¢|
2 _ 4 ado d _ 4d  ad
B =¢ x§ B=¢xs B =¢" xs°. (30

In order to express the scalar diffraction coefficients Di,
Df, Dj in (28), (29) in a similar form to the one introduced
in [17] for standard UTD, we need to define the ray angular
coordinates with respect to the edge (see Figs. 2-4). They
can be computed with the following equations [29]:

B = arccos (8 - &) (31)
B’ = arccos (§' - &) (32)
- .1 od b
¢!l =m— |7 — alrccos(S )]sgn(s. n) (33)
i sin 8 sin 8
B _"r _i T or . -
¢ =7 —|7— arccos( > ) sgn(s. n) (34
i sinf /| sin 8
I §do - ¢ §o - f
_ | 35
p=m _71 arccos(sm /3/> sgn( S ) (35)
, i —& - t\] —§ - n
U 36
¢ = _n arccos( Snp )_sgn( Snp ) (36)
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Fig. 4. Diffraction angles for anomalous diffraction. Red: incident ray and
one anomalous diffracted ray with corresponding incidence and diffraction
planes; Green: anomalous reflected ray and its opposite (back-specular)
direction.

with n denoting the unit vector normal to the RIS and
t = i x & the unit vector tangent to the RIS and orthogonal
to the edge.

Compared to the standard UTD, in (31)—(36) 3 additional
angles are introduced, namely B, ¢? and ¢'": B is the
angle formed by the anomalous Keller’s cone with the edge
direction €, and is different from the incidence angle £/,
in accordance with (24); ¢¢ defines the observation angle on
the anomalous Keller’s cone, projected on the transverse plane
to the edge, while ¢"" is the transverse angle defining the
specular direction of §, (see Fig. 4) so that the diffraction
coefficient exhibits its transition at the ARSB, i.e., when
¢+ =mor ¢ + ¢ =3m.

The ISB condition is |¢ — ¢'| = 7 and is unchanged w.r.t.
the standard UTD.

Of course, if the RIS has a specular radiation mode,
this gives rise to a standard UTD diffraction, where all
the diffracted rays lay on the ordinary Keller’s cone, i.e.,
B = pB’, and the ARSB becomes the ordinary Reflection
Shadow Boundary (RSB), ie., ¢¢ = ¢ and ¢'" = ¢'.

In the standard UTD from a wedge, the diffraction coeffi-
cient is formed by two couples of cotangent terms (one for
each face of the wedge), that maximize the coefficient on the
ISB and on the RSB, respectively. However, since a RIS is a
diffracting half-plane, each couple of cotangents degenerates
into a single secant term [17]. Moreover, in the case of a RIS
these secant terms are not summed together to form a single
coefficient as in standard UTD, as they are applied separately
to diffracted rays that belong to different Keller’s cones.

Therefore, for a RIS properly designed in order to have
a single significant (anomalous) reradiation mode, while the
other propagating modes including the specular one are negli-
gible, the scalar UTD coefficients to be used in (28), (29) are
expressed by

i e Flkelialp -~ 9)]

= 37
24/2mky sin B’ COS[(¢ - ¢/)/2] Gn
—e=im*  FlkoL a(¢p? + ¢'"
24/2mky sin B cos[(¢ + ¢'r)/2]
where
. © i02
F(X) =2j«/§efx/ e du (39)
JX
is the UTD Fresnel Transition function, with arguments
:|: /
a(p £ ¢') =200$2(¢ 2¢) (40)
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Algorithm 1 Computation of the RIS Reradiated Field
1: Read TX information

2: Define RX grid

3: for k < 1 to Nyjjes do

4 Calculate incident field E' on tile k

5: for n < 1 to N,,p4es dO

6: Use (13) to find the reradiation direction

7: Intersect the reradiated beam with the RX grid
8: Compute the SMC T on tile k£ using (15)

9: Calculate curvature matrix using (21)

10: Calculate reflected field E” for mode n using (23)
11 Add ray contribution to total field at RX

12: end for

13: if zile k is a “border tile” then

14: Calculate incident field on the tile edge

15: for n < 1 to N,p4es do

16: Find the anomalous Keller’s cone with (24)
17: Intersect Keller’s cone with the RX grid

18: Calculate UTD coefficient using (29)

19: Calculate p? using (26)

20: Calculate diffr. field E¢ for mode n using (25)
21: Add ray contribution to total field at RX
22: end for

23: Find the ordinary Keller’s cone with (27)

24: Intersect Keller’s cone with the RX grid

25: Calculate UTD coefficient using (28)

26: Calculate diffracted field E¢ using (25)

27: Add ray contribution to total field at RX

28: end if

29: end for

and distance parameters

i S(,Oé+s),0ip§ 2 o
L' = —— - sin“ B 41
PPy +5) (P2 +5)
d roar
P i) . S 8. 42)

P (pi +5) (05 +5)

In (41), pi, pé are the principal curvature radii of the
incident wave, while pé is the curvature radius of the incident
wave on the edge-fixed incidence plane (see Fig. 2).

Instead, in (42) p{, pj are the principal curvature radii of the
reflected wave, computed through (21), while p? is the edge-
caustic distance, computed through (26). In the small argument
limit F(X — 0) ~ /jm X, it is easy to verify that the factor
VLi7 transforms the diffracted field spreading factor into the
GO one. As a consequence, the distance parameters in (41),
(42) ensure that, at the relevant SB where the arguments (40)
vanish, the edge diffracted field exhibits a jump discontinuity
compensating the GO abrupt disappearance, thus providing
a continuous total field across the SB. This property of the
standard UTD is here suitably extended to the ARSB.

As a last remark, it must be noted that the diffraction coeffi-
cients (37), (38) apply to different diffracted rays (ordinary and
anomalous) that originate from the same point Q g on the edge,
and the corresponding diffracted fields also have different
spreading factors and propagate in different directions, which
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corresponds to a forward ray-tracing perspective. Therefore,
the diffraction coefficients cannot be summed, unlike in stan-
dard UTD. Conversely, by assuming a backward ray-tracing
perspective, a fixed observation point P in the space might be
hit by diffracted rays that originate at two different diffraction
points (or “critical points”) on the edge [30], i.e., those points
which satisfy (24) and (27). In such a case, the total diffracted
field in P is expressed by

i i pi — jkos
Efor(P) =D -E(Qp), | ——— e~/
Sl(ﬂe+S1)

. ,Od ik
+D"-E'(Q W a3 ¢ Jro%(43)
£ Sz(Pd +S2)

where s;, s, are the distances between the critical points Qgj,
Qp> and the observation point P, respectively, and o4, D,

D’ are computed using (26), (28), and (29). If the RIS has

multiple reradiation modes, additional critical points arise, and
additional terms of anomalous diffraction are added to (43).

D. Computation of the Overall Reradiated Field

The procedure for the computation of the reradiated field
from a finite-size RIS using the proposed ray approach is
summarized in Algorithm 1. The RIS is first subdivided into
tiles, and the procedure is iterated over the different tiles and
over the different RIS reradiation modes: finally, the reflected
and diffracted fields are coherently summed to get the overall
reradiated field.

III. APPLICATION EXAMPLES

As a first simple benchmark case, we consider a “perfect”
anomalous reflector [23], [31], illuminated with a plane wave
at normal incidence. The RIS has size 7 x 7 m?, is centered
in the origin of an orthogonal reference system Oxyz, and
lays on the xy plane. Furthermore, the RIS is designed for an
anomalous reflection angle 6, = 60°, and a normal incident
wave with perpendicular (TE) polarization with respect to
the xz plane, at the frequency of 3.5 GHz. This can be
accomplished by setting the following expressions in the SMC
coefficient (15):

x™ = ko(sin6; — sin6,)x

A™ = \/cosb;/ cosb,

R" = §5.
This means that the RIS imposes a constant phase gradient
Vx™ = ko(sing; — sinf,)Xx along the x axis, the wave
polarization is perpendicular to the reradiation plane and is
not altered by the RIS, while the term A™ = /cos8;/cos 0,
accounts for global power conservation [31]. Such kind of
“perfect” anomalous reflector with a single reradiation mode
and global power conservation requires a nonlocal design
of the surface impedance through excitation of additional
auxiliary evanescent fields or by carefully engineering the
surface reactance profile, and can be achieved for example with
a nonuniform array of metal patches separated by a dielectric
layer from a ground plane, as described in [23].
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Fig. 5. Field distribution for a perfect anomalous reflector, with 6; = 0°,

0, = 60°. Frequency: f = 3.5 GHz. TE-polarized incident plane wave, with
|E'| =1 V/m at the RIS surface.

In Fig. 5, the distribution of the reradiated E-field computed
with the ray model on the xz plane is shown, assuming a
unitary incident field E' = (—1 V/m)§ at the RIS surface.
Being an high-resolution image, interference fringes caused
by edge diffraction are well visible, both inside and outside
the reflection cone. The result of Fig. 5 is very similar to the
one shown in [13, Fig. 4] except for a small scale factor in
the values of the reradiated field, as this previous result was
obtained using a different model, called “Antenna Array-Like”
(AAL) model, and applied to the case of an ideal phase-
gradient reflector, by using a “locally-specular” reflection
assumption, which can cause a small bias error, as mentioned
in [13].

In order to show the effectiveness of the proposed approach,
the scattered field computed with the ray model and shown in
Fig. 5 is compared with the one computed using the Physical
Optics approach, which is well-proven and widely used [10].
The PO field is computed through the following radiation
integral:

E}o(r) = — o [0 fo Jo (1) xF o+ M (1) x£]dS

T
(44)

where the equivalent surface currents for an impenetrable
metasurface are approximated as [10]

Js=nx (Hi+H’)

M = —i x (E' + E) = —f x (E" 4T E") (45)

with

Hi,r — léi,r X Ei,r.

n
By comparing the whole predicted field in Fig. 5 with the
one obtained using the PO model on the same Rx grid, one
obtains that the root mean square (rms) distance between
the two models is about 2.1% of the unit incident field.
The reference PO solution is obtained through numerical

(46)
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TABLE I

ACCURACY AND COMPUTATION TIME OF RAY MODEL AND AAL
MODEL WITH RESPECT TO THE REFERENCE PO MODEL

Model Mean error Err(_)r . RMS error Comp utation
std deviation time (s)
PO model — — — 63918
AAL model 0.19% 1.33% 1.35% 8767
Ray model 0.16% 2.07% 2.08% 200

computation of the integral (44) with a discretization of the
RIS into tiles of length A /2, the minimum resolution to have
a reliable prediction without grating lobes [13]. It is worth
noting that both the ray and the PO solutions are slightly
approximate, albeit in different ways, the first being based on
an asymptotic approximation of the field for high frequencies,
and the second on the assumption that the total field is zero on
the shadow side of the RIS and the radiating currents are not
perturbed near the edges. However, the ray-based approach is
intrinsically more efficient. Just to have an idea, to produce the
high-resolution image of Fig. 5 (1.2 Mpixel) with numerical
solution of the integral (44), using MATLAB on a workstation
with Intel' Xeon' E5-2620 CPU and parallelization on 8 cores,
it takes about 17 h and 45 min. On the contrary, the same
result can be obtained with the ray model in about 200 s.
Results are summarized in Table I in terms of mean error,
standard deviation of the error, and rms error with respect to
the reference PO model, and computation time. The errors are
expressed as a percentage of the unit incident field. Table I
also reports the AAL model of [13], which has intermediate
performance: the mean error is slightly worse and the error
standard deviation is slightly better than the ray model, but
its computation time is of about 2 h and 26 min, which is
43 times slower than the ray model.

In order to provide a visual comparison between the pro-
posed ray model and the PO reference model, the reradiated
field shown in Fig. 5 is sampled along the RX line at x = 10,
y = 0 (green dashed line) and compared with the one obtained
using the PO model in the same Rx locations. The comparison
is shown in Fig. 6 where the reradiated field obtained through
the ray model is represented by the black curve, while red
dotted curve corresponds to the PO model. The AAL is not
plotted in this case for readability reasons, as the curves are
very close to each other. It is evident that the 2 curves in
Fig. 6 are nearly coincident, thus confirming the validity of
the adopted approach. The only small difference that can be
appreciated, at z = 7, is due to the absence in the model of
vertex diffraction, which would allow for a smoother transition
when edge ray diffraction ceases to exist.

Anomalous reflectors are usually conceived and designed
for the canonical case of an incident plane wave from a
given direction, but in a real environment, the incident wave
is spherical (or astigmatic), unless the illuminating source is
very far. This fact causes an impact on RIS performance,
as depicted in Fig. 7, where the same RIS of the previous
example is considered (perfect anomalous reflector) and the
field along the green dashed line in Fig. 5 is computed with the
ray model for an illuminating spherical source located along

"Registered trademark.
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Fig. 6. Comparison of the ray model with the PO model along the dashed
green line in Fig. 5.
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Fig. 7. Comparison of the reradiated field predicted with the ray model
along the dashed green line in Fig. 5 in 3 different cases: 1) incident plane
wave (black line); 2) incident uniform spherical wave (red dashed line); and
3) incident nonuniform spherical wave with gaussian profile and divergence
2 = 4° (blue dotted line).

the z-axis, at a distance of 50 m from the RIS center. The
incident field is normalized so that its maximum value, at the
center of the RIS, is 1 V/m. Fig. 7 shows a significant widening
of the reflection cone and a reduction in the amplitude of
the reradiated field for a uniform spherical incident wave (red
dashed curve) compared to the reference case of plane wave
illumination (black curve). This is mainly due to the fact that
the incidence phase gradient is not constant along the RIS
surface, and then the phase compensation operated by the
RIS is imperfect. Moreover, the reflected wave is astigmatic,
as discussed in Section II, and therefore attenuates faster with
distance than a spherical wave.

The reradiated field intensity is further reduced if the RIS is
illuminated with a directive antenna. As a reference example,
Fig. 7 depicts the case of illumination with a circular gaussian
beam (blue dotted curve), that can well approximate the main
radiation lobe of a pencil-beam directive antenna [32]. The
considered gaussian beam has beam waist wy = 0.39 m,
corresponding to a divergence angle 2 = (A/mwy) =~ 4° at
f = 3.5 GHz. As the distance from the source (d = 50 m)
is far beyond the Rayleigh distance, the incident wave on
the RIS surface is a nonuniform spherical wave, and about
86% of its power is contained on a circular spot with radius
R = Qd ~ 3.5 m [33]. As expected, in this case, the
reradiated field intensity further decreases compared to the
case of incident uniform spherical wave (red dashed curve),
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Fig. 8. Comparison between ray model and full-wave simulation along a
semicircle on the xz plane centered on the RIS, at a distance r = 1 m.

especially in the side regions of the reflection cone, where the
reduction is of about 6 dB: in fact, since most of the incident
power is concentrated around the RIS center, the contribution
of edge diffraction becomes less significant in this case.

Fig. 8 shows a more realistic case of a periodic phase-
gradient RIS with multiple propagating modes. The ray model
is compared with full-wave simulations performed with the
frequency-domain solver (FEM) of CST microwave studio.
Similar to the previous cases, we consider the reference case
of a normally incident plane wave, with field amplitude Ey =
1 V/m on the RIS surface. The RIS is located in the xy plane,
centered at the origin, and consists of a reactive impedance
sheet Z;(x) = jntan((wx/D)) with period D along the
x axis, while the incident field is TE-polarized (i.e., along the
y axis). The period can be found as D = X\ /|sin8; — sin6,|,
in accordance with [10], [23]: therefore, it is chosen as D =
98.91 mm in order to give a reflection angle 6, = 60° on the
xz plane at f = 3.5 GHz. To limit the computation time, the
size of the RIS in the CST simulation was chosen to be 7D x
7D, i.e., about 0.7 x 0.7 m2. The surface impedance profile
was sampled at 20 points in each period so that the RIS model
consists of 140 strips of length 7D and width (D/20), each
with a constant surface impedance boundary condition. The
reradiated field is sampled along a semicircle in the xz plane
at a distance r = 1 m from the center of the RIS.

In order to compare the full-wave simulation with the ray
model, the amplitude and initial phase for the propagating
modes have been obtained by first simulating in CST a single
periodic cell of the RIS with periodic boundary conditions
and Floquet port excitation. According to the Floquet theory,
in the considered case of a normally incident plane wave,

there are three scattered propagating modes n = —1, 0, 1 [10]:
n = 1 corresponds to the desired reradiation mode at 6 = 60°,
while n = 0 and n = —1 correspond to the specular mode

(6 = 0°) and to the opposite mode at & = —60°, respectively.
The S-parameters calculated by CST directly provide the
amplitude A™ and phase x™ of the scattered modes which
are used in (15) to obtain the SMC I for each mode. Then,
the procedure described in Section II is iterated to obtain the
total reradiated field for each of the 3 propagating modes, and
such fields are coherently summed to obtain the result shown
in Fig. 8 (black curve), which is compared with the reference
full-wave simulation (red dashed curve). In both curves, the
2 lobes at & = 60° and 6 = —60° are clearly visible, whereas

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

40 7
—Ray model
- -PO model )
30
E
20
i}

10

0
-80 -70 -60 -50 -40 -30 -20 -10 0
d/A

Fig. 9. Comparison between the ray model and the PO model in the case of
an ideal focalizing reflector. The distance from the focus is normalized with
respect to the wavelength.

the specular mode appears to be almost negligible, except for a
few grating lobes. It is apparent that the proposed ray-method
can predict the RIS scattering with good accuracy. Overall,
the rms distance between the 2 curves is equal to 0.019,
i.e., 1.9% of the unit incident field. The direction and level
of the main lobes are quite well estimated except for the
underestimation of the lobe at § = —60° corresponding to
the mode n = —1. Such a difference is due to the fact that the
ray-method is based on the PO currents, i.e., on the equivalent
currents in the infinite periodic problem, which are only an
approximation of the true currents on the truncated structure
calculated by the full-wave method. As the difference between
the two currents is mainly concentrated at the plate edges, the
edge diffraction as predicted under the PO approximation may
differ from exact edge diffraction. However, such a difference
generally decreases as the electrical size of the RIS increases.
In this moderate-size example it is still noticeable, though not
dramatic.

As a last example, we consider an ideal focalizing reflector,
illuminated by a TE-polarized plane wave with |E'| = 1 V/m
and incidence angle 6; = 7/3 on the xz plane, at the frequency
f = 3.5 GHz: this is achieved by setting A” =1 and x" =
—x' 4+ kolrr — /| in (15), where x' = —kosin6; x is the
phase of the incident wave and rp is the position vector of
the focus point [13]. The RIS has the same size as the one
considered in the example of Fig. 5, and it is centered in the
point (0, 0, —10), while the focus point is located in the origin
of the reference system.

Fig. 9 shows the predicted field along the z-axis, starting
from the RIS surface up to the focus point, and compares
the proposed ray model with the PO model. In the plot,
the distance from the focus is normalized to the wavelength,
to give a clear idea of the focal-spot size that must be related
to the wavelength (radius of about 5)). Recalling that the GO
field has singularities on caustics (or focii), as mentioned in
Section II, it can be observed that the ray model provides
reliable results and in good agreement with the PO model up
to a distance of about 5\ from the focus, then the predicted
field value starts diverging. Proper handling of singularities in
focal points will have to be addressed in future work, together
with the introduction of vertex diffraction and extension of the
model to transmissive surfaces.
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IV. CONCLUSION

On the base of the characterization of a finite-size, reflective
RIS through a “spatial modulation” dyadic function and a few
parameters, in the present work we propose a fully ray-based
approach for the computation of the reradiated field that can be
easily embedded in efficient, forward ray tracing algorithms.
The model is based on the computation of the anomalous
direction of the reflected or diffracted ray based on the
phase gradient of the spatial modulation function, and on the
computation of its spreading factor using the curvature matrix
of the local wavefront. We show that a new Keller’s cone,
the “anomalous Keller cone,” has to be taken into account in
addition to the ordinary one and a new, original formulation
of the UTD diffraction coefficients is proposed inspired by the
heuristic approach in [27] and [28]. We validate the proposed
model by comparison to well-established methods available
in the literature: results show that the ray model is far more
efficient in terms of computation time, but corresponding
results are very similar in a number of benchmark cases.

APPENDIX I
ANOMALOUS REFLECTION: COMPUTATION
OF THE WAVE CURVATURE MATRIX

Let’s consider a reference point Py on the RIS surface, and
the corresponding position vector rj,. The phase of the incident
ray in a point P with position vector r’ located in the vicinity
of Py can be approximated by its Taylor series expansion about
Py, truncated after the second-order term

vi() = 0 () +8 (x5) - [~ x()
1 )
sl —nl- @l sl @)
where the identities V' = § and VVy/' = Q' have been
used, as stated in Section II-A.

Similarly, the phase of the reflected field can be locally
approximated as

W) = () +4 () [ )
w5l —ni]- @@l -l @9

The same principle also applies to the phase x” imposed
by the RIS

X" (r) = x™(ro) + Vx" (o) - [r — xg]
1
+ E[r/ —ro] VX" (xp)[r = xp]}. 49

For a generic surface, any point P in the vicinity of Py is
described by the following relation [20]:

1 .

r’=r6+t—§(t-Ct)n (50)

where t = ;11 + 1,V is a vector tangent to the surface in ry

and C = kjul + k,VVv is the curvature matrix of the surface.

However, in the present work, we are considering only flat

surfaces (C = 0), so r' —r; will be a tangent vector to the
surface, i.e.,

r—ry=t (51)
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By imposing the phase matching relation (18b) in the
point P, we have then

r 1
v’ (rg) +8 ot Qt
‘ ; |
=¥/ (ry) +8 t+St-Q't

Sl e0) VX () 5t [V (1)
0

(52)

and then, the following equations must be separately satisfied:

V() = ' () = 12" () (530
§ - t= |:s - ivx’"(rg)} t (53b)
0
t-Qt=t- [[Qi — kivvxm(rg)]t}. (53c¢)
B B 0

Equation (53a) just provides the phase matching on the
reference position r'y. Equation (53b) means that the tangent
components of the first-order terms of Taylor’s expansion are
equal, as (53b) must be satisfied for any choice of the vector t.
So, using the projection operator P, = 1 — nn we get (12)

V' () + Vx"(xg) _ Vx(r)
B ko B ko
which leads to (13) by imposing |§"| = 1.
Finally, by pre-multiplying and post-multiplying with the
projection operator the second-order terms (curvature matri-
ces) in (52), we immediately get (20)

- 1
PrQrBr =P, I:Ql - k—VVXm:|Pr
0

which leads to (21) by imposing Q" §" = 0.

APPENDIX II
ANOMALOUS DIFFRACTION: COMPUTATION
OF THE WAVE CURVATURE p¢

We proceed in a similar way as for reflection, by writing the
Taylor series expansion of the phase functions of the incident
and diffracted wave, respectively, about a point Py on the edge

v (r) = ¢! (rg) +8 - (r — 1))
R CIOILE]
Y (r) > ¢ (ry) +8 - (r —rp)
GRS | RS
and similarly for the phase profile x™ imposed by the RIS
X" () = )" () + V" (x0) - (1 = 1)

1
+ z(r’ —rp) - {VVx"(r))[r = x5]}. (56)

(54)
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As we assume that the edge is rectilinear, we have
r—ry=ds € (57)

and then, by imposing the phase matching relation

PAE) =¥ () — - (F)

ko (58)

e by substituting (54)—(57) into (58), we get

VXm (1.6) o ds
ko

n %[e Q (r;))e}zsz - L v rp)elas’
B 0

-eds —

¥ (rp) + 5§

= i) +8 e ds+ %[e Q (rg)é}dﬁ. (59)

Finally, by equating separately the zero-order, first-order and
second-order terms, we obtain

1) The phase matching in ry,

v (xg) = v (xf) (60)
2) The generalized law of diffraction
i VY™ . vx" .
§d-é:cosﬂ: § X -é=cosp — X6
ko ko
(61)
3) The matching of the wave curvatures
, 1
é-Q(rp)e=¢-Q(ry)é — & VVx"(r)e. (62)
B B 0

In (62), we observe that € - Qi (ry)é gives the ray curva-

ture of the incident wave on the edge-fixed incidence plane
(i.e., 1/p!), projected along the edge, i.e., multiplied by sin B/,
as the component of the edge direction along the ray gives no
contribution, in accordance with (6). Therefore

. 1
é-Q'(ry)ée = —sin’p’ (63)
e
and a similar relation holds for the diffracted wave
. . 1
é-Q(ry)e = —a,sm2 (64)
A o

Finally, recognizing that € - VV x” (r;)€ is the second-order
derivative of x” along the edge direction, i.e.,

82Xm

Be2 (65)

& VVy"(r))é =

and by substituting (63)-(65) into (62) we immediately
get (26)

1 sin’g’ 1 3%y
pl sin’B  kosin’f de?

1
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