
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

tauJUpdate: A Temporal Update Language for JSON Data / Brahmia, Zouhaier; Grandi, Fabio; Brahmia,
Safa; Bouaziz, Rafik. - STAMPA. - 13761:(2023), pp. 250-263. (Intervento presentato al convegno 11th
International Conference on Model and Data Engineering (MEDI 2022) tenutosi a Cairo, Egitto nel 21–24
Novembre 2022) [10.1007/978-3-031-21595-7_18].

Published Version:

tauJUpdate: A Temporal Update Language for JSON Data

Published:
DOI: http://doi.org/10.1007/978-3-031-21595-7_18

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/910321 since: 2024-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-21595-7_18
https://hdl.handle.net/11585/910321

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Brahmia, Z., Grandi, F., Brahmia, S., Bouaziz, R. (2023). �JUpdate: A Temporal Update Language

for JSON Data. In: Fournier-Viger, P., Hassan, A., Bellatreche, L. (eds) Model and Data Engineering.

MEDI 2022. Lecture Notes in Computer Science, vol 13761. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-21595-

7_18

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-21595-7_18
https://doi.org/10.1007/978-3-031-21595-7_18

τJUpdate:
A Temporal Update Language for JSON Data

Zouhaier Brahmia1[0000−0003−0577−1763], Fabio Grandi2[0000−0002−5780−8794],
Safa Brahmia3[0000−0001−9304−4819], and Ra�k Bouaziz4[0000−0001−5398−462X]

1 University of Sfax, Tunisia, zouhaier.brahmia@fsegs.rnu.tn
2 University of Bologna, Italy, fabio.grandi@unibo.it
3 University of Sfax, Tunisia, safa.brahmia@gmail.com
4 University of Sfax, Tunisia, rafik.bouaziz@usf.tn

Abstract. Time-varying JSON data are being used and exchanged in a
lot of today's application frameworks like IoT platforms, Web services,
cloud computing, online social networks, and mobile systems. However,
in the state-of-the-art of JSON data management, there is neither a
consensual nor a standard language for updating (i.e., inserting, modi-
fying, and deleting) temporal JSON data, like the TSQL2 or SQL:2016
language for temporal relational data. Moreover, existing JSON-based
NoSQL DBMSs (e.g., MongoDB, Couchbase, CouchDB, OrientDB, and
Riak) and both commercial DBMSs (e.g., IBM DB2 12, Oracle 19c, and
MS SQL Server 2019) and open-source ones (e.g., PostgreSQL 15, and
MySQL 8.0) do not provide any support for maintaining temporal JSON
data. Also in our previously proposed temporal JSON framework, called
τJSchema, there was no feature for temporal JSON instance update. For
these reasons, we propose in this paper a temporal update language,
named τJUpdate (Temporal JUpdate), for JSON data in the τJSchema
environment. We de�ne it as a temporal extension of our previously in-
troduced non-temporal JSON update language, named JUpdate (JSON
Update). Both the syntax and the semantics of the data modi�cation
operations of JUpdate have been extended to support temporal aspects.
τJUpdate allows (i) to specify temporal JSON updates in a user-friendly
manner, and (ii) to e�ciently execute them.

Keywords: JSON · Temporal JSON · JUpdate · Temporal JSON data
manipulation · JSON update operation · τJSchema· Conventional JSON
instance · Temporal JSON instance

1 Introduction

The lightweight format JavaScript Object Notation (JSON) [15], which is en-
dorsed by the Internet Engineering Task Force (IETF), is currently being used
by a lot of networked applications to store and exchange data. Moreover, many
of these applications running in IoT, cloud-based and mobile environments, like
Web services, online social networks, e-health, smart-city and smart-grid appli-
cations, require bookkeeping of the full history of JSON data updates so that

2 Z. Brahmia et al.

they can handle temporal JSON data, audit and recover past JSON document
versions, track JSON document changes over time, and answer temporal queries.

However, in the state-of-the-art of JSON data management [21, 17, 20, 1, 27,
22, 6], there is neither a consensual nor a standard language for updating (i.e.,
inserting, modifying, and deleting) temporal JSON data, like the TSQL2 (Tem-
poral SQL2) [28] or SQL:2016 [24] language for temporal relational data. It is
worth mentioning here that the extension of the SQL language, named SQL/J-
SON [23, 29, 18] and standardized by ANSI to empower SQL to manage queries
and updates on JSON data, has no built-in support for updating time-varying
JSON data. In fact, even for non-temporal data, SQL/JSON is limited since it
does not support the update of a portion of a JSON document through the SQL
UPDATE statement [26].

Moreover, existing JSON-based NoSQL database management systems (DBMSs)
(e.g., MongoDB, Couchbase, CouchDB, DocumentDB, MarkLogic, OrientDB,
RethinkDB, and Riak) and both commercial DBMSs (e.g., IBM DB2 12, Oracle
19c, and Microsoft SQL Server 2019) and open-source ones (e.g., PostgreSQL
15, and MySQL 8.0) do not provide any support for maintaining temporal JSON
data [3, 11, 13].

In this context, with the aim of having an infrastructure that allows e�ciently
creating and validating temporal JSON instance documents and inspired by
the τXSchema design principles [9], we have proposed in [2] a comprehensive
framework, named τJSchema (Temporal JSON Schema). In this environment,
temporal JSON data are produced from conventional (i.e., non temporal) JSON
data, by applying a set of temporal logical and physical characteristics that have
been already speci�ed by the designer on the conventional JSON schema, that
is a JSON Schema [14] �le that de�nes the structure of the conventional JSON
data:

� the temporal logical characteristics [2] allow designers to specify which com-
ponents (e.g., objects, object members, arrays, . . .) of the conventional JSON
schema can vary over valid and/or transaction time;

� the temporal physical characteristics [2] allow designers to specify where
timestamps should be placed and how the temporal aspects should be rep-
resented.

A temporal JSON schema is generated from a conventional JSON schema and
the set of temporal logical and physical characteristics that have been speci�ed
for this non-temporal JSON schema. Thus, by using temporal JSON schemas
and temporal characteristics and by making a separation between conventional
JSON data and temporal JSON data, from one hand, and between conventional
JSON schema and temporal JSON schema, from the other hand, τJSchema
o�ers the following advantages: (i) it extends the traditional JSON world to
temporal aspects in a systematic way; (ii) it guarantees logical and physical data
independence [8] for temporal JSON data (i.e., a temporal JSON document,
having some physical representation, could be automatically transformed into
a di�erent temporal document with a di�erent physical representation while

τJUpdate: A Temporal Update Language for JSON Data 3

conserving the semantics of the temporal JSON data, that is keeping the same
temporal logical characteristics); (iii) it does not require changes to existing
JSON instance/schema �les nor revisions of the JSON technologies (e.g., the
IETF speci�cation of the JSON format [15], the IETF speci�cation of the JSON
Schema language [14], JSON-based NoSQL DBMSs, JSON editors/validators,
JSON Schema editors/generators/validators, etc.). However, there is no feature
for temporal JSON instance update in τJSchema.

With the aim of overcoming the lack of an IETF standard or recommenda-
tion for updating JSON data, we have recently proposed a powerful SQL-like
language, named JUpdate (JSON Update) [6], to allow users to perform updates
on (non-temporal) JSON data. It provides fourteen user-friendly high-level op-
erations (HLOs) to ful�ll the di�erent JSON update requirements of users and
applications; not only simple/atomic values but also full portions (or chunks) of
JSON documents can be manipulated (i.e., inserted, modi�ed, deleted, copied
or moved) The semantics of JUpdate is based on a minimal and complete set
of six primitives (i.e., low-level operations, which can be easily implemented)
for updating JSON documents. The data model behind JUpdate is the IETF
standard JSON data model [15]. Thus, from one hand, it is independent from
any underlying DBMSs, which simpli�es its use and implementation, and, from
the other hand, it can be used to maintain generic JSON documents.

Taking into account the requirements mentioned above, we considered very
interesting to �ll the evidenced gap and to propose a temporal JSON update lan-
guage that would help users in the non-trivial task of updating temporal JSON
data. Moreover, based on our previous work, we think that (i) the JUpdate lan-
guage [6] can be a good starting point for deriving such a temporal JSON update
language, and (ii) the τJSchema framework can be used as a suitable environ-
ment for de�ning the syntax and semantics of a user-friendly temporal update
language, mainly due to its support of logical and physical data independence.

For all these reasons, we propose in this paper a temporal update language
for JSON data named τJUpdate (Temporal JUpdate) and de�ne it as a temporal
extension of our JUpdate language, to allow users to update (i.e., insert, modify,
and delete) JSON data in the τJSchema environment. To this purpose, both
the syntax and the semantics of the JUpdate statements have been extended
to support temporal aspects. The τJUpdate design allows users to specify in
a friendly manner and e�ciently execute temporal JSON updates. In order to
motivate τJUpdate and illustrate its use, we will provide a running example.

The rest of the paper is structured as follows. The next section presents
the environment of our work and motivates our proposal. Section 3 proposes
τJUpdate, the temporal JSON instance update language for the τJSchema
framework. Section 4 illustrates the use of some operations of τJUpdate, by
means of a short example. Section 5 provides a summary of the paper and some
remarks about our future work.

4 Z. Brahmia et al.

2 Background and Motivation

In this section, �rst we brie�y describe the τJSchema framework (more details
can be found in [2]), and then we present a motivating example that (i) re-
calls how temporal JSON data are represented under τJSchema, (ii) presents
problems and di�culties of dealing with temporal data management using a
JUpdate-like language, and (iii) introduces our contributions.

2.1 The τJSchema Framework

τJSchema allows a NoSQL database administrator (NSDBA) to create a tem-
poral JSON schema for temporal JSON instances, from a conventional JSON
schema, some temporal logical characteristics, and some temporal physical char-
acteristics. It uses the following two principles: (i) separation between the con-
ventional JSON schema and the temporal JSON schema, and also between the
conventional JSON instances and the temporal JSON instances; (ii) use of tem-
poral logical and physical characteristics to specify temporal logical and physical
aspects, respectively, at schema level.

Since there are many techniques to make a (non-temporal) JSON document
temporal, the logical and physical independence supported by the τJSchema
framework represents a real breakthrough in temporal JSON data management,
as it separates temporal JSON data design (speci�ed via temporal logical char-
acteristics) from implementation details (speci�ed via temporal physical char-
acteristics). Notice that this aspect is emphasized when dealing with updating,
through a JUpdate-like language, temporal JSON documents (in the next sub-
section). In fact, in JSON documents, some JSON structuring conforming to
the conventional JSON schema is devoted to modeling the non-temporal struc-
ture of data, whereas some additional JSON structuring is needed to encode the
temporal aspects of the data modeling, actually based on some timestamped
multi-version representation. Hence, by adopting a τJSchema-based approach,
we want to also separate temporal data update speci�cation from implemen-
tation details. We want to enable users to manipulate (i.e., insert, modify, and
delete) temporal JSON data by reasoning at the level of their conventional JSON
schema, abstracting from the knowledge of additional JSON structuring needed
to encode low-level data versioning and timestamping details. In practice, we
want the users to express their JUpdate updates exactly as if their JSON data
were not temporal. The only thing they have to add to their update high-level
statements, when dealing with valid-time data, is a VALID clause to specify the
�applicability period� of the update in case they want to explicitly manage it. It
should be mentioned that our approach in this paper is similar to that proposed
in our previous work [7], where an �XQuery Update Facility�-like language is
used to support update operations on temporal data that are recorded in XML
format, abstracting from their implementation details.

τJUpdate: A Temporal Update Language for JSON Data 5

2.2 Motivating Example

We assume that a company uses a JSON repository for the storage of the in-
formation about the devices that manufactures and sells, where each device is
described by its name and cost price. For simplicity, let us consider a temporal
granularity of one day for representing the data change events (and, therefore,
for temporal data timestamping). We assume that the initial state of the device
repository, valid from February 1, 2022, can be represented as shown in Fig. 1:
it contains, in a JSON �le named device1.json, data about one device called
CameraABC costing e35.

{ "devices ":[
{ "device ":{

"name ":" CameraABC",
"costPrice ":35 } }] }

Fig. 1. The initial state of the device repository (�le device1.json, on February 01,
2022).

Then, we assume that, e�ective from April 15, 2022, the company starts
producing a new device named CameraXYZ with a cost price of e42 and Cam-
eraABC's cost price is raised by 8%. The new state of the device repository can
be represented in a JSON �le named device2.json as shown in Fig. 2. Changed
parts are presented in red color.

{ "devices ":[
{ "device ":{

"name ":" CameraABC",
"costPrice ":37.8 } },

{ "device":{
"name":"CameraXYZ",
"costPrice":42 } }] }

Fig. 2. A new state of the device repository (�le device2.json, on April 15, 2022).

Consequently, we consider that the device repository is implemented in the
τJSchema framework and that the conventional JSON schema for our JSON
device data has been annotated so that "device" is a time-varying object for
representing the history of devices along valid time. As a result, the entire history
of the device repository can be represented in the temporal JSON document
shown in Fig. 3, composed of two slices corresponding to the repository states
of Fig. 1 and Fig. 2.

{ "temporalJSONDocument ":{
"conventionalJSONDocument ":{
"sliceSequence ":[
{"slice ":{

"location ":" device1.json",
"begin ":"2022 -02 -01" } },

{"slice ":{
"location ":" device2.json",
"begin ":"2022 -04 -15" } }] } } }

Fig. 3. Fig. 3. The temporal JSON document representing the entire history of the
device repository (�le deviceTJD.json, on April 15, 2022).

The temporal JSON document can also be "squashed" to obtain a self-
contained temporal JSON document, conformant to the temporal JSON schema

6 Z. Brahmia et al.

that can be derived from both the conventional JSON schema and the temporal
logical and physical characteristics, representing the whole devices' history, as
shown in Fig. 4. The valid-time timestamps are presented in blue color.

{ "devices ":[
{ "device ":[

{ "name ":" CameraABC",
"costPrice ":35,
"VTbegin":"2022-02-01",
"VTend":"2022-04-14" },

{ "name ":" CameraABC",
"costPrice ":37.8 ,
"VTbegin":"2022-04-15",
"VTend":"Forever" }],

{ "device ":[
{ "name ":" CameraXYZ",

"costPrice ":42,
"VTbegin":"2022-04-15",
"VTend":"Forever" }] }] }

Fig. 4. The squashed JSON document corresponding to the entire history of the device
repository (�le deviceSJD.json, on April 15, 2022).

Notice that the squashed JSON document deviceSJD.json in Fig. 4 also cor-
responds to one of the manifold possible representations of our temporal JSON
[3] data without the τJSchema approach.

After that, let us consider that we have to record in the device repository that
the company has stopped manufacturing the device CameraABC e�ective from
May 25, 2022. At the state-of-the-art of JSON technology, we could use JUpdate
HLOs to directly perform the required updates on the deviceSJD.json �le in
Fig. 4. A skilled developer, expert in both temporal databases and JUpdate,
and aware of the precise structure of the squashed document, will satisfy such
requirements via the following JUpdate statement:

UPDATE deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"

&& @.VTend="Forever"].VTend]
VALUE "2022-05-24" (S1)

In practice, deleting the device CameraABC e�ective from 2022-05-25 means to
close to 2022-05-24 the valid timestamp of its last version, assuming for simplicity
(and without checking) that the one valid at 2022-05-25 is the last CameraABC's
version and, therefore, there are no future versions to delete. Anyway, we think
that this is a complex solution for what it is a simple problem (for example, in
temporal relational databases).

Thus, our �rst contribution is a temporal extension of the JUpdate lan-
guage. JUpdate statements will be equipped with a new VALID clause to specify
the so-called �applicability period� of the update, that is the time period in which
the update has to be in e�ect (e.g., from 2022-05-25 on, in our example). This
solution will allow the developer to formulate the required update as a JUpdate
deletion valid from 2022-05-25 of CameraABC's data, relying on the temporal
semantics of the language for its correct execution, including version and times-
tamp management. Nevertheless, working on the temporal JSON document in
Fig. 4, this will mean to specify the following DeleteValue operation:

τJUpdate: A Temporal Update Language for JSON Data 7

DELETE FROM deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"

&& @.VTend="Forever"]]
VALID from "2022-05-24" (S2)

Although this solution is simpler than solution (S1), it requires from the de-
veloper a detailed knowledge of the speci�c temporal structuring of the JSON
�le including version organization and timestamping. Another consequence is
that such solution template would not be portable to another setting in which
a di�erent temporal structuring of JSON data is adopted.

Moreover, our second contribution is to integrate the temporal JUpdate
extension into the τJSchema framework, in order to enjoy the logical and physical
independence property. In this framework, the required update will be speci�ed
via the following τJUpdate DeleteValue statement:

DELETE FROM deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"]]
VALID from "2022-05-24" (S3)

The update could be applied either to the temporal JSON document (i.e., de-
viceTJD.json) or to its squashed version (i.e., deviceSJD.json); the system using
the temporal logical and physical characteristics can manage both ways correctly.
Notice that, ignoring the VALID clause, the solution (S3) represents exactly the
same way we would specify the deletion of the device CameraABC's data in a
non-temporal environment (e.g., executing it on the device2.json �le in Fig. 2).
In practice, we want to allow the developer to focus on the structuring of data
simply as de�ned in the conventional JSON schema and not on the temporal
JSON schema, leaving the implementation details and their transparent man-
agement to the system (e.g., the mapping to a squashed JSON document, being
aware of the temporal characteristics). This means, for example, that in order
to specify a cost price update, we want τJUpdate users be able to deal with
updates to the �device.costPrice� value instead of dealing with updates to the
�device.costPrice� array of objects, where each object represents a version of a
cost price and has three properties: �VTbegin� (the beginning of the valid-time
timestamp of the version), �VTend� (the end of the valid-time timestamp of the
version), and �value� (the value of the version).

Notice that such a way in which temporal updates of JSON data will be
speci�ed with our τJUpdate language, corresponds exactly to the way updates
of temporal relational data can be speci�ed using a temporal query language like
TSQL2 [28] or SQL:2016 [24], that is using the same update operations that are
used in a non-temporal context augmented with a VALID clause to specify the
applicability period of each update operation.

In sum, the motivation of our approach is twofold: from one hand, (i) leverag-
ing the logical/physical independence supported by the τJSchema framework to
the JUpdate language and, from the other hand, (ii) equipping τJSchema with
a user-friendly update language, which is consistent with its design philosophy.

8 Z. Brahmia et al.

3 The τJUpdate Language

In this section, we propose the τJUpdate language, by showing how the JUp-
date speci�cation [6] has to be extended. More precisely, in Sec. 3.1, we start by
presenting the syntax of τJUpdate high-level operations (HLOs) before de�n-
ing their semantics while considering temporal JSON documents in unsquashed
form.

3.1 Syntax and Semantics of τJUpdate Update HLOs

The management of transaction time does not require any syntactic extension
to the JUpdate language: owing to the transaction time semantics, only current
data can be updated and the �applicability period� of the update is always [Now,
UntilChanged], which is implied and cannot be overridden by users. On the
contrary, the management of valid time is under the user's responsibility. Hence,
syntactic extensions of the JUpdate language are required to allow users to
specify a valid time period representing the �applicability period� of the update.
To this purpose, the JUpdate update HLOs [6] are augmented with a VALID
clause as shown in Fig. 5.

τJUpdateHLO ::= JUpdateHLO "VALID" validTimePeriod
JUpdateHLO ::= ValueChangeHLO | MemberChangeHLO

| ObjectChangeHLO
ValueChangeHLO ::= InsertValue | DeleteValue | UpdateValue

| CopyValue | MoveValue
MemberChangeHLO ::= InsertMember | DeleteMember

| RenameMember | ReplaceMember
| CopyMember | MoveMember

ObjectChangeHLO :: UpdateObject
validTimePeriod ::= "in [" validTimeBegin "," validTimeEnd "]"

| "from" validTimeBegin
| "to" validTimeEnd

validTimeBegin ::= "Beginning" | "Now" | temporalValue
validTimeEnd ::= "Forever" | "Now" | temporalValue

Fig. 5. The syntax of τJUpdate HLOs.

Due to space limitations, we do not consider here other JUpdate HLOs (e.g.,
InsertMember, ReplaceMember, UpdateObjects) as they are used for specifying
complex updates; they will be investigated in a future work. Temporal expres-
sions �from T� and �to T�, while T is a temporal value, are used as syntactic
sugar for the temporal expressions �in [T, Forever]� and �in [Beginning, T]�,
respectively.

As far as the semantics of τJUpdate is concerned, we can de�ne it, for the sake
of simplicity, by considering JSON update operations on the temporal JSON doc-
ument in its unsquashed form. Based on the well-known theory developed in the
temporal database �eld [12, 19], the operational semantics of a τJUpdateHLO,
equal to a JUpdateHLO augmented with the VALID clause, can be de�ned as
follows:

� validTimePeriod is evaluated. The result must be a valid period speci�cation;
otherwise a type error is raised. Let [vts, vte] be the period resulting from
the evaluation.

τJUpdate: A Temporal Update Language for JSON Data 9

� Let jdoc be the temporal JSON document involved in the update; �nd in jdoc
all the temporal slices jdoc_vers having a timestamp VTimestamp which
overlaps [vts, vte].

� For each such slice jdoc_vers:
• let jdoc_vers′ the result of the evaluation of JUpdateHLO on jdoc_vers;
• if VTimestamp ⊂ [vts, vte] then remove the whole slice jdoc_vers from
the temporal JSON document jdoc (and delete the corresponding JSON
�le) else restrict to VTimestamp \ [vts, vte] the timestamp of jdoc_vers
in the temporal JSON document jdoc;

• add jdoc_vers′ to the temporal JSON document jdoc as a new slice with
timestamp VTimestamp ∩ [vts, vte].

� Coalesce the resulting slices in the temporal JSON document.

The last step aims at limiting the unnecessary proliferation of slices, giving
rise to redundant JSON �les in the unsquashed setting. Two slices, jdoc_vers1
and jdoc_vers2 with timestamps VTimestamp1 and VTimestamp2, respectively,
can be coalesced when jdoc_vers1 and jdoc_vers2 are equal and VTimestamp1
meets VTimestamp2 [28]. In this case, coalescing produces one slice jdoc_vers1
with timestamp VTimestamp1 ∪ VTimestamp2.

This de�nition of the τJUpdate HLO semantics, which can be easily ex-
tended to the transaction-time or bitemporal case, is in line with the τJSchema
principles, considering a temporal JSON document as representing a sequence of
conventional JSON documents, and reuses the standard (non-temporal) JUpdate
HLOs.

Even if the temporal JSON document jdoc is physically stored in squashed
form, the above semantics can still be used to evaluate a τJUpdate HLO after
the document has been explicitly unsquashed. The results of the evaluation can
then be squashed back to �nally produce an updated temporal JSON document.
Although correct from a theoretical point of view, such a procedure could be inef-
�cient in practice, in particular when the temporal JSON document is composed
of several slices. To resolve this problem, a di�erent method can be applied for
updating temporal JSON documents that are stored in squashed form. To this
end, the semantics of τJUpdate HLOs can be de�ned in an alternative way, as
shown in the next subsection (the solution is inspired from our previous work
on updates to temporal XML data [7]).

4 Running Example Reprise

In this section, we resume the motivating example introduced in Sec. 2.2 to
illustrate some of the functionalities of τJUpdate.

First of all, starting from the initial state of the device repository containing
only the slice in Fig. 1, the second slice in Fig. 2 can be added via the execution
of the following sequence of τJUpdate HLOs:

INSERT INTO deviceTJD.json
PATH $.devices[last]

10 Z. Brahmia et al.

VALUE { "device":{ "name":"CameraXYZ", "costPrice":42 } }
VALID from "2022-04-15";
UPDATE deviceTJD.json
PATH $.devices[device.name="CameraABC"].costPrice
VALUE $.devices[device.name="CameraABC"].costPrice * 1.08
VALID from "2022-04-15"

The �rst one is an example of InsertValue HLO that inserts CameraXYZ's data,
while the second one is an example of UpdateValue HLO that increases Camer-
aABC's cost price. The result of this HLO sequence corresponds to the temporal
JSON document in Fig. 3 completed by the slices in Fig. 1 and Fig. 2, and which
has been shown in squashed form in Fig. 4.

As an example of DeleteValue HLO, we can consider the τJUpdate HLO
(S3) in Sec. 2.2, deleting CameraABC's data e�ective from 2022-05-25. As an
example of RenameMember HLO, we can consider changing the name of the
"devices" object to "products", also valid from 2022-05-25. Notice that such an
operation could be more properly considered as a conventional JSON schema
change, as it acts on metadata rather than on data and, thus, could be better
e�ected using the high-level JSON schema change operation RenameProperty,
acting on the conventional JSON schema, we previously de�ned in [5], which is
automatically propagated to extant conventional JSON data. However, as part
of τJUpdate, we can also consider it a JSON data update that propagates indeed
to the JSON schema by means of the implicit JSON schema change mechanism
that we have proposed in [4]. The global e�ects in the τJSchema framework,
anyway, are exactly the same. Such updates can be performed via the following
τJUpdate HLOs:

DELETE FROM deviceTJD.json
PATH $.devices[device.name="CameraABC"]
VALID from "2022-05-25";
ALTER DOCUMENT deviceTJD.json
OBJECT $.devices
RENAME MEMEBER devices TO products
VALID from "2022-05-25"

The result of this HLO sequence is the new temporal JSON document shown in
Fig. 6 with the new slice shown in Fig. 7.

{ "temporalJSONDocument ":{
"temporalJSONSchema ":{

"conventionalJSONSchema ":{
"sliceSequence ":[

{"slice ":{
"location ":" deviceCJS1.json",
"begin ":"2022 -02 -01" } },

{"slice ":{
"location ":" deviceCJS2.json",
"begin ":"2022 -05 -25" } }

] } },
"conventionalJSONDocument ":{

"sliceSequence ":[
{"slice ":{

"location ":" device1.json",
"begin ":"2022 -02 -01" } },

{"slice ":{
"location ":" device2.json",
"begin ":"2022 -04 -15" } },

τJUpdate: A Temporal Update Language for JSON Data 11

{"slice ":{
"location ":" device3.json",
"begin ":"2022 -05 -25" } }] }

} }

Fig. 6. The new temporal JSON document representing the whole history of the device
repository (�le deviceTJD.json).

{ "products ":[
{ "device ":{

"name ":" CameraXYZ",
"costPrice ":42 } }] }

Fig. 7. The �nal state of the device repository (�le device3.json).

As a side e�ect of the RenameMember HLO requiring an implicit JSON
schema change, two conventional JSON schema versions are included in the
new temporal JSON document (without entering into the whole details, de-
viceCJS1.json is the conventional JSON schema version having "devices" as its
root object, whereas deviceCJS2.json is the conventional JSON schema ver-
sion having "products" as its root object). As a consequence, squashing of
the temporal JSON document in Fig. 6 produces two squashed JSON docu-
ments: deviceSJD1.json shown in Fig. 8, which is conformant to the �rst con-
ventional JSON schema version deviceCJS1.json, and deviceSJD2.json shown in
Fig. 9, which is conformant to the second conventional JSON schema version
deviceCJS2.json. Changes are evidenced with red color.

{ "devices ":[
{ "device ":[

{ "name ":" CameraABC",
"costPrice ":35,
"VTbegin ":"2022 -02 -01" ,
"VTend ":"2022 -04 -14" },

{ "name ":" CameraABC",
"costPrice ":37.8 ,
"VTbegin ":"2022 -04 -15" ,
"VTend ":"2022-05-24" }] },

{ "device ":[
{ "name ":" CameraXYZ",

"costPrice ":42,
"VTbegin ":"2022 -04 -15" ,
"VTend ":"2022-05-24" }] }] }

Fig. 8. The squashed JSON document (�le deviceSJD1.json) corresponding to the �rst
conventional JSON schema version deviceCJS1.json.

{ "products":[
{ "device":[

{ "name":"CameraXYZ",
"costPrice":42,
"VTbegin":"2022-05-25",
"VTend":"Forever" }] }] }

Fig. 9. The squashed JSON document (�le deviceSJD2.json) corresponding to the
second conventional JSON schema version deviceCJS2.json.

12 Z. Brahmia et al.

5 Conclusion

In this paper, we have proposed τJUpdate, a temporal extension of the JUpdate
language by equipping JUpdate update HLOs with a VALID clause to specify
the applicability period of the update operations, in the τJSchema framework.
Ignoring the VALID clause, any τJUpdate HLO is exactly the same as the corre-
sponding JUpdate HLO to be executed in a non-temporal environment. Indeed,
by taking advantage of the τJSchema logical and physical independence feature,
our goal was to help the users by allowing them to focus only on the data struc-
ture as de�ned in the conventional JSON schema, and ignore how data are struc-
tured in the temporal JSON schema. Hence, implementation details and their
transparent management are left to the system. Moreover, any τJUpdate HLO
could be speci�ed either on the temporal JSON document or on its squashed
version; the system is able to correctly manage both ways, via the use of tempo-
ral (logical and physical) characteristics. We have also shown in Sec. 3.1 how the
τJUpdate semantics can be de�ned to correctly deal with temporal JSON docu-
ments physically stored according to both forms (i.e., unsquashed and squashed
forms).

Moreover, since JSON databases [16] are document-oriented NoSQL databases
[10, 25], which are in general schemaless, a JSON instance document could be,
at the end of an update operation, not conformant to its initial JSON schema.
To cover this aspect, we have also dealt with JSON data updates that require
implicit JSON schema changes (exempli�ed with the RenameMember HLO).
Hence, in such a situation, τJUpdate executes implicit changes to conventional
JSON schema, in a way transparent to the user, before performing temporal
updates on conventional JSON data.

In the future, we envisage to extend τJUpdate to also support updating
transaction-time and bitemporal JSON data, in τJSchema, as in the present
work we have dealt only with valid-time JSON data. Finally, we plan to develop
a tool that supports τJUpdate, in order to show the feasibility of our proposal
and to use it in the experimental evaluation of our language (e.g., involving
usability, user-friendliness and performance).

References

1. Bourhis, P., Reutter, J., Vrgo£, D.: JSON: data model and query languages. Infor-
mation Systems 89, 101478 (2020)

2. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: τJSchema: a framework for
managing temporal JSON-based NoSQL databases. In: Proc. of the 27th Interna-
tional Conference on Database and Expert Systems Applications (DEXA 2016),
Porto, Portugal, 5-8 September 2016, Part 2. pp. 167�181 (2016)

3. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: A disciplined approach to tem-
poral evolution and versioning support in JSON data stores. In: Emerging Tech-
nologies and Applications in Data Processing and Management, pp. 114�133. IGI
Global (2019)

τJUpdate: A Temporal Update Language for JSON Data 13

4. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: Implicit JSON schema ver-
sioning driven by big data evolution in the τJSchema framework. In: Proceedings
of the International Conference on Big Data and Networks Technologies (BDNT
2019), Lecture Notes in Networks and Systems, Vol. 81. pp. 23�35 (2020)

5. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: Versioning schemas of JSON-
based conventional and temporal big data through high-level operations in the
τJSchema framework. International Journal of Cloud Computing 10(5-6), 442�
479 (2021)

6. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: JUpdate: A JSON update
language. Electronics 11(4), 508 (2022)

7. Brahmia, Z., Grandi, F., Bouaziz, R.: τXUF: a temporal extension of the XQuery
update facility language for the τXSchema framework. In: Proc. of the 23rd In-
ternational Symposium on Temporal Representation and Reasoning (TIME 2016),
Technical University of Denmark, Copenhagen, Denmark, 17-19 October 2016. pp.
140�148 (2016)

8. Burns, T., Fong, E., Je�erson, D., Knox, R., Mark, L., Reedy, C., Reich, L.,
Roussopoulos, N., Truszkowski, W.: Reference model for DBMS standardization,
database architecture framework task group (DAFTG) of the ANSI/X3/SPARC
database system study group. SIGMOD Record 15(1), 19�58 (1986)

9. Currim, F., Currim, S., Dyreson, C., Snodgrass, R.: A tale of two schemas: Creating
a temporal XML schema from a snapshot schema with τXSchema. In: Proceedings
of the International Conference on Extending Data Base Technology (EDBT 2004),
Crete, Greece, 14-18 March 2004. pp. 348�365 (2004)

10. Davoudian, A., Chen, L., Liu, M.: A survey on NoSQL stores. ACM Computing
Surveys (CSUR) 51(2), 1�43 (2018)

11. Goyal, A., Dyreson, C.: Temporal JSON. In: 2019 IEEE 5th International Confer-
ence on Collaboration and Internet Computing (CIC 2019). pp. 135�144 (2019)

12. Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Tech-
nology, Third Edition, pp. 1914�1922. IGI Global (2015)

13. Hu, Z., Yan, L.: Modeling temporal information with JSON. In: Emerging Tech-
nologies and Applications in Data Processing and Management, pp. 134�153. IGI
Global (2019)

14. Internet Engineering Task Force: JSON Schema: A Media Type for De-
scribing JSON Documents, Internet-Draft, 19 March 2018. https://json-
schema.org/latest/json-schema-core.html

15. Internet Engineering Task Force: The JavaScript Object Notation (JSON)
Data Interchange Format, Internet Standards Track document, December 2017.
https://tools.ietf.org/html/rfc8259

16. Irshad, L., Ma, Z., Yan, L.: A survey on JSON data stores. In: Emerging Technolo-
gies and Applications in Data Processing and Management, pp. 45�69. IGI Global
(2019)

17. Irshad, L., Yan, L., Ma, Z.: Schema-based JSON data stores in relational databases.
Journal of Database Management (JDM) 30(3), 38�70 (2019)

18. ISO/IEC, Information technology Database languages SQL Technical Re-
ports − Part 6: SQL support for JavaScript Object Notation (JSON),
1st Edition, Technical Report ISO/IEC TR 19075-6:2017(E), March 2017.
http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-
6_2017.zip

19. Jensen, C., Snodgrass, R.: Temporal database. In: Encyclopedia of Database Sys-
tems, Second Edition, pp. 3945�3949. Springer (2018)

14 Z. Brahmia et al.

20. Liu, Z.: JSON data management in RDBMS. In: Emerging Technologies and Ap-
plications in Data Processing and Management, pp. 20�44. IGI Global (2019)

21. Liu, Z., Hammerschmidt, B., McMahon, D.: JSON data management: supporting
schema-less development in RDBMS. In: Proc. of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 2014), Snowbird, UT,
USA, 22-27 June 2014. pp. 1247�1258 (2014)

22. Lv, T., Yan, P., Yuan, H., He, W.: Linked lists storage for JSON data. In: 2021
International Conference on Intelligent Computing, Automation and Applications
(ICAA 2021). pp. 402�405 (2021)

23. Melton, J., Zemke, F., Hammerschmidt, B., Kulkarni, K., Liu, Z., Michels, J.,
McMahon, D., Özcan, F., Pirahesh, H.: SQL/JSON part 1, DM32.2-2014-00024R1,
6 March 2014. https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-
SQL-Proposal-1.pdf

24. Michels, J., Hare, K., Kulkarni, K., Zuzarte, C., Liu, Z., Hammerschmidt, B.,
Zemke, F.: The new and improved SQL: 2016 standard. ACM SIGMOD Record
47(2), 51�60 (2018)

25. NoSQL Databases List by Hosting Data Updated 2020.
https://hostingdata.co.uk/nosql-database/

26. Petkovi¢, D.: SQL/JSON standard: Properties and de�ciencies. Datenbank-
Spektrum 17(3), 277�287 (2017)

27. Petkovi¢, D.: Implementation of JSON update framework in RDBMSs. Interna-
tional Journal of Computer Applications 177, 35�39 (2020)

28. Snodgrass, R. T. (ed.), Ahn, I., Ariav, G., Batory, D., Cli�ord, J., Dyreson, C.,
Elmasri, R., Grandi, F., Jensen, C., Käfer, W., Kline, N., Kulkarni, K., Cli� Le-
ung, T., Lorentzos, N., Roddick, J., Segev, A., Soo, M., Sripada, S.: The TSQL2
Temporal Query Language. Kluwer Academic Publishing, New York (1995)

29. Zemke, F., Hammerschmidt, B., Kulkarni, K., Liu, Z., McMahon, D.,
Melton, J., Michels, J., Özcan, F., Pirahesh, H.: SQL/JSON part
2 Querying JSON, ANSI INCITS DM32.2-2014-00025r1, 4 March 2014.
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf

	Copertina_postprint_IRIS_UNIBO
	MEDI2022_AM

