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I. CLASSID CLASSIFIER

In Sec. 3 (Multi-Architecture Setting) of the main paper

we introduce the need to extend NetSpace architecture to the

Multi-Architecture setting. In this setting, in fact, we ask our

framework to extract the ClassId of the predicted instances

from the embeddings. To achieve this goal, we extend the

architecture of our framework with a softmax classifier, which

takes in input the embeddings generated by NetSpace encoder

and is trained to predict the correct ClassId with Lclass. The

classifier is a lightweight neural network, composed of one

convolutional layer and one fully connected layer, interleaved

by the LeakyReLU activation function. The outputs of the

classifier are transformed into probabilities by the softmax

function. Fig. 1 presents an overview of the version of NetSpace

used in the Multi-Architecture case, including the ClassId

classifier.

II. PARAMETERS REPRESENTATION (PREP)

A PRep is a 2D tensor where we store all the parameters of

an instance of a neural network by means of a simple algorithm

exemplified in Fig. 2.

We designed our framework fixing PReps to be rectangular

matrices with high width/height ratio. Additionally, to favor

easy implementation, the height and the width of a PRep are

fixed to be multiple of 4 and 8, respectively. Considering an

architecture with P parameters and having fixed the width

of the PRep to a number W (divisible by 8), the minimum

necessary height of the PRep can be computed as ⌈ P
W
⌉, adding

a padding of 4− (⌈ P
W
⌉ mod 4) rows, if needed, to fulfill the

divisibility by 4.

Given an instance of a neural network and a chosen

PRep size, the algorithm to produce the instance PRep is

straightforward: parameters from all the layers of the instance

are copied in the matrix in sequence one row after the other

and final zero-padding is added as needed to match the required

size.

III. NETWORK ARCHITECTURES

Image Classification. Fig. 3 and 4 present the architecture

of the neural networks used in our experiments dealing with

image classification, i.e. LeNetLike [6], VanillaCNN and

ResNet8/32/56 [2]. Each convolutional layer is presented in the

form CONV (in I , out O, k K, s S, p P ), where I,O,K, S and

P represent input channels, number of filters, kernel size, stride

and padding, respectively. Fully Connected layers, instead, are

reported in the form FC (in I , out O), where I and O stand

for input and output units, respectively . Average pooling is

shown as Average Pooling (k K, s S), where K is kernel size

and S is stride. Finally, CONV 1×1 represents a convolutional

layer with kernel size 1 used to adapt feature maps in residual

connections.

3D SDF Regression. As far as 3D SDF regression is

concerned, we use simple Multilayer Perceptrons (MLPs)

composed of a single hidden layer with 256 nodes. Following

[8], we use a periodic activation function between the input

layer and the hidden layer and between the hidden layer and

the output layer. No activation function is applied instead on

the final outputs.

IV. IMAGE CLASSIFICATION: EXPERIMENT DETAILS

Images Datasets. To test our general framework in image

classification, we make use of the CIFAR-10 [4] and Tiny-

ImageNet [5] datasets. CIFAR-10 is composed of 60K 32× 32
colour images, 50K for training and 10K for test, categorized

in 10 classes. For our experiments we obtain a validation

set by splitting the training set in 40K images for training

and 10K for validation, while we keep unchanged the test set.

Tiny-ImageNet consists of 100K colour images with resolution

64 × 64, categorized in 200 different classes. We split the

training set in 80K images for training and 20K images for

validation and use the 10K images of the provided validation

set for testing. With both datasets, we follow a standard data

augmentation regime [9] and use a batch size of 128.

Nets Datasets. In the Single-Architecture setting, we train

the instances in input to NetSpace with the Adam optimizer

[3] and constant learning rate set to 0.0001 for a number of

epochs that vary from 1 to 600 epochs, obtaining instances

with weights and performances varying smoothly across the

training iterations. Then we use 100 instances for training, 16

for validation and 16 for test. In the Multi-Architecture setting,

we aim at embedding only instances with high performances.

Accordingly, we found it more effective to train models with

the SGD optimizer for 300 epochs and setting momentum

and weight decay to 0.9 and 5e-4, respectively. We set the

initial learning rate to 0.05 and decay it by 0.1 at epochs

150, 180 and 210. As discussed in the main paper in Sec. 4,

for the Multi-Architecture setting we define a training dataset

with 60 LeNetLike instances, 50 VanillaCNN instances, 60
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Fig. 1: Overview of NetSpace architecture used in the Multi-Architecture experiments.
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Fig. 2: Algorithm to compute the PRep of a given instance. We consider here a toy architecture made out of one convolutional

layer and one fully connected layer and we fix the PRep width to 32. White cells represent padding with constant value 0.
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Fig. 3: Architectures used in our experiments dealing with image classification. Top left: LeNetLike, bottom left: VanillaCNN,

right: ResNet8.

ResNet8 instances and 100 ResNet32 instances, while for

the experiment "Sampling of Unseen Architectures" we use

a training set composed of 40 LeNetLike instances and 80

ResNet32 instances. In both Multi-Architecture settings, the

validation and test sets are composed of 16 instances of the

architectures available during training. In Tab. I we report the

accuracy achieved by the trained models on the CIFAR-10

and the Tiny-ImageNet test sets, alongside with the number of

parameters of each architecture.

Framework Training. To train NetSpace in the Single-

Architecture and in the Multi-Architecture settings, we use the

Adam optimizer and a learning rate value of 0.0001, we train

for around 1K epochs, and then we use the model with the

highest performance on the validation set. The temperature term

used in Lkd and in Lγ is set to 4, while the size of the meta-

batch of instances is set to 8 and to 2 in the Single-Architecture

and in the Multi-Architecture settings, respectively. The Latent

Space Optimization experiments are conducted by training

NetSpace with the Adam optimizer and constant learning rate

0.0001, stopping the training when the accuracy achieved by the

optimized network doesn’t show any additional improvement.

Computational Time and Resources. For our experiments

we used several Nvidia RTX 3090 GPUs. Training the networks

to populate the datasets requires approximately 600 GPU hours,

while training NetSpace with Tiny-ImageNet requires around

84 GPU hours in the Multi-Architecture setting and around

48 GPU hours in the Single-Architecture setting. Training

over CIFAR-10, instead, requires less time, with less then

48 and 36 GPU hours respectively in the Multi-Architecture

and in the Single-Architecture settings. Finally, the Latent

Space Optimization experiments require few GPU hours, but

it’s possible to observe good improvements over the initial

performance already after few minutes of training.

V. 3D SDF REGRESSION: EXPERIMENT DETAILS

3D Shape Dataset. To test NetSpace with networks dealing

with 3D SDF regression, we use the ShapeNet dataset [1]. In

particular, we use ShapeNetCore, a subset of the full ShapeNet
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Fig. 4: Architectures used in our experiments dealing with image classification. Left: ResNet32, right: ResNet56.



TABLE I: Models used in our experiments. We show classifi-

cation accuracies on the CIFAR-10 (top) and Tiny-ImageNet

(bottom) test sets alongside the number of parameters for

each architecture. For the Single-Architecture setting (Adam

optimizer), we report the accuracy achieved by the best

performing network between the trained ones, while for the

Multi-Architecture setting (SGD optimizer), we report the

average accuracy of the networks that compose the training

set.

CIFAR-10

Net ClassId Acc. (Adam) Acc. (SGD) # Params

LeNetLike 0 - 70.87 % 62,006
VanillaCNN 1 - 79.77 % 68,818

ResNet8 2 82.79 % 87.13 % 78,042
ResNet32 3 - 92.70 % 466,906
ResNet56 - - 92.85 % 855,770

Tiny-ImageNet

Net ClassId Acc. (Adam) Acc. (SGD) # Params

LeNetLike 0 - 22.13 % 79,612
VanillaCNN 1 - 31.32 % 112,856

ResNet8 2 40.51 % 44.38 % 128,792
ResNet32 3 - 54.81 % 517,656
ResNet56 - - 56.93 % 906,520

dataset which covers 55 common object categories with about

51,300 unique 3D models. We conduct our experiments on a

small subset of ShapeNetCore, consisting of 1000 3D objects

from the chair category.

MLP Dataset. The MLP dataset used in our experiments

contains 1000 MLP. Each of them is obtained by training a

randomly initialized MLP to fit the SDF of a single chair,

whose ground-truth is computed with the code provided with

[7]. The fitting procedure consists in 10,000 gradient descent

steps: at each step the MLP is queried on 20,000 random 3D

coordinates and is asked to regress the SDF value for each of

them. Then, the parameters of the MLP are optimized by Adam

[3], using as loss function the mean squared error between the

predictions and the ground-truth. The learning rate is initially

set to 0.0001 and multiplied by 0.9 every 1000 steps.

Framework Training. NetSpace is trained on the 1000

MLPs with the protocol described in Sec. 3 of the main paper,

using Adam [3] with learning rate set to 0.0001. During training,

we evaluate the performance of NetSpace by comparing

directly the predictions of the output MLPs with those of

the input MLPs: by querying input and output MLPs with the

same random coordinates, we can compute the percentage of

predictions of the output MLPs that are sufficiently close to the

values predicted by the input MLPs. We monitor this metric

and stop the training when it reaches the value 0.8. The results

reported in the main paper are obtained by training for 4000

epochs.

Computational Time and Resources. We adopted Nvidia

RTX 3090 GPUs also in the experiments involving SDF regres-

sion. The creation of the MLP dataset requires approximatively

20 GPU hours, while training NetSpace requires around 48

GPU hours.

VI. FUSING BATCH NORM AND CONVOLUTIONS

To be able to process architectures including batch norm

layers, e.g. ResNet in our experiments, without changing the

PRep structure, we decided to fuse batch norm layers with

convolutional layers, which is always possible for a trained

model since batch norm becomes a frozen affine transformation

at test time. Therefore, when processing ResNet instances in

our experiments, we first prepared a dataset of instances trained

with batch norm to achieve the best performances and then, by

the process described below, we transformed such instances

into equivalent ones featuring only plain convolutional layers

without batch norm.

If we consider a feature map F with shape C ×H ×W , at

inference time its batch normalized version F̂ is obtained by

computing at each spatial location i, j:




F̂1,i,j

F̂2,i,j

...

F̂C,i,j


 = WBN ·




F1,i,j

F2,i,j

...

FC,i,j


+ bBN (1)

with

WBN =




γ1√
σ̂2

1
+ϵ

γ2√
σ̂2

2
+ϵ

. . .
γC√
σ̂2

C
+ϵ




(2)

bBN =




β1 − γ1
µ̂1√
σ̂2

1
+ϵ

β2 − γ2
µ̂2√
σ̂2

2
+ϵ

...

βC − γC
µ̂C√
σ̂2

C
+ϵ




(3)

where µ̂c, σ̂2
c , βc and γc (c = 1, 2, . . . , C) are respectively

the mean, variance and batch norm parameters computed

during training for the channel c of the feature map. From this

formulation, we can see that batch norm can be implemented

as a 1× 1 convolution and therefore, when batch norm comes

after another convolution as in ResNet, we can fuse these two

convolutions into a single one.

We can express a convolutional layer with kernel size k

processing the Cprev × k × k volume at the spatial location

(i, j) of a feature map Fprev with Cprev channels to produce

the feature map F̃ with C output channels as an affine

transfomation

f̃i,j = Wconv fi,j + bconv, (4)

where Wconv ∈ R
C×(Cprev k2), bconv ∈ R

C and fi,j represents

the area of size Cprev × k× k around cell (i, j) reshaped as a

(Cprev k
2)-dimensional vector.

If the batch norm defined by WBN ∈ R
C×C and bBN ∈ R

C

presented in Eq. 2 and 3 comes after such convolutional layer,
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the normalized values f̂i,j ∈ R
C at cell (i, j) of its output

feature map can be computed as

f̂i,j = WBN f̃i,j + bBN

= WBN (Wconv fi,j + bconv) + bBN .
(5)

Hence, it is possible to replace every convolutional layer

(with weights Wconv and bconv) followed by a batch norm layer

(whose weights can be shaped in WBN and bBN as described

above) with a single convolutional layer whose parameters W

and b can be computed as:

W = WBN Wconv (6)

b = WBN bconv + bBN (7)

VII. VISUALIZING NETWORKS AS IMAGES

As in our framework network instances are represented as

PRep tensors, they can be visualized as images. Thus, in this

section we highlight some properties of NetSpace by visualizing

input and output instances as images. In particular, following

the ResNet8 Single-Architecture (Image classification) and

ResNet32 Multi-Architecture trainings, we take some instances

from the test set and obtain their PReps along with those of the

corresponding instances predicted by NetSpace. As explained in

Sec. II of this document, such representations are 2D matrices,

that we reshaped to obtain images of form factors amenable

to clear visualization. Then, as shown in Fig. 5 and 6, we

represent parameters according to a standard colormap.

From these results we can highlight some interesting

properties about our framework. Firstly, we observe that PReps

predicted by NetSpace are significantly different w.r.t. the input

ones: as we did not use any reconstruction loss in the learning

objective, NetSpace learnt to predict instances which behave

like the input ones but that are different in terms of parameter

values. Secondly, we can see that PReps corresponding to

different instances can indeed be visualized as different images,

which suggests that, perhaps, in future work these images may

be used as proxies for neural networks instances, so that training

or fine-tuning or distillation may be realized by learning to

generate images.

REFERENCES

[1] CHANG, A. X., FUNKHOUSER, T., GUIBAS, L., HANRAHAN, P., HUANG,
Q., LI, Z., SAVARESE, S., SAVVA, M., SONG, S., SU, H., ET AL.
Shapenet: An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012 (2015).
[2] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition (2016), pp. 770–778.
[3] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization.

ICLR (2015).
[4] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of

features from tiny images. Tech Report (2009).
[5] LE, Y., AND YANG, X. Tiny imagenet visual recognition challenge. CS

231N 7 (2015), 7.
[6] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based

learning applied to document recognition. Proceedings of the IEEE 86,
11 (1998), 2278–2324.

[7] PARK, J. J., FLORENCE, P., STRAUB, J., NEWCOMBE, R., AND LOVE-
GROVE, S. Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (2019), pp. 165–174.

[8] SITZMANN, V., MARTEL, J., BERGMAN, A., LINDELL, D., AND WET-
ZSTEIN, G. Implicit neural representations with periodic activation
functions. Advances in Neural Information Processing Systems 33 (2020).

[9] TIAN, Y., KRISHNAN, D., AND ISOLA, P. Contrastive representation
distillation. arXiv preprint arXiv:1910.10699 (2019).


	ClassId Classifier
	Parameters Representation (PRep)
	Network architectures
	Image Classification: Experiment Details
	3D SDF Regression: Experiment Details
	Fusing batch norm and convolutions
	Visualizing Networks as Images
	References

