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Abstract

Dynamic airborne pressure fields may become a concern for the excitation of lightweight structures and components in aerospace
and automotive engineering. Full-field optical techniques can nowadays estimate accurate receptance maps to describe the fre-
quency domain relation between excitation forces and displacement maps on lightweight components, where the inertia-related
distortions of traditional transducers are not allowed. The usage of the receptances in the Rayleigh integral approximation of sound
radiation from a vibrating surface is here followed in early attempts of inverse vibro-acoustics, with the aim to identify, once the
airborne pressure field is known in its spectrum, the broad frequency band force that is transmitted to the excitation points used
in the direct FRF problem. Details and considerations on the inverse formulation of the problem, together with examples coming
from a real thin plate tested, are provided in this work.
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1. Introduction

The distributed dynamic loading, coming from airborne pressure fields, may excite excessively the modal base or
may shorten the life of the actual realisation. Many times the sound radiation simulations from structural vibrations in
NVH studies are run with linear structural FE models, potentially simplified on the treatment of boundary conditions,
frictions, damping, mistuning from actually produced parts and non-linearities. Instead, working with full-field optical
receptances, coming from broad frequency band real testing (see Van der Auweraer et al. (2001); Zanarini (2005b,a,
2007, 2014a,b, 2015b,a,d, 2018, 2019a,b, 2020, 2022b) for enhanced structural dynamics assessments and model
updating; see instead Zanarini (2008a,b, 2015c, 2022f,e,c,a, 2023c) for enhancements of fatigue spectral methods
and failure risk grading), may represent a viable path in order to have the best achievable representation of the real
behaviour of manufactured and mounted components around their working load levels, also with modally dense
structural dynamics and complex patterns in the dynamic signature of the excitations.
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a b c

Fig. 1. The lab in the TEFFMA project (see Zanarini (2014a,b, 2015b,a,c,d, 2018, 2019a,b, 2022b)): aerial view in a, restrained plate sample in b,
2 shakers on the back of the plate in c.

The experiment-based optical full-field receptances proved to work (see Zanarini (2022d, 2023a,b)) also in the
Rayleigh integral approximation of the sound propagated in the free-field acoustic domain by the characterised surface,
for the numerical approximation of the spectral relation among the sound radiation field, the structural dynamics and
excitation forces. The same background (see also Wind et al. (2006)), reformulated in Section 2 with notes for the
inverse vibro-acoustics, is here followed in early attempts of inverse airborne vibro-acoustics by means of the full-
field experiment-based receptances obtained in the TEFFMA project, with the aim to identify, once the airborne
pressure field is known in its spectrum, the broad frequency band force that is transmitted to the excitation points used
in the direct FRF problem. This identification may permit the airborne structural dynamics’ characterisation of the
components under test for further dynamic displacement and strain/stress distribution studies.

A recall of the experiment-based FRF modelling is sketched in Section 3, with a brief description of the testing
set-up of Fig.1. The specimen under test was the simple thin rectangular plate of the TEFFMA project, designed as
a lightweight structure to retain a complex structural dynamics within the operative ranges of the used measurement
technologies, with its real constraints and damping characteristics.

In Section 4 examples are given in the space and frequency domains, after notes on the meshing of the acoustic
domain, with special attention on the multi-modal superposition, also outside the eigenfrequencies, and on the con-
tribution of the experiment-based full-field receptance maps to the accuracy of the radiated acoustic pressure FRFs
& fields, and their inversions to identify the force on a structural location induced by the modelled airborne pressure
fields, before drawing the reader’s attention to Section 5 for the final conclusions.

2. Sound pressure & inverse vibro-acoustic formulation

In the case of propagating waves as in Mas and Sas (2004), according to Kirkup (1994); Desmet (2004); Wind
et al. (2006); Kirkup and Thompson (2007); Kirkup (2019), in the a− th point of global coordinates aa of the acoustic
domain A, or air, the sound pressure p(aa, ω) can be defined from the Helmholtz equation as:

p(aa, ω) = 2iωρ0

∫
S

vn(qq, ω)G(raq, ω)dS ,G(raq, ω) =
e−ikraq

4πraq
=

e−iωraq/c0

4πraq
, (1)

where i is the imaginary unit, ω is the angular frequency (ω = 2πh, with h being the time frequency in Hertz),
ρ0 is the medium (air) density, vn(qq, ω) is the normal (out-of-plane) velocity of the infinitesimal vibrating surface
dS located in the global coordinate qq, q representing the whole vector of coordinates of the vibrating surface S ,
k = ω/c0 = 2π/λ is the wavenumber in the Helmholtz equation (c0 is the speed of sound at rest in the medium, λ is
the acoustic wavelength), raq = ‖raq‖ is the norm of the distance raq = aa − qq between the points in the two domains,
and G(raq, ω) is the free space Green’s function as described in Eq.1.

The normal velocities in the frequency domain are linked to the dynamic out-of-plane displacements over the static
configuration q, by means of the relation vn(q, ω) = −iωdn(q, ω), which are expressions, by dn(q, ω) = Hdn q f (ω) ·
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F f (ω), of the receptance FRFs Hdn q f (ω) of size Nq × Nf - being Nq the number of the outputs and Nf of the inputs -
and of the excitation signatures F f (ω). Eq.1 can be therefore rewritten in terms of a sum of discrete contributions, by
means of a discretisation of the vibrating surface domain S ≈ ∑q ∆S q that scatters the sound pressure:

p(aa, ω) ≈ −2ω2ρ0

Nq∑
q

Hdnq f (ω)F f (ω)Gaq(raq, ω)∆S q ∈ C, (2)

with Hdn q f (ω), F f (ω) and Gaq(raq, ω) as complex-valued discrete quantities, raq = ‖raq‖ = ‖aa − qq‖.
Being Gaq(raq, ω) and ∆S q function of the locations of the Na discrete points in the acoustic domain and of the Nq

points on the structure, they can be grouped in a complex-valued collocation matrix Taq(ω), sized Na ×Nq, of element
Taq(ω) = −2ω2ρ0Gaq(raq, ω)∆S q, to transform Eq.2 into:

p(aa, ω) ≈ Taq(ω)Hdn q f (ω)F f (ω) ∈ C. (3)

If, similarly to the acoustic transfer vectors in Gérard et al. (2002); Citarella et al. (2007), an acoustic transfer matrix
Va f (ω), sized Na × Nf , is defined as:

Va f (ω) = Taq(ω) · Hdn q f (ω) ∈ C, (4)

Eq.3 can be easily rewritten as:

p(aa, ω) ≈ Va f (ω)F f (ω) ∈ C, (5)

useful in the cases where the structural response and acoustic domains are kept unchanged, while varying only the
excitation signature to map the responses on the acoustic pressure field.

2.1. Notes: indirect excitation force retrieval from sound pressure fields

By reversing Eq.5, with the use of the pseudo-inverse of the acoustic transfer matrix Va f (ω) of Eq.4, the forces
induced on the structure at the excitation/shaker head by a known complex-valued pressure field can be retrieved:

F̂ f (ω) ≈ V+f a(ω)p(a, ω) ∈ C. (6)

with the pseudo-inverse of the acoustic transfer matrix Va f (ω), sized Nf × Na and callable V+f a(ω), precisely as:

V+f a(ω) = [VH
f a(ω)Va f (ω)]−1VH

f a(ω) ∈ C. (7)

The matrix VH
f a(ω)Va f (ω), to be inverted at each angular frequency ω, is a complex-valued square matrix of size

Nf × Nf , but this time Nf is very small or unity, simplifying the inversion.
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3. Full Field FRFs: direct experimental modelling

3.1. Brief recall of a direct characterisation

The formulation of receptance matrix Hd(ω), taken from Ewins (2000); Heylen et al. (1998) as spectral relation
between displacements and forces, will be used for the full-field FRF estimation, describing the dynamic behaviour of
a testing system, with potentially multi-input excitation, here 2 distinct shakers, and many-output responses, here also
several thousands, covering the whole sensed surface, as can be formulated in the following complex-valued equation:

Hdq f (ω) =

∑N
m=1 S m

XqF f
(ω)

∑N
m=1 S m

F f F f
(ω)
∈ C (8)

where Xq is the output displacement at q-th dof induced by the input force F f at f -th dof, while S m
XqF f

(ω) is the m-th
cross power spectral density between input and output, S m

F f F f
(ω) is the m-th auto power spectral density of the input

and ω is the angular frequency, evaluated in N repetitions.

3.2. Brief summary of the technological equipment

To the interested reader, the most detailed notes on the test campaign appeared in Zanarini (2019a), with further
suggestions in Zanarini (2019b, 2020, 2022b), but here is a brief summary of what was available at TU-Wien as in
Fig.1: a dedicated seismic floor room; a mechanical & electronic workshop with technicians; traditional tools for
vibration & modal analysis; but, in particular, there were SLDV, Hi-Speed DIC and ESPI measurement instruments.

Accurate studies were needed to understand each technological limit and if a common test for concurrent usage
might have been really possible. All this brought to a unique set-up for the comparison of the 3 optical technologies
in full-field FRF estimations; great attention was paid on the design of experiments for further research in modal
analysis. After an accurate tuning, a feasible performance overlapping was sought directly out of each instrument,
reminding that the same structural dynamics can be sensed in complementary domains, which means frequency for
SLDV & ESPI, time for DIC. Topology transforms were added to have the datasets in the same physical references.

4. Numerical mapping of sound pressure from full-field receptances & first steps of inverse vibro-acoustics

The relevance of the defined acoustic transfer matrix Va f (ω) should be clear, also in sight of its pseudo-inverse
V+f a(ω) evaluation in Eq.7, before the adoption of a specific excitation signature, to simulate the acoustic pressure in
Eq.5 and the identified force in Eq.6. Examples with the full-field receptances are here given.

4.1. Meshing the acoustic domain

For the aims of this paper, a squared mesh was generated, of size 0.5m × 0.5m, with 51 × 51 dofs (Na = 2601,
10mm as acoustic grid spacing), centred on the vibrating plate and positioned 0.1m above it. The air parameters were
fixed in c0 = 300.0m/s and ρ0 = 1.204kg/m3.

4.2. Evaluation of the acoustic transfer matrix

The core of this paper is to show the possibility to evaluate the acoustic transfer matrix Vaq(ω) directly from the
experiment-based receptances, as proposed in Section 2, without the need of any FE structural model, but with great
detail and field quality. It is important to underline how the acoustic transfer matrix obtained from the experiment-
based receptances preserves, with its complex-valued nature, the real life conditions of the test, without any simplifi-
cation in the damping, nor in the materials’ properties, nor in the boundary conditions, nor in the modal base truncation
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Acoustic Pressure WHITE NOISE excit. at dof [474]

Shakers: active #1[2611] mute #2[931]
(c) ALESSANDRO ZANARINI Spin-off activities from the researches in 

Marie Curie FP7-PEOPLE-IEF-2011 PIEF-GA-2011-298543

Project TEFFMA - Towards Experimental Full Field Modal Analysis
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Fig. 2. Example of acoustic pressure graph in the frequency domain evaluated in acoustic dof 474 with white noise excitation from shaker 1.

or identification. In Fig.2 an example of the acoustic transfer matrix Vaq(ω) is reported as a frequency domain relation
from shaker 1 and acoustic dof 474 here selected in the squared acoustic mesh.

In the proofs organised in Fig.3, the white noise amplitude spectrum F(ω) was used in the shape of F(ω) = F0/ω
α,

α = 0, F0 = 0.01N, with excitation from shaker 1, therefore just scaling the acoustic transfer matrix. The results of the
latter are shown over the entire acoustic mesh, retaining again the complex-valued relations and phase delays, coming
from the underneath complex-valued receptance matrix Hdn q f (ω), but blended in the complex-valued summation in
Vaq(ω). It appears also manifest how the distance on the acoustic mesh plays a relevant role in blending, or averaging,
the contributions of specific areas on the vibrating plate, revealing in particular the proximity to specific nodal lines of
the structural ODSs. In Fig.3a the acoustic pressure field is shown to exhibit a clear link to the receptance shape (in
front), as the latter is quite simple at 127 Hz. As the frequency rises, more shape complexity pertains the receptance
maps, as can be clearly seen in Fig.3b at 820 Hz, but the resulting complex-valued blending in the acoustic pressure
field, taking account of all the contributions across the radiating surface, properly phased, now has a different shape,
coming from the complex-valued summation of Nq = 2907 contributing Green’s functions in Eq.2.

4.3. Evaluation of the inverse airborne vibro-acoustic FRFs

Following the formulation of Eq.7, the pseudo-inverse vibro-acoustic FRFs V+f a(ω) (or pseudo-inverse acoustic
transfer matrix) of force over airborne sound pressure can be achieved, as shown in the single inverse vibro-acoustic
FRF of Fig.4, where the airborne pressure field is considered acting on the single acoustic dof 474 and the force in
the structural dof 2611 of the shaker 1. It can be clearly appreciated how the whole complex-valued information is
retained in the pseudo-inversion, up to the numerical precision of the routines.

Shakers:active #1[2611] mute #2[931]
Frequency step [137] = 126.562 Hz

Acoustic Pressure WHITE NOISE excit.

Complex amplitude
[projection angle 54 deg]

Dof [474]
DIC_r

(c) ALESSANDRO ZANARINI Spin-off activities from the researches in 
Marie Curie FP7-PEOPLE-IEF-2011 PIEF-GA-2011-298543
Project TEFFMA - Towards Experimental Full Field Modal Analysis

a

Shakers:active #1[2611] mute #2[931]
Frequency step [1025] = 820.312 Hz

Acoustic Pressure WHITE NOISE excit.

Complex amplitude
[projection angle 54 deg]

Dof [474]
DIC_r

(c) ALESSANDRO ZANARINI Spin-off activities from the researches in 
Marie Curie FP7-PEOPLE-IEF-2011 PIEF-GA-2011-298543
Project TEFFMA - Towards Experimental Full Field Modal Analysis

b

Fig. 3. Examples of acoustic pressure mesh evaluated at the specific frequencies of 127 & 820 Hz, white noise excitation from shaker 1.
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Inverse Vibro Acoustic FRF in WHITE NOISE excit. at dof [474]
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Fig. 4. Example of inverse vibro-acoustic FRF graph in the frequency domain evaluated as force in shaker 1 over the airborne acoustic pressure
from dof 474.

4.4. Identification of the force induced by the airborne acoustic field

For the identification of the force F̂1(ω) in the structural dof 2611 of the shaker 1, by means of Eq.6, the whole
airborne pressure field acting on all the dofs of the acoustic mesh must be used, together with all the pseudo-inverse
vibro-acoustic FRFs in Section 4.3. The white noise excitation on shaker 1 was adopted to simulate the pressure field
without any scaling and phasing biases in the whole frequency range of interest. Furthermore, the acoustic pressure
coming from the white noise excitation permits to boldly highlight how the difference between the original excitation
and the identified force is in the range of machine precision of double floating precision, or machine epsilon of
2−52 ≈ 2.22e−16. In Fig.5 the original white noise excitation F(ω) = F0 (in black), with even amplitude and no
phase lag on the whole frequency domain, and the identified force F̂1(ω) (in red) are show together. To be noted how
the amplitude extremes are labelled in the same manner, as truncated only at the 3rd decimal, while 16+1 decimals
would be needed to show properly the difference in its range [1.402e−16, 2.207e−16]; instead the amplitude graphs
are magnified to appreciate the differences in the narrow range of the errors, while phase is completely superimposed.

5. Conclusions

This paper has highlighted the chance to retrieve structural excitation informations from airborne acoustic fields,
opening inquiry’s possibilities in NVH and coupled fluid-structural dynamics, coming from experiment-based optical
full-field tools for an advancement of experimental benchmarks of design procedures of complex structures. The
unprecedented mapping ability, in both spatial and frequency domains, opens new cross vibro-acoustic prediction

Identified Force from Acou.Press. WHITE NOISE excit.

Shakers: active #1[2611] mute #2[931]
(c) ALESSANDRO ZANARINI Spin-off activities from the researches in 

Marie Curie FP7-PEOPLE-IEF-2011 PIEF-GA-2011-298543

Project TEFFMA - Towards Experimental Full Field Modal Analysis
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[N]
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Step[137]=126.562 [Hz]
AmpDIC_r=1.000e-02

-3.142

3.142

Pha
[rad]

Pha WHITE NOISE excit. at step[137]=0.000e+00 [rad]
PhaDIC_r=-4.060e-16

Fig. 5. Example of identified force graph in the frequency domain evaluated as force in shaker 1 from the whole airborne acoustic pressure field.
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scenarios, as the real-life structural dynamics of the radiating surface is entirely retained in the receptances with great
accuracy, but without assumptions nor errors in any modal identification nor in any virtual modelling.
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