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Abstract. The five editions of the CheckThat! lab so far have focused on
the main tasks of the information verification pipeline: check-worthiness,
evidence retrieval and pairing, and verification. The 2023 edition of the
lab zooms into some of the problems and—for the first time—it offers
five tasks in seven languages (Arabic, Dutch, English, German, Italian,
Spanish, and Turkish): Task 1 asks to determine whether an item, text or
a text plus an image, is check-worthy; Task 2 requires to assess whether a
text snippet is subjective or not; Task 3 looks for estimating the political
bias of a document or a news outlet; Task 4 requires to determine the
level of factuality of a document or a news outlet; and Task 5 is about
identifying authorities that should be trusted to verify a contended claim.

Keywords: Disinformation + Fact-checking - Check-worthiness -
Subjectivity - Political bias + Factuality - Authority finding

1 Introduction

During its first five editions, the CheckThat! lab has focused on developing
technology to assist the journalist fact-checker during the main steps of verifi-
cation [7,8,18,19,47-49,51,52]. Figure 1 (top) shows the pipeline. First, a doc-
ument (or a claim) is assessed for check-worthiness, i.e., whether a journalist
should check its veracity. If this is so, the system needs to retrieve claims veri-
fied in the past that could be useful to fact-check the current one.
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Fig. 1. Overview of the CheckThat! verification pipeline. The left table shows the core
tasks addressed between the 2018 and the 2022 editions of the lab, including pointers to
the relevant papers. The right table overviews the languages we target for the five tasks
of the 2023 edition. Task 1 this year is the only one that belongs to the core tasks (a in the
diagram), including multimodal data in English; a premier for the CheckThat! lab.

Further evidence to verify the claim is retrieved from the Web, if necessary.
Finally, with the evidence gathered from the diverse sources, a decision can be
made: whether the claim is factually true or not. The bottom-left table in Fig. 1 is
the key to the technology developed for the tasks of the pipeline for all languages
over the five editions of the CheckThat! lab so far.

Expert journalists consider that the most impactful technology in the ver-
ification process is check-worthiness, and that there are other aspects of news
and social media that are relevant during analysis and verification, which have
been overlooked.! With this in mind, the 2023 edition of the CheckThat! lab is
organized around five tasks, four of which are run for the first time:

Task 1 Check-worthiness in tweets and political debates; the only task
that has been organized during all the editions of the lab. It allows to reduce
the workload of listening to social media for tweets that could be interesting.
We introduce for the first time this year a multimodal track; cf. Sect. 2.

Task 2 Subjectivity in news articles to spot text that should be processed
with specific strategies [56] (e.g., opinions may be filtered out and not checked,
sarcasm and hyperboles might need further processing to extract the message
they aim to convey); benefiting the fact-checking pipeline [33,35,64]; cf. Sect. 3.

Task 3 Political bias of news articles and news media to identify the
political leaning of an article or media source, since a biased ones are more likely
to make statements that are false or should be checked when they pursue the
agenda and align with the bias of the author or the publisher; cf. Sect. 4.

! Private communication with organisations in various countries.



508 A. Barron-Cedeno et al.

- oy G bl anlly g 8 Adtall CASLEEY) 5358 oY)
L& r | Ml o s (ol
ol ) v Translation: Now the violent clashes are back in

) Nehm, and the national army is crushing the Houthis
Malaysian Ministry of Education fights S - . . -
fake degrees with blockchain tech [ in Wadi Harib

(c) Checkworthy

The Malaysian Ministry of Education  Turns out I've been . | claal s oY) Lule Ll
has introduced E-Skrol, an application  doing airborne L.P,djy t o o ett el e bl
built on the NEM blockchain to deal precautions wrong my il
with the issue of certificate fraud whole life. Translation: Realistically, the Islah militia in
through the wuse of blockchain #coronavirus Marib is the first line of defense for the Houthis
technology.

(a) Checkworthy (b) Not-checkworthy (d) Not checkworthy

Fig. 2. Examples of tweets with their checkworthiness labels for Task 1.

Task 4 Factuality of reporting of news media is critical for media profiling;
cf. Sect. 5.

Task 5 Authority finding in Twitter to help fact-checkers who aim to verify
rumors propagating in social media find a trusted source (an authority that
has “real knowledge” on the matter) that might help to confirm or to debunk a
specific rumor. This task can be seen as a sub-problem of topical expert finding
in Twitter [22,39,65]; cf. Sect. 6.

The bottom-right table in Fig. 1 gives an overview of the language coverage
that we target for the five tasks this year.

2 Task 1: Check-Worthiness in Tweets

Task Definition. The aim of this task is to determine whether a claim is
worth fact-checking. This year, we offer two kinds of data, which translate to
the following two subtasks:

Subtask 1A (Multimodal — Tweets): The tweets to be judged include both
a text snippet and an image.

Subtask 1B: Check-worthiness estimation from Multigenre (Unimodal) (text:
A text snippet alone—from a tweet or a debate/speech transcription—has to be
assessed for check-worthiness.

Subtask 1A is offered in Arabic and English, Subtask 1B is offered in Arabic,
English and Spanish.

Data. For Task 1A, we use the annotation schema of [13]. Each tweet is anno-
tated based on both the image and the text it contains for (i) the presence of a
factual claim, (ii) check-worthiness, and (%) visual relevance. The latter holds
for two aspects: there is a piece of evidence (e.g., an event, an action, a situation,
a person’s identity, etc.) or illustration of certain aspects from the textual claim,
or the image contains overlayed text that contains a claim in a textual form. The
English data consists of 3k tweets. We also provide 82k unlabeled tweets that
consist of text—image pairs and can be used for semi-supervised learning. The
Arabic data consists of 3k tweets on topics such as COVID-19 and politics [1,47].



The CLEF-2023 CheckThat! Lab 509

Table 1. Instances of subjective and objective sentences for Task 2.

Instance Class

1. | While it’s misguided to put all focus or hope onto one subj
section of the working class, we can’t ignore this immense
latent power that logistics workers possess

2. | Taking refuge in public credit will cause that same subj
infection to attack business, banking, industry, agriculture,
the entire body of private enterprise

3. | Workers would have a 24 percent wage increase by 2024, obj
including an immediate 14 percent raise

4. | University of Washington epidemiologist Ali Mokdad obj
predicted a rise in reported COVID-19 cases

The dataset for Subtask 1B consists of tweets in Arabic and Spanish. The
Spanish tweets are collected from Twitter accounts and transcriptions from Span-
ish politicians and are manually annotated by professional journalists who are
experts in fact-checking. The Arabic tweets for subtask 1B are collected using
keywords related to COVID-19 and vaccines, using the annotation schema in [1].
The dataset for Subtask 1B (English) consists of political debates collected
from U.S. general election presidential debates and annotated by human coders.
Figure 2 shows examples of checkworthy and non-checkworthy tweets.

FEvaluation. This is a binary classification task. The official evaluation measure
is F score for the positive class.

3 Task 2: Subjectivity in News Articles

Task Definition. The systems are challenged to distinguish whether a sentence
from a news article expresses the subjective view of its author or presents an
objective view of the covered topic. Given a list of sentences taken from a news
article, the task asks to classify each of the sentences as subjective or objective.
The task is offered in Arabic, Dutch, English, Italian, German, and Turkish.

Data. The focus is on sentences from newspaper articles. The data for Ital-
ian is partially derived from SubjectivITA [2| and consists of 2.2k examples,
25% of which are subjective. For English, we release a new dataset contain-
ing 1.2k sentences. The annotation process involved multiple annotators that
labeled instances individually. Later on, annotators discussed and resolved the
disagreements. We measured the Inter-Annotators Agreement (IAA) for the Ital-
ian dataset using Fleiss’ kappa, and obtained a score of 0.61, which corresponds
to substantial agreement. For the English dataset, we computed Krippendorf’s
alpha of 0.83. For the other languages, we plan to follow the same methodology
to release datasets of comparable size. Table 1 shows examples of the English
part of the dataset for Task 2.
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Table 2. Examples of media with different biases for Task 3.

Name URL Bias
Loser.com http://loser.com Left
Die Hard Democrat | http://dieharddemocrat.com | Left
Democracy 21 http://www.democracy21.org | Center
Federal Times http: //www.federaltimes.com | Center
Gulf News http://gulfnews.com Center
Fox News http://www.foxnews.com Right

Evaluation. This is a binary classification task, and thus we use macro-averaged
F score as the official evaluation measure.

4 Task 3: Political Bias of News Articles and News Media

Task Definition. The goal of the task is to detect political bias of news report-
ing at the article and at the media level. This is an ordinal classification task
and it is offered in English. It includes two subtasks:

Subtask 3A: Given an article, classify its leaning as left, center, or right.

Subtask 3B: Given the URL to a news outlet (e.g., www.cnn.com), predict the
overall political bias of that news outlet as left, center, or right.

Data. We release a collection of 95k articles from 900 media sources annotated
for bias at the article and at the media level, respectively. We used a subset of
this data in previous research [6], but we have now crawled additional articles
and sources for training and testing purposes.? Table 2 shows examples of news
media with their political leaning. Note that we map the bias from a 7-point scale
(Extreme-Left, Left, Center-Left, Center, Center-Right, Right, and Extreme-
Right) to 3-point scale: left, center, and right.

FEvaluation. This is an ordinal classification task, and thus we use mean absolute
error as the official measure for both subtasks.

5 Task 4: Factuality of Reporting of News Media

Task Definition. We ask to predict the factuality of reporting at the media
level, given the URL to a news outlet (e.g., www.cnn.com): low, mixed, and high.
We offer the task in English.

Data. We use the same kind of data as for task 3, but with labels for factual-
ity (again on an ordinal scale). We obtain the annotations and the analysis of
the factuality of reporting and/or bias from mediabiasfactcheck.org, which are
manually labeled by fact-checkers. The dataset consists of over 2k news media.
Table 3 shows examples of news media and their factuality labels.

2 The annotated labels for the articles are obtained from http://www.allsides.com/
and http://mediabiasfactcheck.org/.
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Table 3. Examples of news media with different factuality labels for Task 4.

Name URL Factuality
Associated Press | http://apnews.com High
NBC News http://www.nbcnews.com/ High
Russia Insider | http://russia-insider.com Mixed
Patriots Voice https://www.patriotvoices.com | Low

FEvaluation. This is an ordinal classification task, and we use mean absolute
error as the official evaluation measure.

6 Task 5: Authority Finding in Twitter

Task Definition. The task asks systems to retrieve authority Twitter accounts
for a given rumor that propagates in Twitter. Given a tweet spreading a rumor,
the participating systems need to retrieve a ranked list of authority Twitter
accounts that can help verify that rumor, as such accounts may tweet evidence
that supports or denies the rumor [26]. This task is offered in Arabic.

Data. The training set comprises 150 rumors expressed in tweets associated with
1k authority Twitter accounts, a set of 400k Twitter accounts, 1.2M unique Twit-
ter lists, and 878 M timeline tweets. To construct the data, we selected rumors from
Misbar?, an Arabic fact-checking platform adopted by recent studies to construct
datasets for Arabic rumor verification [27] and fake news detection [37]. For each
rumor, two annotators were individually asked to find all possible authority Twit-
ter accounts who can help confirm or deny that rumor following our detailed anno-
tation guidelines. As part of the annotation process, the annotators were required
to assign a grade for each authority to determine whether she is highly relevant or
relevant to the rumor, i.e., having a higher priority to be contacted for verification
or not. Finally, the annotators discussed their agreement on each others’ selected
authorities and their grades, and a third annotator helped resolve the disagree-
ments. To evaluate the quality of the annotations, we considered the agreement
both on whether the target Twitter account is labeled as authority with respect to
the considered rumor as well as the graded relevance. The Cohen’s Kappa inter-
annotator agreement [14] was 0.78 and 0.71 for the former and for the latter, respec-
tively, both scores corresponding to substantial agreement [40]. Table 4 shows an
example rumor with authorities ranked according to relevance.

FEvaluation. As this is a ranking task, we adopt P@5 as the official evaluation
measure to evaluate how well the participating systems retrieve Twitter author-
ities at the top of a short retrieved list. We further report NDCG@5 to measure
the ability of systems to retrieve highly relevant authority Twitter accounts
higher up in that list.

3 https://misbar.com/.
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Table 4. An example of a rumor with corresponding authorities for Task 5.

Rumor Tweet: The Saudi Federation decided to ban the ‘Al-Alamy’
title from all league clubs and prohibit clubs from using it, whether
banners inside stadiums or through clubs’ websites

Authority Relevance
1 | Saudi Arabian Football Federation Highly relevant
2 | President of the Saudi Arabian Football Federation Highly relevant
3 | Saudi Arabian Football Federation Media and Communications Highly relevant
4 | Ministry of Sport in Saudi Arabia Relevant
5 | Minister of Sports and President of the Saudi Olympic and Paralympic Committee | Relevant

7 Related Work

There has been a lot of research on checking the factuality of a claim, of a news
article, or of an information source [5,6,34,41,45,67]. Given that misleading
content is causing harm across different dimensions, a lot of attention has been
paid to identifying disinformation and misinformation in social media [24,36,43,
61,66]. Check-worthiness estimation is still an understudied problem, especially
in social media [21,30-32,63], and fake news detection for news articles is mostly
approached as a binary classification problem [53].

CheckThat! is related to several tasks at SemEval: on determining rumor
veracity [16,23], on stance detection [44], on fact-checking in community question
answering forums [42], and on propaganda detection [15,17]. It is also related
to the FEVER task [62] on fact extraction and verification, to the Fake News
Challenge [25,55] and to the FakeNews task at MediaEval [54].

8 Conclusion

We presented the 2023 edition of the CheckThat! lab, which features complemen-
tary tasks to assist in the full fact-checking pipeline: from spotting check-worthy
claims to identifying an authority that could help verify a rumor in social media.
In line with one of the main missions of CLEF, we promote multi-linguality
by offering tasks in seven languages: Arabic, Dutch, English, German, Italian,
Spanish, and Turkish. Moreover, for the first time, we also promote a multimodal
task.
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