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Analysis of adiabatic trapping phenomena for quasi-integrable area-preserving
maps in the presence of time-dependent exciters
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In this paper, results concerning the phenomenon of adiabatic trapping into resonance for a class of quasi-
integrable maps and Hamiltonians with a time-dependent exciter are presented and discussed in detail. The
applicability of the results about trapping efficiency for Hamiltonian systems to the maps considered is proven
by using perturbation theory. This makes possible to determine explicit scaling laws for the trapping properties.
These findings represent a generalization of previous results obtained for the case of quasi-integrable maps with
parametric modulation, as well as an extension of the work by Neishtadt et al. [Regul. Chaotic Dyn. 18, 686
(2013)] on a restricted class of quasi-integrable systems with time-dependent exciters.
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I. INTRODUCTION

The adiabatic theory for Hamiltonian systems is a key
breakthrough towards an understanding of the effects of slow
parametric modulation on the dynamics. The concept of adia-
batic invariant gives the possibility to predict the long-term
evolution of the system and to highlight the fundamental
properties of the action variables upon averaging over the
fast variables [1,2]. The theory has been well developed for
systems with one degree of freedom [3–15], but the extension
of some analytical results to multidimensional systems or to
symplectic maps [16] has to cope with the issues generated by
small denominators and the ubiquitous presence of resonances
in phase space [17,18]. For these reasons, such an extension is
still an open problem.

Recently, the possibility of a controlled manipulation of
the phase space by means of an adiabatic change of a param-
eter opened the way to new applications in accelerator and
plasma physics [19–24]. In particular, the adiabatic transport
performed by means of nonlinear resonance trapping allows
us to manipulate a charged particle distribution to minimize
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the particle losses during the beam extraction process in a
circular accelerator. Furthermore, the control of the beam
emittance can be obtained by a similar approach [25–27].
The experimental procedures [25–27] require a very precise
control of the efficiency of the adiabatic trapping into reso-
nances [12,28,29], as well as of the phase-space change during
the adiabatic transport when the parametric modulation is
introduced by means of an external perturbation. All these
processes can be represented by multidimensional Hamilto-
nian systems or symplectic maps [30].

In this paper, we consider the problem of obtaining an
accurate estimate of the resonance-trapping efficiency and of
the phase-space transport for a given distribution of initial
conditions in the case of polynomial symplectic maps when
a time-dependent periodic perturbation is present. The pertur-
bation frequency and amplitude are adiabatically changed. We
show that the concept of interpolating Hamiltonian can be ap-
plied to derive the scaling laws of the main parameters of the
map, i.e., the perturbation amplitude, and the nonlinearity co-
efficients. In this way, we obtain explicit analytical estimates
for the trapping and transport efficiencies, thus generalizing
the analytical results obtained for Hamiltonian systems. The
accuracy of the proposed estimates has been verified by means
of extensive numerical simulations of different study cases.
Furthermore, we study the limits of the adiabatic approxima-
tion for the observed phenomena, and of the validity of our
results. Note that the modulation of the external perturbation
parameters is realized according to procedures that could open
the way to new applications in the field of accelerator physics,
in view of devising novel beam manipulations, in particular in
the presence of so-called space charge effects.
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FIG. 1. A generic phase-space portrait divided into three regions
(I, II, III) by separatrices �1(λ) and �2(λ).

The paper is organized as follows: in Sec. II we re-
call some theoretical results of the adiabatic theory that
are needed to measure the resonance-trapping phenomenon,
and we introduce the map models. In Sec. III we perform
a detailed analysis of the phase-space evolution during the
trapping process, whereas in Sec. IV we discuss the results
of detailed numerical simulations about the evolution of a
particle distribution, comparing the dynamics of the interpo-
lating Hamiltonian with that of the corresponding symplectic
maps. In Sec. V, a more complex model is presented and
discussed to show that in spite of its features, the theory
works well in generic systems. Finally, some conclusions
are drawn in Sec. VI, and some detailed computations of
the perturbation-theory calculations for a Hamiltonian system
with a time-dependent exciter and the minimum action for
which trapping occurs are reported in Appendixes A, and B,
respectively.

II. THEORY

A. Generalities

Phenomena occurring when a Hamiltonian system is
slowly modulated have been widely studied in the framework
of adiabatic theory [3,4]. As the modulation of the Hamil-
tonian changes the shape of the separatrices in phase space,
the trajectories can cross separatrices and enter into different
stable regions that are associated with nonlinear resonances.
The probability of the separatrix crossing, which is described
by a random process in the adiabatic limit, can be computed
as well as the change of adiabatic invariant due to the crossing
[3,4].

Let us consider a Hamiltonian H(p, q, λ = ε t ), ε � 1,
where the parameter λ is slowly modulated and whose phase
space is sketched in Fig. 1. If we consider an initial condition
that lies in Region III, the transition probability into Region I
or II of phase space is given by [3]

PIII→I = �I

�I + �II
PIII→II = 1 − PIII→I, (1)

where

�i = dAi

dλ

∣∣∣∣
λ̃

=
∮

∂Ai

dt
∂H
∂λ

∣∣∣∣
λ̃

i = I, II, (2)

with Ai the area of the region i, ∂Ai the boundary of region i,
and λ̃ the value of λ when the separatrix is crossed. We remark
that in case PIII→i < 0, then PIII→i is set to zero, whereas
when PIII→i > 1 then PIII→i is set to unity.

When a separatrix is crossed, the adiabatic invariant J is
expected to change according to the area difference between
the two regions at the crossing time, so that just after the
crossing into a region of area A, we have J = A/(2π ). How-
ever, this value is exact only if the modulation is perfectly
adiabatic, i.e., it is infinitely slow. A correction to the value
of the new action can be found following Ref. [4], and it is
a random value, whose distribution depends on the random
variable ξi = |h|/(ε �i ), h being the difference between the
energy of a particle and that of the separatrix. The value of ξ

can be considered a random variable in the adiabatic limit, due
to its extreme sensitivity to the initial condition of the action.

The adiabatic trapping into resonances has been studied
in various works [3,31] to show the possibility of transport
in phase space when some system’s parameters are slowly
modulated. This phenomenon suggests possible applications
in different fields and, in particular, in accelerator physics
where the Multi-Turn Extraction has been proposed [23]
and successfully implemented as an operational beam ma-
nipulation at the CERN Proton Synchrotron [25,32]. In this
case, an extension of the results of adiabatic theory to quasi-
integrable area-preserving maps has been considered, and
analogous probabilities (1) to be captured in a resonance
can be computed [30] when the Poincaré-Birkhoff theorem
[33] can be applied to prove the existence of stable islands
in phase space. The properties of such resonance islands
for polynomial Hénon-like maps [34] have been studied in
Ref. [35] and the possibility of performing an adiabatic trap-
ping into a resonance has been analyzed by modulating the
linear frequency at the elliptic fixed point [30]. In this paper,
we extend the previous results by considering the adiabatic
trapping in area-preserving maps when we introduce a time-
modulated external sinusoidal term in the dynamics, with
amplitude proportional to qm, m ∈ N, m � 1, and whose fre-
quency is adiabatically changed to cross a resonance with the
unperturbed frequency of the system. This external forcing is
particularly relevant for applications, as it mimics the effect
of a transverse kicker on the charged particle dynamics in a
circular accelerator (see, e.g., Refs. [36–41] and references
therein). Furthermore, it would allow extending the possibility
to perform an efficient beam trapping into stable islands even
when the unperturbed frequencies of the system cannot be
modulated. This might be the case, e.g., in a circular particle
accelerator in the presence of space charge effects that impose
a special choice of linear tunes.

B. The models used

We consider a Hénon-like symplectic map of the form

M�,m :

(
qn+1

pn+1

)
= R(ω0)

×
(

qn

pn−
∑

j>2 k̂ jq
j−1
n − q�−1

n εm cos ω n

)
,

(3)

where R(ω0) is a rotation matrix of an angle ω0, n is the
iteration number, � ∈ Z+, and the dynamics is perturbed by a
modulated kick of amplitude εm whose frequency ω is close to
a resonance condition ω = m ω0 + δ, δ � 1. We remark that
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when � = 1, the fixed point at the origin of the unperturbed
system becomes an elliptic periodic orbit of period 2π/ω, and
the linearized frequencies depend on the perturbation strength,
so that they are adiabatically modulated. This is not the case
when � � 2, which is also interesting for applications. We
consider explicitly these two cases.

The Birkhoff Normal Form theory allows a relationship
between the map of Eq. (3) and the Hamiltonian [35]

H�,m(p, q, t ) = ω0
q2 + p2

2
+

∑
j>2

k j
q j

j
+ εh

q�

�
cos ω t (4)

to be established.
In particular, from Eq. (3) we can derive the Normal Form

Hamiltonian in the action-angle variables (θ̂ , Ĵ )

Ĥ�,m(Ĵ, θ̂ ) =ω0Ĵ +
∑
j>2


 j−1(k̂ j )Ĵ
j−1
2

+ εm c�,m Ĵm/2 cos(m θ̂ − ω t ), (5)

where 
 j (k̂ j ) are detuning terms, obtained from the non-
resonant Normal Form, while c�,m is the Fourier component
of the mth harmonic, which is the only one remaining when
ω ≈ mω0. We remark that the dependence of 
 j−1 on the k̂ j

is in the form of a polynomial, and the scaling laws have been
derived in Ref. [35]. For instance, in the case of 
2 one has

2 = a(ω0) k̂2

3 + b k̂4, where

a(ω0) = − 1

16

[
3 cot

(ω0

2

)
+ cot

(
3 ω0

2

)]
. (6)

If the Hamiltonian (4) is averaged on the resonance, one
obtains an expression of the same form as Eq. (5), in the
action-angle variables (θ, J ), i.e.,

H�,m(J, θ ) = ω0J +
∑
j>2

ω j−1(k j )

2
J

j−1
2

+ εh c�,m Jm/2 cos(m θ − ω t ), (7)

where we have the same c�,m Fourier coefficient that appears
from the expansion of cos� θ cos ωt on the resonant harmonic,
and ω j is a polynomial function of the k j .

From Eqs. (5) and (7), it is possible to evaluate the relation
between the corresponding parameters, i.e., k j, k̂ j and εm, εh,
which enables applying the analytical results valid for the
Hamiltonian system to the corresponding polynomial sym-
plectic map of the form (3).

Let (Ĵ, θ̂ ) be the action-angle variables for the map defined
by the perturbation series. The frequency of the angle dynam-
ics can be written in the form [35]


(Ĵ ) = ω0 +
∑
j>2


 j−1(k̂ j ) Ĵ
j−1
2 , (8)

while from the Hamiltonian (7), which is expressed in terms
of the action-angle variables (J, θ ), we obtain〈

∂H�,m

∂J

〉
θ

= ω0 +
∑
j>2

ω j−1(k j ) J
j−1
2 , (9)

where 〈 〉θ stands for the average over the variable θ .
If a single detuning term of order j is considered and

a single term kl is present in the system under study, and


 j−1 = 
 j−1,0kr
l (and similarly for ω j−1), then one can as-

sume that kl = k̂l and only the action variables need to be
rescaled to ensure the same frequency variation with action for
the two systems under consideration. Note that the exponent r
describes the link between the coefficients of the polynomial
part of the Hamiltonian (4) and the angle dynamics of the
Hamiltonian (5) If Ĵ = κ J , then from the expression

ω0 + kr
l 
 j−1,0 κ

j−1
2 J

j−1
2 = ω0 + kr

l ω j−1,0 J
j−1
2 (10)

we derive

κ =
(

ω j−1,0


 j−1,0

) 2
j−1

. (11)

In the more general case in which several detuning terms
are considered, but a single term kl is present, we have

 j−1(kl ) = k

rl, j

l 
 j−1,0 [and similarly for ω j−1(kl )]. The ap-
proach consists of rescaling k̂l = κl, jkl instead of the action,
which would then give the solution

κl, j =
(

ω j−1,0


 j−1,0

)1/rl, j

, (12)

thus making the frequency variation the same for both systems
also in this case.

For � = 1 and m = 3, the outlined approach gives

κ = ω2,0


2,0
, (13)

and we still need to match the strength of the time-dependent
perturbation, which is proportional to εm c1,3 Ĵ3/2 =
εm c1,3 κ3/2 J3/2 = εh c1,3 J3/2, so that

εh

εm
=

(
ω2,0


2,0

)3/2

. (14)

In the numerical simulations, we set k3 = 1 and ω0/(2π ) =
0.1713, finding εh/εm ≈ 3.92 from the computation of the
Fourier coefficient c1,3 by means of the perturbation theory,
which is found in Appendix A.

Performing analogous computations for � = 2 and m = 3
(see Appendix A), the coefficient c2,3 can be computed and
by comparing it with the corresponding coefficient c1,3 for the
case � = 1 one determines the different scale of the perturba-
tion strength in the two cases, namely

c1,3

c2,3
= 19

62

k2
3

ω0
. (15)

According to the parameters used in the simulations (k3 =
1 and ω0/2π = 0.1713) we obtain c1,3/c2,3 = 0.284, and the
values of εh are the same order of magnitude for the two cases.
We thus expect comparable results for the resonance-trapping
phenomenon.

III. ANALYSIS OF THE TRAPPING PROCESS

The numerical studies carried out to analyze the phe-
nomenology of the trapping process have been performed with
the map model of Eq. (3) as well as the Hamiltonian of Eq. (4)
in order to establish conditions under which the adiabatic
resonance trapping for the modulated symplectic map can be
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FIG. 2. Top: Frequency ω̃/(2π ) evaluated with a high-accuracy
fast Fourier transform algorithm [42,43] for an ensemble of orbits
with initial conditions (q0, 0) and of length 4096 turns, whose orbits
are computed using the same model and parameters of the bottom
plot. Note that the small spikes visible in the graph near q0 ≈ −0.025
are numerical artifacts due to the difficulty of computing the orbit
frequency close to a hyperbolic point. When the initial conditions are
inside the resonance islands, the frequency is locked to the value 1/3.
Bottom: Phase-space portrait of the Poincaré map of the Hamilto-
nian H1,3 (4) evaluated at ω t = 2kπ, k ∈ N, for ω0/(2π ) = 0.1713,
k3 = 1, εh = 0.28, ω = 2.995 ω0.

described by the analytical results for Hamiltonian systems in
a neighborhood of the elliptic fixed point.

The main aspect relevant for applications is to investigate
which initial conditions are trapped in the resonance and trans-
ported in phase space. For this purpose, we determine whether
a trajectory is in the resonance islands of the frozen map, rely-
ing on the result that the main Fourier component of an orbit in
an order n resonance island corresponds to the resonant tune
1/n. We used high-accuracy algorithms for the computation
of the main Fourier component [42,43] to perform the cor-
rect identification of the trapped orbits. In Fig. 2 (top), we
show an example of the main frequency ω̃ for a set of orbits
with initial conditions of the form (q0, 0) whose evolution
under the Hamiltonian model (4) is evaluated by freezing the
time dependence of the system parameters (the corresponding
phase-space portrait is shown in the bottom plot of Fig. 2).
A dependence of the main frequency as a function of q0 is
clearly visible. Note also that the region of constant frequency

corresponds to the so-called phase-locking, which occurs
when the dynamics is inside a stable island. A sudden jump
in frequency is observed at q0 ≈ −0.025, which corresponds
to initial conditions close to the hyperbolic fixed point, the
discontinuity indicating the boundary between two regions of
the phase space.

In the following, the concept of a trapping fraction will be
used in view of studying and qualifying the efficiency of trap-
ping protocols. Given a distribution of initial conditions, the
trapping fraction is defined as the ratio of the trapped particles
to those in the initial distribution. It is clear that the definition
depends on the distribution selected for the initial conditions.
For our analysis, it is important to record the original and final
regions of the particles: this is made by defining the symbol
τa→b, where a stands for the region (or regions) from which
the initial conditions are taken and b stands for the region in
which they are trapped. We remark that the definition of the
region from which particles are taken or trapped is based on
the phase space topology (such as that visible in Fig. 2), at the
end of the first stage of the trapping protocol described in the
next section.

A. Hamiltonian models

To study the phase space of the Hamiltonian of Eq. (4),
it is convenient to use the Poincaré map (see the bottom
plot of Fig. 2 for an example of phase-space portrait). When
either εh or ω are changed, the separatrices move in phase
space changing the enclosed area, while keeping the same
topology for εh sufficiently small and ω sufficiently close to
the resonance. To describe the phenomenology, the third-order
resonance is selected, but the concepts used can be generalized
to any resonance order.

According to Ref. [3], when the system parameters are adi-
abatically modulated, the trapping of the orbits into the stable
islands and the adiabatic transport are possible. To optimize
the trapping probability, we propose a protocol divided into
two steps. In the first one, the perturbation frequency ω is kept
constant at a value ωi < m ω0, near the mth-order resonance,
while the exciter is slowly switched on, increasing its strength
εh from 0 to the final value εh,f. In the second stage, the exciter
strength is kept fixed at εh,f, and the frequency is modulated
from ωi to ωf. Both modulations are performed by means of a
linear variation in N time steps.

In the first step, as εh increases, the area of the resonance
islands increases, thus trapping all orbits that cross the sep-
aratrix according to Eq. (1). The phase space can be divided
in three regions (see Fig. 2, bottom): the inner region (Region
I) encloses the origin and is limited by the inner part of the
separatrices, the resonance region (Region II) made of the
stable islands, and the outer region (Region III) from the outer
part of the separatrix to infinity. The areas of Region I and II
are shown in Fig. 3 as a function of the exciter strength εh (top)
and the distance from the resonance δ = 3 ω0 − ω (bottom).
Note that, in spite of its name, δ is not, from a strict mathe-
matical point of view, a distance, as it is not positively defined.
The sign of δ provides information on whether the frequency
is above or below the resonance value, which also indicates
the direction of the resonance crossing. As this terminology is
commonly used in applications, we adopt it here.
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FIG. 3. Top: Areas of Region I (black), Region II (orange) and
of their sum (blue, dotted) as a function of the exciter strength
εh, for k3 = 1, ω0/(2π ) = 0.17133, ω = 2.995 ω0 for H1,3. The
sum of the areas has a maximum at ε∗

h whereas AII has a maxi-
mum at a different point εh. Bottom: Areas of Region I (black),
Region II (orange) and of their sum (blue, dotted) as a func-
tion of the distance from the resonance δ = 3 ω0 − ω with k3 = 1,
ω0/(2π ) = 0.17133, εh = 0.28 for the Hamiltonian H1,3. AII is fit-
ted as αδ3/4 + β (red, dashed line) according to the predictions in
Ref. [35].

We remark that AI is always decreasing with εh, whereas
AII is increasing up to εh = εh. Therefore, since AI + AII has a
maximum at ε∗

h < εh, the Region III area is increasing when
εh > ε∗

h .
In the case of an ensemble of initial conditions chosen in

Region I, for εh < ε∗
h adiabatic theory ensures that every orbit

crossing the inner separatrix is trapped in the resonance, i.e.,
in Region II. When ε∗

h < εh < εh, as both Region II and III
areas are increasing, a fraction of orbits will enter into Region
III according to Eq. (1). These observations are essential for
engineering the variation of the system parameters in order
to control the trapping and transport phenomena, which is
essential for devising successful applications. An example of
the behavior described above is shown in Fig. 4 in which the
evolution of a set of initial conditions under the dynamics
generated by H1,3 using the protocol for trapping and trans-
port described above is shown. Both rows of Fig. 4 show
the evolution of an ensemble of initial conditions under the
same dynamics generated by H1,3 and the colors are used to

indicate which region the initial conditions are trapped into.
The trapping and transport phenomena are clearly visible,
thus indicating that the proposed protocol works efficiently.
Between the two rows, the distribution of initial conditions
is changed. In the top row, the larger amplitude of the initial
conditions is such that an annulus exists in which initial con-
ditions can be trapped either in Region I or II. On the other
hand, the smaller extent of the initial distribution in the bottom
row removes this phenomenon and there is a clear separation
between particles that will be trapped in Region I or II. We
remark also that the initial conditions at large amplitude in the
top row contribute to a larger surface of the transported islands
and core.

According to adiabatic theory [3], all particles whose orbit
encloses an area A at the end of the first stage satisfying
AI(εh,f ) < A < AII(min(ε∗

h, εh,f )) will be trapped in the res-
onance, whereas the particles with A < AI(εh,f ) will remain
in Region I. Furthermore, assuming that the orbits in the
excluded region are very close to the origin, we can estimate
the average distance from the origin at which the resonance
trapping occurs by rmin = √

AI(εh,f )/π . Figure 5 shows the
remarkable agreement between the minimum enclosed area
of the trapped orbits and the final area AI as a function of εh,f

for the case of the Hamiltonian models. The comparison of the
minimum enclosed area of trapped orbits and AI at the end of
the first stage, i.e., the linear variation of the exciter strength,
as a function of εh,f, for H1,3 and for the corresponding map
M1,3 is shown. A model for AI(εm) = a + fb,ε0 (εm)ε−2/3

m is
used as fit for the case M1,3 and is also presented, where
fb,ε0 (εm) is a form factor ( fb,ε0 (εm) = b/[1 + (ε0/εm)2/3]).

If εh,f > ε∗
h , the particles that enclose an area A satisfying

AII(εh,f ) < A < AII(ε∗
h ) will be found in the external Region

III at the end of the first stage. Therefore, the distribution of
initial conditions around the origin can be divided in three
parts: the part close to the origin that remains in Region I, the
part trapped in the resonance i.e., in Region II, and the part
that either stays or enters into Region III.

During the second phase, the exciter frequency is varied
to move the resonance in phase space and thus performing
the adiabatic transport of the trapped initial conditions. As
shown in Fig. 3 (bottom), both Region I and II increase
their area so that no further trapping of orbits close to the
origin nor any detrapping from the resonance region are ex-
pected. Conversely, the orbits in Region III will enter either
Region II or I according to the probabilities [see Eq. (1)]
that are calculated at the time when the separatrix crossing
occurs [3].

We remark that for the systems under consideration, the
dependence of Ai on the system parameters is so smooth
that approximating the λ derivative of Ai at the time of the
actual separatrix crossing, which is needed to compute the
trapping probabilities, with a finite difference is an excellent
approximation.

The situation is radically different when one considers H2,3

as it can be seen in Fig. 6, where the areas of the center
(Region I) and of the islands (Region II) are shown as a
function of εh. Indeed, in this case, AI is decreasing only for
a small interval of εh around zero, and then it increases, while
AII increases monotonically, similarly to the sum of the two
areas. This implies that there is no possibility for trapping in
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FIG. 4. Evolution of an ensemble of particles in phase space with the colors used to identify in which region each initial condition has
been trapped into (Region I, black, and Region II, orange) for the Hamiltonian model (4) with � = 1, m = 3 at the beginning of the process
(left column), at the end of the εh variation (mid column) and at the end of the frequency variation (right column). The difference between the
top and bottom cases is the extent of the distribution of initial conditions: in the top row, we include particles that start in Region III, while this
is not the case for the bottom plots. At large amplitudes, initial conditions can be either trapped in Region I or II in the top case, while this is
absent in the bottom case. Parameters: k3 = 1, ω0/(2π ) = 0.17133, ωi = 2.995 ω0, ωf = 2.983 ω0, εh,i = 0, εh,f = 0.28.

Region III. Furthermore, the initial conditions in Region III
will be trapped either in Region I or II according to Eq. (1).

B. Map models

To investigate the same phenomena using the map (3)
we need to provide an appropriate framework that allows
determining the areas of the various regions as done for the
Hamiltonian models.

FIG. 5. Comparison of the minimum enclosed area of trapped
orbits and AI at the end of the first stage, i.e., the linear variation
of the exciter strength, as a function of εh,f, for H1,3 with k3 = 1,
ω0/(2π ) = 0.17133, ω = 2.995 ω0, and for the corresponding map
M1,3. A model for AI (εm) = a + fb,ε0 (εm)ε−2/3

m is used as fit for the
case M1,3 and is also presented, where fb,ε0 (εm) is a form factor
( fb,ε0 (εm) = b/[1 + (ε0/εm)2/3]). The dynamics of H1,3 has been
simulated using N = 106 time steps.

We remark that AII, inspected for different models M�,m,
follows the scaling laws AII ∝ ε1/2 and AII ∝ δm/4 outlined in
Ref. [35]. In fact, if we assume that close to a hyperbolic fixed
point with action-angle coordinates (Jh, θh), the motion can be
approximated by the dynamics generated by the pendulumlike
Hamiltonian

H�,m(J, θ ) = ∂2H�,m

∂J2

∣∣∣∣
J=Jh

J
2

2
+ bJm/2

h cos m θ, (16)

where b is proportional to εm, J = J − Jh, and AII reads

AII = 8∣∣ ∂2H�,m

∂J2

∣∣
J=Jh

∣∣1/2 b1/2Jm/4
h , (17)

FIG. 6. Areas of the center (black), islands (orange) areas, and
their sum (blue, dotted) as a function of εh with k3 = 1, ω0/(2π ) =
0.17133, ω = 2.995 ω0 for H2,3.
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FIG. 7. Values of AII for M�,m as a function of εm (top) and δ

(bottom) and their power-law fits, AII ∝ ε1/2
m δm/4, to compare with

the prediction in Ref. [35]. For M2,3, the improved fit from Eq. (23)
is also shown (top).

and since Jh ∝ δ, we obtain

AII ∝ ε1/2
m δm/4, (18)

and this scaling law is shown in Fig. 7, where the numerical
evaluation of AII is compared with the scaling law (18) as a
function of εm (top) and δ (bottom).

Figure 7 (top) shows clearly that the fit AII = αε
1/2
m fails for

large values of εm for M2,3. We remark that the Hamiltonian
of Eq. (16) is approximated, hence a better estimate of AII can
be found by starting from the following Hamiltonian, i.e.,

H�,m(J, θ ) = ∂2H�,m

∂J2

∣∣∣∣
J=Jh

J
2

2
+ εm(Jh + J )3/2 cos 3θ, (19)

and approximating the coefficient of the resonant term with
the first-order series expansion in J , which gives

H�,m(J, θ ) = ∂2H�,m

∂J2

∣∣∣∣
J=Jh

J
2

2
+ bJ3/2

h + 3

2
bJ1/2

h J cos 3θ.

(20)

The area enclosed by the separatrix is then given by the
integral

AII = AII,0

∫ 2π

0
dθ

√
k2 cos2 θ − cos θ + 1, (21)

where AII,0 is the value of AII given in Eq. (17), while k2 =
2b/(9 
2 J1/2

h ), i.e., k ∝ ε
1/2
m . The expansion of Eq. (21) reads

FIG. 8. Comparison between the fraction of initial conditions
in Region III and trapped in Region II as a function of εm,f, as
computed with numerical simulations (markers) or using Eq. (1)
(lines) for M1,3 and M2,3. Note that the derivatives of the areas
are estimated considering the finite difference for ωi = 2.995 ω0 and
ωf = 2.983 ω0 having set k3 = 1, ω0/(2π ) = 0.1713.

[44]

AII = AII,0

(
1 + 15

√
2 − 5

24
k2 − 1

4
k2 log k

)
+ O(k2), (22)

which corresponds to a dependence, in εm

AII = c0ε
1/2
m (1 + c1εm + c2εm log εm), (23)

where c0, c1, and c2 can be determined via a fitting process.
This estimate, shown in Fig. 7 (top) as “improved fit”, is in
good agreement with the M2,3 data.

In Fig. 5, we see the excellent agreement between the
minimum radius for which the trapping occurs, and the area
of Region I at the end of the first phase of the modulation for
the map model, which is a further indication of the validity of
the proposed approach. This is also confirmed by the results
shown in Fig. 8, where the fraction of particles trapped in
Region II from Region III is shown for different M�,m models
as a function of εm,f. The predictions from Eq. (1) are also
shown and a very good agreement is observed. Moreover,
in Fig. 5 we show that a fit function of the form AI(εm) =
a + fb,ε0 (εm)ε−2/3

m fits well the data for AI, where fb,ε0 (εm) is
a form factor that tends to a constant value for large values of
εm, and that reads

fb,ε0 (εm) = b

1 + (ε0/εm)2/3
, (24)

and this model is fully consistent with the analysis of the
minimum trapping action presented in Appendix B. We re-
mark that the approach presented in the Appendix finds, as
estimate of the minimum trapping action, the action of the
hyperbolic fixed point. This is proportional to the area of the
central region only when it is small, i.e., at large values of the
perturbation parameter ε. For smaller values, the relationship
between action of the fixed point and area of the central region
is no longer linear, which explains the form of the fit function
used.
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FIG. 9. Trapping fraction as a function of the adiabatic parameter
ε for the Hamiltonian M1,3 and H2,3 for ω0/(2π ) = 0.1713. As
initial condition, a uniform distribution with R = 0.1 has been used,
having set εm,f = 0.05 and εh,f = κ3/2εm,f = 0.196. The excellent
agreement between map and Hamiltonian models in the adiabatic
regime is clearly visible.

IV. COMPARISON OF HAMILTONIAN AND MAP MODELS

Extensive numerical simulations have been performed to
evaluate the fraction τ of initial conditions trapped into islands
as a function of various parameters both for the map and
Hamiltonian models, for various types of exciters and reso-
nances. The sets of initial conditions are uniformly distributed
and are characterized by a maximum radius R, i.e., with a
probability density function (p.d.f.)

ρR(q0, p0) = 1

πR2
with q2

0 + p2
0 � R2. (25)

A. Case � = 1, m = 3

We compare the Hamiltonian dynamics generated by
H1,3, whose equations of motion are numerically integrated
via the fourth-order symplectic Candy algorithm [45], and
the map M1,3, for the same scenario where perturbation
amplitude and frequency are changed one at a time. For
all our simulations, k3 = 1, ω0/(2π ) = 0.1713. For sim-
plicity, the same number of iterations has been selected
to increase linearly the strength of the exciter and its
frequency during the modulation stages. The process is imple-
mented with ω/(2π ) = ωi/(2π ) = 0.5132 = 2.995 ω0/(2π )
and ωf/(2π ) = 0.5112 = 2.983 ω0/(2π ). When not differ-
ently stated, we set the number of integration time steps for
the Hamiltonian at Nh = 1.2 × 106, as this value ensures that
the modulation is slow enough to achieve adiabatic conditions.

In Fig. 9 we show the dependence of trapping on the
adiabatic parameter ε = 1/Nm, where Nm is the number of
iterations of the map, for the M1,3 and H1,3 models. For
the Hamiltonian case, the number Nh of time steps has been
rescaled according to Nm = Nh/ν, where ν is the number of
time steps, for εh = 0, needed to rotate an initial condition by
an angle ω0 in phase space.

There is a visible excellent agreement in terms of trapping
fraction for the map and Hamiltonian models in the adiabatic
regime, i.e., when ε � 1, with a slight worsening when ε

increases.

FIG. 10. Trapping fraction of the Hamiltonian H1,3 as a function
of εh,f (red markers) and map M1,3 as a function of εm,f (blue
markers), for initial uniform distribution with R = 0.1. The two
perturbation strengths are compared via the scaling εm,f = κ3/2εh,f

according to Eq. (14). Note the same functional behavior of the
trapping for the two models, which feature only an offset.

In Fig. 10 we plot the trapping fraction as a function of
εh,f for the Hamiltonian model and for the map, both for a
uniform circular initial distribution with R = 0.1. The two
models can be compared in rescaling the two perturbation
strengths via the ratio (ω2/
2)3/2 according to Eq. (14). The
graphs describing the evolution of the trapping function are
showing the same dependence on the strength of the exciter,
with only an offset between the two curves.

B. Case � = 2, m = 3

Similar studies have been carried out using a quadratic
perturbation q2 in the Hamiltonian, namely

H2,3 = ω0

(
p2

2
+ q2

2

)
+ k3

3
q3 + εh

q2

2
cos ω t (26)

and the corresponding map

M2,3 :

(
qn+1

pn+1

)
= R(ω0)

(
qn

pn + k3q2
n + εmqn cos ω n

)
.

(27)

In this case the mechanism of adiabatic trapping is the
same, but the behavior of the areas of phase space regions
are quite different (as discussed previously), so that there are
important consequences for applications.

In Fig. 11 the dependence of the trapping fraction on εh,f

is shown for two values of the radius (R = 0.1, R = 0.2) of
the initial uniform distribution. The impact on the trapping
fraction is clearly visible. Indeed, if εh,f is not too small, AI

and AII are both increasing. Hence, if the radius of the initial
distribution is reduced, the fraction of particles that remains
in Region I is high. Moreover, after the central area starts
growing, trapping into resonance is not possible anymore, and
the trapping fraction saturates. The saturation value depends
on the radius of the initial distribution and increases for larger
values of R. Conversely, when εh is small, since the resonance
islands are created at the origin, an initial distribution with
larger radius will place more initial conditions outside of
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FIG. 11. Trapping fraction for H2,3 as a function of εh,f (blue and
black markers) and M2,3 as a function of εm,f (red), for initial uni-
form distributions with R = 0.1 and R = 0.2. The two perturbation
strengths are compared via the scaling εm,f = κ3/2εh,f according to
Eq. (14). The case of M2,3 for ρu

0.2 is not shown as it features the
same qualitative behavior as the Hamiltonian case.

the area swept by the island structure, which prevents them
from being trapped. This explains why, for lower values of
εh, we observe a better trapping efficiency for smaller initial
distributions. In Fig. 11, we show that the map model presents
a qualitatively similar behavior (the scaling of the perturbation
strength allows to compare the two models), with a good
quantitative agreement observed in the saturation region.

We have performed numerical studies of the trapping ef-
ficiency as a function of εm,f for a set of initial conditions,
selected in Region I and II, whose distribution is given by ρR

with R = √
[AI(εm,f) + AII(εm,f)]/π . In Fig. 12 we present a

comparison between the trapping fraction computed by means
of numerical simulations and the models derived for express-
ing the surface of Region I and II, i.e.,

τI,II→II = AII(εm)

AI(εm) + AII(εm)
, (28)

where AI = a + fb,ε0 (εm)ε−2/3
m , the factor fb,ε0 (εm) having

been introduced in Eq. (24), and AII = c ε
1/2
m . Note that the

FIG. 12. Trapping fraction for the models M�,3, � = 1, 2, 3. Fits
are presented based on Eq. (28), with AI(εm) = a + fb,ε0 (εm)ε−2/3

m

and AII(εm) = cε1/2
m , in agreement with the models reported in Figs. 5

and 7.

model presented in Eq. (28) is only valid for a uniform ini-
tial distribution. For a different radial initial distribution with
p.d.f. ρ(r) (the angular distribution is assumed to be uniform)
we would have

τI,II→II =
∫ rII

rI
dr ρ(r)∫ rII

0 dr ρ(r)
, (29)

where ri = √
Ai(εm)/π , i = I, II.

The agreement is excellent for all three cases considered
here, and over the whole range of values of εm,f.

V. A MORE COMPLEX MODEL

As a last point, we have considered a more complex model
in which an additional parameter has been added, namely a k4

term in the Hamiltonian of Eq. (4) as well as in the map of
Eq. (3).

The reason for considering this case is that the phase-space
topology changes considerably for different values of k4, as
can be seen in Fig. 13, where three phase-space portraits are
shown, corresponding to three values of k4.

Although the three-island structure is present in all
three cases, the phase-space topology undergoes significant
changes, and the surface variation with time of the resonance
islands might be rather different between the three cases con-
sidered. This would have an important impact on the trapping
and transport phenomena. Therefore, for this model we do
not aim at comparing in detail the map and corresponding
Hamiltonian models, but rather, to provide some examples of
the possible behaviors.

The impact of the k4 term on the trapping fraction has been
studied by means of numerical simulations that have been per-
formed on a model of type M1,3 and a second one of type H2,3

to assess the behavior for different types of time-dependent
perturbations. The results are shown in Fig. 14, for the M1,3

(top) and the H2,3 (bottom) cases.
For the M1,3 model, three cases corresponding to different

values of εm,f have been considered. A strong dependence of
the trapping fraction on k4 is clearly visible, with εm being
also a parameter with a strong impact on trapping.

For the H2,3 model, a mild dependence of the trapping frac-
tion on k4 is observed. However, the two cases corresponding
to different values of ε2,3 behave differently as a function of k4.
For k4 > 0 the two cases feature equal values of the trapping
fraction, whereas for k4 < 0 differences are visible.

It is worth stressing that even for this more complex model,
which shows peculiar features, the trapping and transport pro-
cesses have been designed using the criteria presented and
discussed for the simpler models. This is an indication that
the theory, developed for the basic models can also be used to
interpret more general cases.

VI. CONCLUSIONS

In this paper, a class of dynamical systems has been
considered, in which nonlinear effects are combined with a
time-dependent external exciter. This class of systems has
been studied both in terms of Hamiltonian as well as using a
nonlinear symplectic map. The goals of our analyses were to
assess the possibility of deriving effective scaling laws for the
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FIG. 13. Phase-space portraits for H1,3 in presence of different quartic nonlinearities k4, having set ω0/(2π ) = 0.1713, ω = 2.995 ω0,
ε = 0.28. The portrait for k4 = 0 is shown in Fig. 2 (bottom). Note the difference in scale of the three figures.

efficiency of resonance trapping for adiabatically perturbed
symplectic maps using the analytical results of adiabatic the-
ory for Hamiltonian systems, and to identify the application
of this class of systems to perform trapping and transport in
phase space. Both aspects have been successfully carried out.

The comparison between Hamiltonian and symplectic map
systems has been considered in detail. It has been shown
that the adiabatic theory for Hamiltonian systems provides
the appropriate framework to describe the trapping and trans-
port phenomena for nonlinear symplectic maps, as well. We
have shown that adiabatic trapping into stable resonance

FIG. 14. Top: trapping fraction for the model M1,3 as a function
of k4. Three cases with different values of εm,f are shown. Bottom:
trapping for the model H2,3 as a function of k4. Two cases with
different values of εh,f are shown. In all cases, the initial distribution
is uniform with R = 0.1.

islands while modulating a periodic, time-dependent pertur-
bation, is an efficient mechanism for phase-space particle
transport. A protocol to vary the two system parameters,
namely, the strength and frequency of the time-dependent
perturbation, has been proposed, which successfully addresses
this aspect. The dynamic mechanisms occurring during the
separatrix change in phase space have been understood for
different models, highlighting the phase-space structure, and
comparing the results of the numerical simulations with the
theoretical predictions. Several scaling laws have been stud-
ied, and extensive simulations have been performed to probe
the dependence of trapping and transport features as a function
of the systems’ parameters.

The extension of these results to realistic models, as
required by physical applications, implies considering mul-
tidimensional systems, for which the theory still needs to
be fully developed. Nonetheless, the results presented in this
paper open the way for a feasibility study to apply the reso-
nance trapping induced by an external periodic perturbation
in the beam dynamics, as a possible improvement of the novel
beam manipulations that have been developed to trap beams
of charged particles in a circular accelerator.
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APPENDIX A: PERTURBATIVE ANALYSIS
OF AN HAMILTONIAN SYSTEM WITH

A TIME-DEPENDENT EXCITER

It is convenient to introduce the linear action-angle vari-
ables (I, φ) using q = √

2I cos φ, p = √
2I sin φ, and the

Hamiltonian (4) reads

H�,3(I, φ) = ω0I + 23/2k3

3
I3/2 sin3 φ

+ 2�/2εhI�/2 sin� φ cos ω t . (A1)

We denote by (J, θ ) the action-angle variables of the unper-
turbed Hamiltonian, i.e., for εh = 0, and J turns out to be the
adiabatic invariant of the system when no resonance condition
is fulfilled.
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To study the adiabatic trapping, we compute the paramet-
ric dependence of (J, θ ) from the nonlinear terms using a
perturbative approach [46]. We apply the Lie transformation
exp(DF (J,θ ) ) using a generating function

F (J, θ ) = k2
3

∑
m>2

Jm/2 fm(θ ), (A2)

and we obtain a Normal Form Hamiltonian

H0(J ) = ω0J +
∑
m>1

ωm(k3)

m
Jm. (A3)

The perturbative equation for f3(θ ) reads

d f3(θ )

dθ
= 23/2

3 ω0
sin3 θ, (A4)

and it can be integrated, yielding

f3(θ ) = 23/2

3 ω0

(
1

3
cos3 θ − cos θ

)
. (A5)

At first order, the change of variables reads

I = J − ∂F

∂θ
+ O(J2) = J − J3/2k2

3 f ′
3(θ ) + O(J2)

φ = θ + ∂F

∂J
+ O(J ) = θ + 3

2
J1/2k2

3 f3(θ ) + O(J ), (A6)

and the ω2 coefficient of the Normal Form Hamiltonian is the
average value

ω2 = −3ω0

2π

∫ 2π

0
dθ f ′2

3 (θ ) = − 5 k2
3

6 ω0
. (A7)

The strength of the mth-order resonance, ω0 + m ω = 0, is
given by the mth Fourier coefficient of q�/�, i.e.,

c�,m = 1

2π�

∫ 2π

0
dθ eimθ q�, (A8)

so that to study the third-order resonance (m = 3) with a
linear forcing (� = 1), we can truncate the expansion at J3/2,
because higher-order terms in J will not have a projection on
the Fourier coefficient of exp(±i3θ ).

The perturbation term is proportional to q = √
2I sin φ and

setting η = 23/2k2
3/(3 ω0) and expanding up to J3/2, we obtain

q =
√

2I sin φ

=
√

2J1/2
(
1 − J1/2k2

3 f ′
3(θ )

)1/2

× sin

(
θ + 3

2
J1/2k2

3 f3(θ )

)
+ O(J2)

=
√

2J1/2

(
1 − 4ηJ1/2 sin3 θ − η2

8
J sin6 θ

)

×
[

sin θ + J1/2η

2
(cos4 θ − 3 cos2 θ )

−η2J

8
sin θ (cos6 θ − 6 cos4 θ + 9 cos2 θ )

]
+ O(J2).

(A9)

The coefficient [q]3/2 of the J3/2 term reads

[q]3/2 = −
√

2η2

8
sin θ (2 cos4 θ sin2 θ

+ sin6 θ − 5 cos6 θ + 9 cos2 θ ), (A10)

and its Fourier coefficient of order 3 is

c1,3 = 1

2π

∫ 2π

0
dθ e3iθ [q]3/2 = i

57
√

2

256
η2

= i
19

√
2

96

k4
3

ω2
0

. (A11)

Performing analogous computations for the case � = 2 and
m = 3, the term q2(θ, J ) can be written in the form

q2

2
= I sin2 φ

= J sin2 θ + 1

2
J3/2[q2]3/2(θ ) + O(J2), (A12)

and the Fourier coefficient of [q2]3/2(θ ) is given by

c2,3 = 1

2π

∫ 2π

0
dθ e3iθ [q2]3/2

2
= i

31

32
η

= i
31

√
2

48

k2
3

ω0
. (A13)

By comparing the coefficient c2,3 with the corresponding
coefficient c1,3, one determines the different scale of the per-
turbation strength in the two cases, namely

c1,3

c2,3
= 19

62

k2
3

ω0
. (A14)

Finally, we observe that the expansion of q(J, θ ) starts at
J1/2, whereas the one of q2(J, θ ) starts at J . In general, given
a q� perturbation, the lowest-order term is given by J�/2 sin� θ .
This means that resonances with m < � are excited by higher-
order perturbation terms, so that the expected relevance for
applications is considerably reduced.

We remark that the Hamiltonian (A1) can be analyzed
using a different approach. In the new variables one obtains
an approximate Hamiltonian of the form

H1,3(J, θ ) = ω0J + ω2

2
J2 + εhc1,3J3/2 cos(3 θ − ω t ),

(A15)

and we can introduce the slow phase γ = 3 θ − ω t via a
time-dependent generating function G(J̃, θ ) = J̃ (3 θ − ω t ).
Setting δ = 3 ω0 − ω as the distance from the resonance, we
have

H1,3(J, θ ) = δJ̃ + 9ω2

2
J̃2 + εhc1,3 33/2J̃3/2 cos γ (A16)

and defining the parameters

λ = − 4δ

9 ω2
μ =

√
2

3

εh c1,3

ω2
(A17)

one obtains by rescaling the Hamiltonian

H1,3(J̃, γ ) = (2J̃ )2 − λ(2J̃ ) + μ(2J̃ )3/2 cos γ . (A18)
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The dynamics generated by this Hamiltonian can be stud-
ied, for what concerns trapping via separatrix crossing, with
the methods exposed in [3,31]. In fact, its phase space features
an hyperbolic point at the crossing of separatrices depending
on λ and μ, which enclose an inner and an outer region.

APPENDIX B: ANALYSIS OF THE MINIMUM
TRAPPING ACTION

From the observations reported in the main body of the
article, for any value of εm or εh the phase-space islands ap-
pear at some amplitude, which determines the smallest radius
for which particles are trapped into the islands. A simplified
approach to determine an estimate for the minimum action
starts from the Hamiltonian

H (I, φ, λ) = H0(I, λ) + ε Im/2 cos(m φ − ω t ) (B1)

that corresponds to a forced nonlinear oscillator with a reso-
nance condition

m
∂H0

∂I
(Ir, λ) − ωr = 0 (B2)

which defines the resonant action Ir (λ) (when it is real). Note
that it is always possible to introduce the angle m φ = θ and
the rescaling of the action J = I/k, so that the Hamiltonian
reads

H (J, θ, λ) = H0(kJ, λ) + ε km/2Jm/2 cos(θ − ω t ). (B3)

The resonant phase γ = θ − ωrt can be introduced by us-
ing the generating function

G(J, θ ) = J (θ − ωr t ) (B4)

and one obtains the pendulumlike system

H (J, θ, λ) = H0(kJ, λ) − ωr J + ε km/2Jm/2 cos γ . (B5)

To study the nonlinear resonance crossing, we assume

∂H0

∂J
− ωr = �ω0(λ) + 
 J, (B6)

so that the resonance amplitude in phase space is

Jr (λ) = −�ω0(λ)



� 0. (B7)

We can further reduce the Hamiltonian to that of a forced
pendulum by using the generating function

F (Ĵ, γ , λ) = γ (Ĵ + Jr (λ)), (B8)

and the new Hamiltonian has the form

H (Ĵ, γ , λ) = 


2
Ĵ2 + ε km/2(Ĵ + Jr (λ))m/2 cos γ + γ εJ ′

r (λ),

(B9)

where λ = ε t (ε � 1) and J ′
r = d∗

dJr
λ. The condition for the

existence of fixed points is

∂H

∂ Ĵ
= 
Ĵ + ε km/2 m

2
(Ĵ + Jr (λ))m/2−1 cos γ = 0

∂H

∂γ
= −ε km/2(Ĵ + Jr (λ))m/2 sin γ + εJ ′

r (λ) = 0. (B10)

The first equation provides the resonance position in phase
space, whereas the second one provides a condition on the
existence of the resonance since we obtain

|sin γ | = ε

ε

|J ′
r (λ)|

km/2Jr (λ)m/2
(B11)

and | sin γ | � 1. We observe that for ε � 1 (adiabatic param-
eter) we have the existence of the resonance for small values
of the actions Jr (λ). However, for fixed ε/ε ratio we obtain a
condition for the resonance as

Jr (λ)m/2 � C
ε

ε
, (B12)

where C is a suitable constant, which means the existence of
a minimal trapping action Jmin that scales as

Jmin ∝
(ε

ε

)2/m
(B13)

and, e.g., for m = 3 then Jmin ∝ ε−2/3.
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