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ABSTRACT
We model the fastest moving (vtot > 300 km s−1) local (D � 3 kpc) halo stars using
cosmological simulations and six-dimensional Gaia data. Our approach is to use our knowledge
of the assembly history and phase-space distribution of halo stars to constrain the form of
the high-velocity tail of the stellar halo. Using simple analytical models and cosmological
simulations, we find that the shape of the high-velocity tail is strongly dependent on the
velocity anisotropy and number density profile of the halo stars – highly eccentric orbits
and/or shallow density profiles have more extended high-velocity tails. The halo stars in the
solar vicinity are known to have a strongly radial velocity anisotropy, and it has recently
been shown the origin of these highly eccentric orbits is the early accretion of a massive
(Mstar ∼ 109 M�) dwarf satellite. We use this knowledge to construct a prior on the shape
of the high-velocity tail. Moreover, we use the simulations to define an appropriate outer
boundary of 2r200, beyond which stars can escape. After applying our methodology to the
Gaia data, we find a local (r0 = 8.3 kpc) escape speed of vesc(r0) = 528+24

−25 km s−1. We use
our measurement of the escape velocity to estimate the total Milky Way mass, and dark halo
concentration: M200,tot = 1.00+0.31

−0.24 × 1012 M�, c200 = 10.9+4.4
−3.3. Our estimated mass agrees

with recent results in the literature that seem to be converging on a Milky Way mass of
M200,tot ∼ 1012 M�.

Key words: Galaxy: fundamental parameters – Galaxy: kinematics and dynamics.

1 I N T RO D U C T I O N

Stars with extreme velocities have often been studied in the Milky
Way. Akin to our fascination with the most distant, most massive,
most luminous – astronomers are keen to find the fastest stars in the
Galaxy (e.g. Hattori et al. 2018; Marchetti, Rossi & Brown 2018;
Shen et al. 2018). However, this pursuit is more than just a record
breaking exercise. The fastest moving stars can be related to exotic
mechanisms, such as dynamical interactions with the central super
massive black hole (e.g. Hills 1988; Yu & Tremaine 2003; Brown
et al. 2005), dynamical interactions between massive stars (e.g.
Poveda, Ruiz & Allen 1967; Leonard & Duncan 1990), supernova
explosions in binary systems (e.g. Blaauw 1961; Portegies Zwart
2000) and even ejection from the Large Magellanic Cloud (e.g.
Boubert & Evans 2016). While these mechanisms often produce
stars that are unbound from the Galaxy, the fastest ‘garden variety’
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stars are the most prevalent: namely, the high-velocity tail of the
stellar halo.

The extreme halo stars are bound to the Galaxy, but represent
the lowest energy orbits that are capable of reaching the largest
extents in the Milky Way. It is for this reason that this population
has garnered so much attention: the fastest halo stars in the local
vicinity can probe the potential out to the virial radius of the Galaxy.
Indeed, the high-velocity stars in the solar neighbourhood present
one of the only local measures of the gravitational potential at
large radii. Historical measurements of the local escape velocity
date back to the early 1980s, in the period where the existence of
massive dark matter haloes was gaining traction in the astronomy
community (e.g. Faber & Gallagher 1979; Rubin, Ford & Thonnard
1980). These early works generally estimated a lower limit on
the escape speed by identifying the highest velocity stars in the
solar neighbourhood (Caldwell & Ostriker 1981; Alexander 1982;
Sandage & Fouts 1987; Carney, Latham & Laird 1988). The seminal
work by Leonard & Tremaine (1990, hereafter LT90) extended this
formalism to produce statistical models for the distribution of stars
near the escape speed; this advancement was needed to properly
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model limited sample sizes that may not include stars that reach
the escape velocity, and/or could include spurious measurements
due to observational errors. LT90 apply their formalism to N ∼ 30
high-velocity stars with accurate radial velocity measurements and
inferred a local escape velocity in the range 450–650 km s−1.

Two decades later, works by Smith et al. (2007) and Piffl et al.
(2014) applied the LT90 method to the RAdial Velocity Experiment
(RAVE) survey data, finding a local escape speed in the range
∼500−600 km s−1. These later works used cosmological simula-
tions to help model the high-velocity tail of their stellar halo sample.
A similar approach was used in Williams et al. (2017) to constrain
the escape velocity over a wider radial range using Sloan Digital Sky
Survey data. In agreement with Smith et al. (2007) and Piffl et al.
(2014), they find a local escape velocity of ∼520 km s−1. Most
recently, Monari et al. (2018) exploited the new six-dimensional
data from the Gaia mission (Gaia Collaboration et al. 2016, 2018) to
constrain the local escape speed to be vesc(r0) = 580 ± 63 km s−1,
where r0 = 8.3 kpc. Monari et al. (2018) use the same methodology
as Piffl et al. (2014), but find a larger escape speed, suggesting
that the previous constraints from line-of-velocities only may
have underestimated the escape speed (albeit the uncertainties are
large).

The above analyses suffer from several potential systematic
limitations. First, it is not guaranteed that the tail of the velocity
distribution is occupied all the way to the escape velocity. Thus, if
there is any truncation in the stellar velocities, the escape speed
will be underestimated. Secondly, although it is only the high-
velocity tail of the escape speed that needs to be modelled, the
stellar distribution need not be smooth and relaxed. Indeed, the
presence of substructure in the high-velocity tail could significantly
bias the results. Thirdly, the estimates are very sensitive to the
fastest stars in the sample, so the presence of interlopers (such as
unbound stars) or statistical outliers in the data could also affect the
derived escape velocity. Despite these apparent shortcomings, there
is also warrant for significant optimism. The latest Gaia data have
revealed that the inner stellar halo is dominated by the material from
one massive (Mstar ∼ 109 M�) dwarf galaxy accreted 8–10 Gyr ago
(Belokurov et al. 2018; Deason et al. 2018; Haywood et al. 2018;
Helmi et al. 2018). Thus, there is reason to believe that the stellar
material, or at least the majority of it, is well phase-mixed. In
addition, the highly eccentric orbits of the stars associated with this
massive dwarf are more likely (i.e. relative to more circular orbits)
to traverse significant distances in the Galaxy, and can potentially
probe out to the very outskirts of the Milky Way. With this in mind,
the focus of this contribution is to re-formulate the LT90 analysis
using these new observational advancements.

The escape velocity provides a direct measure of the Galactic po-
tential, and hence a common goal of constraining this fundamental
parameter is to provide an estimate of the total Milky Way mass.
Despite decades of study, the mass of the Milky Way has remained a
contentious issue in the literature (see Bland-Hawthorn & Gerhard
2016, section 6.3 for a recent review), with quoted mass estimates
varying by a factor of 2–3. Recent progress since the second Gaia
data release has perhaps relieved some of this tension, with estimates
generally ranging from 1 to 1.5 × 1012 M� (e.g. Eadie & Jurić 2018;
Malhan & Ibata 2018; Watkins et al. 2018; Callingham et al. 2019;
Posti & Helmi 2019; Vasiliev 2019). However, the significance of
this parameter warrants that our community strives to pin down the
mass with much greater precision and accuracy. Indeed, the total
Milky Way mass is essential to place our Galaxy in context with the
general galaxy population, and, moreover, the halo mass is central to

our understanding of the �CDM paradigm (e.g. Purcell & Zentner
2012; Wang et al. 2012).

In this study, we use a combination of analytical models,
cosmological simulations and Gaia data to model the high-velocity
tail of the local stellar halo. Through our analysis we provide a
new estimate of the local escape velocity, and, by extension, the
total Milky Way mass. The paper is arranged as follows. Section 2
provides the theoretical background to the form of the high-velocity
tail, and introduces the LT90 formalism. In Section 3, we explore
the high-velocity tails of accreted stars in the Auriga simulations.
We use the simulations to place a prior on the form of the high-
velocity tail, which is appropriate for the Milky Way. We apply our
formalism to Gaia data release 2 (DR2) in Section 4 , and provide a
new estimate of the local escape speed. In Section 5, we relate the
escape speed to the total Milky Way mass. Finally, in Section 6 we
summarize the main findings of our work.

2 T H E O R E T I C A L BAC K G RO U N D

In this work, we use simple models for the velocity distribution
of stars near the escape speed. This formalism was first presented
in LT90, and later extended and adapted by Smith et al. (2007)
and Piffl et al. (2014). Here, we provide a brief recap of the LT90
method, and provide some analytical insight into the form of the
high-velocity tails.

2.1 Leonard & Tremaine approximation

LT90 proposed a distribution of space velocities appropriate for a
sample of high-velocity stars near the Sun:

f (v|ve, k) ∝ (v − ve)k (1)

for v < ve. Here, v is the total velocity and ve is the escape velocity.
This form only needs to be valid near v ∼ ve, and, when f is a
power law of energy, equation (1) can be thought of as the first
term in a Taylor expansion of f near ve. Here, k is a free parameter,
and, as we will show in this work, it is strongly dependent on
the form of the underlying distribution function. Note that Smith
et al. (2007) use a slightly different distribution function, namely
f (v|ve, k) ∝ (v2

e − v2)k; however we choose to adopt the original
LT90 formalism as this provides a better description of the high-
velocity tails in the simulated haloes (see also Piffl et al. 2014,
section 3). The LT90 formalism assumes that the stellar system
is described by an Ergodic distribution function, and is thus well-
mixed in phase-space. Moreover, this approach assumes that the
stellar velocities extend all the way to ve. Clearly, these assumptions
are not necessarily true, and in the following section(s) we will
discuss these potential limitations in light of recent observations of
the Milky Way halo, and in the context of cosmological simulations.

2.2 Maximum likelihood analysis

In order to constrain ve and k from a local sample of stars we employ
a maximum likelihood method:

L =
N∏

i=1

f (vi |ve, k). (2)

In practice, we use Bayes’ theorem to derive the probability
distributions of the model parameters:

P (ve, k|vi=1,...,N ) = P (ve)P (k)
∏N

i=1 f (vi |ve, k)∫ ∫
P (ve)P (k)

∏N

i=1 f (vi |ve, k) dvedk
. (3)
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In the following section, we introduce an optimal prior P(k) based
on cosmological simulations. This approach was also taken by
Smith et al. (2007) and Piffl et al. (2014). However, in this work
we make use of recent breakthroughs in our understanding of the
local halo velocity distribution to form a prior tailored towards our
own Galaxy. We find, like previous authors, that a prior on k is
essential, especially when faced with small number statistics and/or
significant velocity errors. Finally, like LT90, we adopt a (weak)
prior on ve, P(ve) ∝ 1/ve, which is appropriate for a variable that
ranges from 0 to ∞ (Kendall & Stuart 1977).

Equation (1) is only valid near ve, so our analysis is performed
on stars with v > vmin. Following Kochanek (1996) and Smith et al.
(2007) we adopt vmin = 300 km s−1; this cut is chosen to minimize
contamination from disc stars, and restrict ourselves to stars close
to ve. However, we note that adopting a slightly lower threshold,
vmin = 250 km s−1 (cf. Monari et al. 2018), does not significantly
affect our results.

2.2.1 Radial dependence of escape velocity

In a small enough volume the escape velocity ve is approximately
constant, but more generally ve is radially dependent, where ve =
ve(r) ∝ √

2�(r). In this work, we parametrize ve as:

ve = ve,0(r/r0)−γ /2 (4)

where r0 = 8.3 kpc is the solar radius, and ve, 0 is the escape speed
at the position of the Sun. Our parametrization is motivated by
the approximate power-law form of the gravitational potential over
a small radial range, where � ∝ r−γ . Note that this power-law
dependence of the escape velocity was also used by Williams et al.
(2017) over a much larger radial range.

2.3 Analytical example: spherical, power-law distribution
functions

To provide some theoretical insight into the LT90 formalism,
we explore the high-velocity tails in simple, power-law distribu-
tion functions. We adopt the distribution functions introduced in
Evans et al. (1997), and later adopted in Deason, Belokurov &
Evans (2011a). This model assumes spherical power laws for
the gravitational potential (�(r) ∝ r−γ ) and tracer density pro-
file (ρ(r) ∝ r−α), and has constant velocity anisotropy (β =
1 − [〈

v2
φ

〉 + 〈
v2

θ

〉]
/2

〈
v2

r

〉
). The velocity distribution is given in

terms of the binding energy (E = �(r) − 0.5v2
tot) and the total

angular momentum
(
L =

√
L2

x + L2
y + L2

z

)
:

F (E, L) ∝ L−2βf (E), (5)

where

f (E) = Eβ(γ−2)/γ+α/γ−1.5. (6)

In the top panels of Fig. 1 we show the total velocity distributions
derived from these models. Here, we fix the potential with vesc =
550 km s−1 and γ = 0.3, and vary α and β. Note, for illustration,
we evaluate this model at a fixed radius, r = r0 = 8.3 kpc. In
the top-left panel we fix α and vary β, and in the top-right panel
we fix β and vary α. It is clear that the velocity distributions
differ when we vary the tracer density profile and/or velocity
anisotropy. In particular, although the models all have the same
potential (and escape velocity) the forms of the high-velocity tails
vary significantly.

To explore this further we fix vesc and fit the slope of the high-
velocity tail (k) for each model using equation (1). Here, we use a
minimum velocity threshold, v > 300 km s−1. The bottom panels of
Fig. 1 show how k varies with different values of α and β. Radially
anisotropic orbits (higher β) and/or shallow tracer density profiles
(lower α) lead to lower values of k. The high-velocity tails are more
populated by stars on highly eccentric orbits (larger β) because these
are biased towards lower energy, and hence larger speeds. This also
makes sense physically, as stars on radial orbits can reach to larger
distances on their orbits, and have more chance of ‘escape’. Note
that the L−2β ∝ v−2β term in equation (5) leads to the low-velocity
form of the velocity distribution, whereby systems with large β

values also populate the low-velocity regime. The net result is a
broader distribution for radially anisotropic orbits, with a strong tail
to high velocities. In contrast, the distribution for tangential orbits
is more strongly peaked, and does not populate the high-velocity
(low energy) or low-velocity (low angular momentum) regimes.
In a given gravitational potential, and at fixed β, more extended
tracer populations (smaller α) are biased towards lower energies,
and hence larger speeds. Thus, when α is low there are more stars
that populate the high-velocity tail, and k is lower. Again, physically
one can imagine that stars drawn from a shallower radial number
density distribution are more likely to extend to larger distances
(and hence lower energies) on their orbits.

The k values predicted by these spherical, power-law models can
be compared to the predictions for a system undergoing violent
relaxation. In this case, Jaffe (1987) and Tremaine (1987) show
that k = 1.5. Indeed, LT90 and Kochanek (1996) adopt k values
that bracket the violent relaxation prediction with k ∈ [0.5, 2.5].
These predictions for k were based on self-gravitating systems,
rather than the tracer populations considered here. However, this
historical range of k agrees with the high β, low α regime of the
power-law dfs shown in Fig. 1.

Although these models are idealized, they give us an important
insight into the high-velocity tails of stellar systems. In particular,
we see that the power-law slope of the velocities near ve depends on
the velocity anisotropy and density profile of the tracer stars. In our
own Milky Way we now have a good handle on these properties,
particularly for stars close to the Sun. In the inner regions (r <

20 kpc) of the halo the density profile is an approximate power law
with index α ∼ 2.5 (e.g. Deason, Belokurov & Evans 2011b; Sesar,
Jurić & Ivezić 2011; Faccioli et al. 2014; Pila-Dı́ez et al. 2015).
We also know that the orbits of local halo stars are highly eccentric
(β = 0.7; Smith et al. 2009; Bond et al. 2010). Indeed, recent
works using the latest Gaia data releases have shown that the stellar
orbits in the inner regions of the halo are strongly radial, and the
stars in these inner regions are mainly contributed by one massive
dwarf progenitor (Belokurov et al. 2018; Helmi et al. 2018). Thus,
importantly, the aforementioned observations can limit the range of
k applicable to our own Galaxy. In the following section, we explore
the relation between k and the stellar halo properties further, using
the more realistic distributions present in cosmological simulations.

3 C O S M O L O G I C A L S I M U L AT I O N S

3.1 Auriga simulation suite

We use the Auriga simulation suite to explore the high-velocity
tails of stellar haloes. Auriga is a suite of high-resolution Milky
Way-mass haloes, spanning a mass range 1 × 1012 < M200/ M� <

2 × 1012. Here, we give a brief description of the simulations and
defer the interested reader to Grand et al. (2017) for more details.

MNRAS 485, 3514–3526 (2019)
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Figure 1. Velocity distribution functions (dfs) from the spherical power-law models presented in Evans, Hafner & de Zeeuw (1997). Here, the dfs are a
function of tracer density slope (α), velocity anisotropy (β) and gravitational potential slope (γ ) – see equations (5) and (6) in the text. We show models with a
fixed potential, where γ = 0.3 and vesc = 550 km s−1. Note that this γ is the median value we find in the Auriga simulations at r ∼ 8 kpc. In the top panels we
show the total velocity distribution for fixed α (left) and β (right). The bottom panels show a power-law fit to the high-velocity tail (with vtot > 300 km s−1),
of the form ∝ (vesc − v)k, for various β and α. The systems with highly radial anisotropy and/or shallower tracer density profiles have more extended velocity
tails, and thus lower values of k (see text for details).

The Auriga suite comprise N = 30 re-simulated haloes, which
were chosen from the 1003 Mpc3 dark matter only periodic box
from the EAGLE project (Crain et al. 2015; Schaye et al. 2015). The
candidate haloes were chosen to have a similar mass to the Milky
Way, and be relatively isolated at z = 0: i.e. with no massive objects
(greater than half of the parent halo’s mass) closer than 1.37 Mpc.
The cosmological parameters in the simulation are consistent with
the Planck Collaboration et al. (2014) data release, with parameters:
�m = 0.307, �b = 0.048, �� = 0.693 and H0 = 100h km s−1

Mpc−1, where h = 0.6777.
A multi-mass particle ‘zoom-in’ technique (Jenkins 2013) was

used to re-simulate the candidate haloes to higher resolution. The
re-simulations were performed using the magneto-hydrodynamical
code AREPO (Springel 2010). In this work we use the Level 4
resolution suite, where the typical mass of dark matter and baryonic
particles are 3 × 105 M� and 5 × 104 M�, respectively. Details
regarding the subgrid galaxy formation processes are given in Grand
et al. (2017): these include critical processes such as star formation,
stellar evolution and supernova feedback, a photoionizing UV
background, metal line cooling, and the growth of supermassive
black holes. The Auriga suite has been successful in reproducing

a number of observational properties of both central discs and
stellar haloes, including the rotation curves, stellar masses and star
formation rates of discs (e.g. Grand et al. 2017; Marinacci et al.
2017), and the kinematics and number density profiles of stellar
haloes (e.g. Deason et al. 2017; Monachesi et al. 2018). In this
work we do not include Haloes 11 and 20 in our analysis, as they
are both undergoing a merger at the present time.

The Milky Way analogues are defined as the central galaxies
in the Auriga haloes, and the coordinate frame is based on the
SUBFIND algorithm (Davis et al. 1985). In this work, we only
consider ‘accreted’ star particles (cf. Fattahi et al. 2019). These
stars were bound to galaxies other than the main progenitors of
the Milky Way analogues at the snapshot following their formation
time. Thus, these stars mainly comprise the stellar debris from
destroyed satellite galaxies. We choose to only include accreted
stars for two main reasons: (1) there is little compelling evidence
that the Milky Way stellar halo has significant contributions from
stars born ‘in-situ’ (e.g. Deason et al. 2017; Belokurov et al. 2018;
Di Matteo et al. 2018; Haywood et al. 2018) and (2) the presence of
in-situ halo stars in simulations is strongly dependent on the subgrid
galaxy formation physics and numerical resolution (e.g. Zolotov
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Figure 2. Left panel: The velocity distribution of the Auriga stellar haloes
relative to the escape speed. Different escape velocity definitions, shown by
different colours, are shifted along the y-axis for clarity. Right panel: The
maximum speed reached by the stars relative to the escape velocity. Here,
we only consider accreted stars in the radial range 4 < r/kpc < 12. The
escape velocity is defined as escape to infinity (dot–dashed blue line), 3r200

(dashed red line) and 2r200 (solid black line), respectively. Note the curves
are smoothed by an Epanechnikov kernel.

et al. 2009; Cooper et al. 2015). Moreover, as recently found by
Monachesi et al. (2018), the inclusion of in-situ stars in the Auriga
galaxies suites leads to stellar haloes that are substantially more
massive and metal-rich than observations.

When examining the halo star kinematics around the solar radius
r0 = 8.3 kpc, we rescale the phase-space distribution by the observed
local circular velocity in the Milky Way, where Vc(r0) = 230 km s−1

(Eilers et al. 2019). The positions and velocities are multiplied by
the scaling factor, f = 230/Vc(r0), which ranges from f ∼ 0.75
to 1.4.

3.2 The definition of ‘escape speed’

The escape speed is defined as the velocity that a star requires to
escape the gravitational field of a host halo. The simulated haloes
are not isolated systems, so a limiting distance needs to be defined so
that stars orbiting beyond this system can escape. In principle, this
limiting distance is fairly arbitrary. However, the chosen distance
should not underestimate the escape speed (i.e. to prevent stars being
unrealistically unbound), but also should not reach far enough to
permeate into the vicinity of neighbouring haloes. In the case of
the Milky Way, a sensible choice is approximately half the distance
to M31 (where DM31 ∼ 800 kpc). In addition, one would also
like a definition of escape velocity which is plausible for stars in
the solar neighbourhood. For example, if the limiting distance is
too large then the maximum speeds reached by the stars will not
come close to the escape velocity. This consideration is important,
as an intangible definition of the limiting distance will lead to an
underestimate of the escape velocity, and hence the total mass.

Piffl et al. (2014) adopt an outer boundary of 3r340, where the
virial radius is defined relative to a density threshold of 340 times
the critical density. This leads to distances between 430 and 530 kpc.
Note the definition of the virial radius used by Piffl et al. (2014)
is not commonly used, but can easily be converted to the more
standard definition of 200 times the critical density (r200, as used in
this work): r340 ≈ 0.8r200, so 3r340 ≈ 2.4r200. In comparison, Smith
et al. (2007) use a slightly larger limiting distance of 3r200.

In the left-hand panel of Fig. 2 we show the total velocity
distributions of the Auriga stellar haloes relative to the escape
velocity. In the right-hand panel we show the distribution of
maximum speeds for each halo. Here, we consider accreted stars

Figure 3. Left panel: The distribution of maximum apocentres for the
Auriga stellar haloes (for accreted stars between 4 and 12 kpc) smoothed by
an Epanechnikov kernel. The maximum radii are scaled by the virial radius,
r200. Right panel: The maximum apocentre as a function of maximum total
velocity scaled by the escape velocity (defined as escape at 2r200). Stars
approaching the escape velocity typically have apocentres out to ∼1.5–
2r200.

in the radial range 4 < r/kpc < 12. We use three definitions of
escape velocity: relative to 2r200, 3r200, and the more unrealistic
escape to infinity. We find that a limiting radius of 2r200 leads to
stellar velocities approaching the escape velocity, but not passing
it. Indeed, although not shown here, we find that closer limiting
definitions of r200 and 1.5r200 can lead to stars having velocities
exceeding the escape velocity. In contrast, if we assume escape to
infinity, the total velocities typically reach 90 per cent of the escape
velocity. Although this may appear like a small decrement, for
escape velocities of ∼500 km s−1 this can lead to underestimates of
∼50 km s−1. In the remainder of this work we choose 2r200 as the
limiting radius in our fiducial definition of vesc. This radius ranges
from 2r200 ∼ 400 to 500 kpc in the Auriga haloes. Conveniently, this
definition also approximately coincides with the halfway distance
to M31.

We explore our definition of the limiting radius further by exam-
ining the apocentres of the high-velocity stars. To approximately
estimate the apocentres, we calculate the energy (E0) and total
angular momentum (L0) of stars with vtot > 300 km s−1, and find
the radii where �(r) + L2

0/2r2 = E0 (see Binney & Tremaine 1987,
chapter 3). Here, we only consider stars in the radial range 4 < r/kpc
< 12 at z = 0. To estimate the potential of the simulated haloes,
we assume spherical symmetry and consider all particles in the
radial range 0 < r/kpc < 600. For each halo, we find the maximum
apocentre, which generally coincides with the more extreme vtot

values. In the left-hand panel of Fig. 3 we show the distribution
of maximum apocentres scaled to the virial radius, r200. There is
a wide range of radii, but typically these lie at ∼1–1.5r200. In the
right-hand panel of Fig. 3 we show how these maximum apocentres
relate to the maximum velocities. Typically, stars with velocities
approaching the escape speed have apocentres of ∼1.5–2r200. Thus,
this exercise shows that our choice of 2r200 as an outer boundary is
also appropriate based on the orbits of the high-velocity stars.

Figs 2 and 3 show that there is a great deal of variation between
the Auriga haloes. Indeed, some stellar velocity distributions reach
right up to the escape velocity, whilst others are truncated well
below it. This is related to the varying forms of the high-velocity
tails, which, as we showed in the previous section, are dependent on
the properties of the halo stars, such as their velocity anisotropy and
radial density profile. Indeed, a significant advantage of using the
Auriga suite is that the number of haloes (N = 28 used in this work)
is sufficient to probe a wide range of assembly histories (cf. Smith
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Figure 4. Total velocity distributions for three example haloes in the Auriga
simulation suite. The left panels show the full distribution, and the right
panels focus on the high-velocity tail (with vtot > 300 km s−1). The red
dashed lines show a power-law fit to the high-velocity tail, and the dotted
line indicates the escape velocity. Note that we only consider accreted halo
stars in the radial range 4 < r/kpc < 12. The numbers in the bottom right
corner indicate the number of star particles with vtot > 300 km s−1.

et al. 2007 and Piffl et al. 2014 who used four and eight haloes in their
analyses, respectively). This is particularly important if the Milky
Way’s accretion history is atypical. However, before proceeding we
caution that although the Auriga suite has significantly more high-
resolution Milky Way-like haloes than previous simulations, this
does not guarantee that the assembly histories of the simulated
haloes are sufficiently close to that of the Milky Way. Indeed,
our findings are, like others, limited by the variety of assembly
histories present in Auriga. Nonetheless, we believe that the range
of accretion histories of the Auriga haloes presents a fair sampling
of the halo-to-halo scatter at this mass range, and, at present, is the
best equipped simulation suite for this work.

3.3 High-velocity tails in Auriga

In this section, we explore the high-velocity tails of the accreted
stellar haloes in the Auriga simulations. Throughout, we consider
stars in the radial range 4 < r/kpc < 12, which brackets the
solar radius of the Milky Way. In Fig. 4 we show three example
velocity distributions. The high-velocity tails are highlighted in the
right-hand panels, and the red-dashed line shows a fit of the form

Figure 5. The power-law slope of the high-velocity tail of accreted halo
stars against the most massive progenitor contributing to the velocity
distribution. Here, we consider stars in the radial range 4 < r/kpc < 12.
The points are coloured according to the merger time of the dwarf galaxy,
and the halo ID number is indicated in grey. Note that the haloes with
prominent ‘sausage’ components (highlighted in orange – see Fattahi et al.
2019, fig. 3) have low k values.

equation (1) to stars with vtot > 300 km s−1. Here, we have fixed
the escape velocity – defined with a limiting radius of 2r200 – and
allowed k to be a free parameter. Note that the escape velocity varies
as a function of radius, so each star at a given radius has a slightly
different escape velocity. In Fig. 4 we indicate the best-fitting k
value, and the escape velocity at r = r0 = 8.3 kpc. These examples
bracket cases with steep velocity tails (e.g. Halo 8, k = 6.7) and
shallow velocity tails (e.g. Halo 5, k = 2.0).

In Fig. 5 we show the derived k values for each Auriga halo as a
function of the median dwarf progenitor mass of the accreted stars
in the radial range 4 < r/kpc < 12. Note that, in most cases, there are
one or two progenitors that contribute the majority of halo stars (see
e.g. Fattahi et al. 2019). The circle points are coloured according to
the median lookback time that the stars became bound to the Milky
Way’s main progenitor (rather than the dwarf progenitor). This
figure shows that recent, massive accretion events lead to larger
k values than earlier, less massive events. We also indicate, with
the orange circles, the four haloes with very prominent ‘sausage’
components – i.e. with highly anisotropic velocity distributions –
found by Fattahi et al. (2019). These have low values of k, with k �
2.5 (see below). Fig. 5 shows that the variation of k depends on the
assembly history of the haloes. Thus, as alluded to in the previous
section, our knowledge of the formation of the inner Milky Way
stellar halo provides a key constraint on k. Recent results from Gaia
suggest that the inner halo was built from the disruption of an SMC
or LMC mass (Mstar ∼ 109 M�) dwarf galaxy at early times (T ∼
8–10 Gyr) (e.g. Belokurov et al. 2018; Helmi et al. 2018), and thus,
based on Fig. 5, low values of k < 2.5 are preferred.

We can explore in more detail how k depends on the stellar halo
properties by analysing the phase-space distribution of the stars. In
Fig. 6 we show how k depends on the velocity anisotropy (β, left
panel) and the power-law slope of the stellar halo density (α, right
panel). Note that both of these quantities (β and α) are measured
within the radial range 4 < r/kpc < 12. As we found in the idealized
power-law distribution function models (see Section 2.3), higher β

and/or lower α values lead to lower values of k. The dashed black
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Figure 6. The power-law slope of the high-velocity tail in the Auriga haloes as a function of velocity anisotropy (β, left panels) and stellar halo density slope
(α, right panels). The most prominent ‘sausage’ haloes in the Auriga suite are highlighted in orange. Note all parameters are calculated within the radial range
4 < r/kpc < 12. The black dashed lines indicate the relation between k and β (α) predicted by the power-law dfs. Here, we have fixed α (β) and γ to the median
values of the simulated haloes. As predicted by the analytical dfs, the tails of the velocity distributions are shallower when the velocity anisotropy is strongly
radial and/or the stellar halo density is relatively shallow. The thick grey lines indicate the range of k appropriate for stellar haloes with strongly radial velocity
anisotropy.

lines indicate the predicted relations from the analytical dfs, where
γ and α or β are fixed to the median values of the simulated haloes
(γ = 0.3, α = 2.5, β = 0.35). Remarkably, these predictions agree
well with the simulations!

The four haloes with prominent ‘sausage’ components are again
highlighted in orange. We also indicate with the thick grey lines the
range of k ∈ [1.0, 2.5] appropriate for stellar haloes with strongly
radial velocity anisotropy. Figs 5 and 6 illustrate that, although there
is a relatively wide range of k values in the simulations (1 � k �
7), the form of the high-velocity tail is correlated with the stellar
halo properties. Thus, rather than bracket the range predicted by the
simulations, which covers a wide range of assembly histories, we
can provide a more stringent constraint on k from our observational
data. Thus, in the following section, when we measure the local
Galactic escape speed, we impose 1.0 < k < 2.5. This range of k
encompasses the values we found in the Auriga simulations when
β ∼ 0.7, and also brackets the predicted k value from the analytical
power-law dfs when β = 0.7, α = 2.5.

3.3.1 Constraining the local escape velocity

We end this section by illustrating the importance of k in determining
an accurate Galactic escape speed. Here, we perform the maximum
likelihood analysis described in Section 2.1 to the simulation
data. Here, k, γ and vesc(r0) are free parameters. To mimic the
approximate status of the observational data, we randomly choose
N = 240 star particles in the radial range 4 < r/kpc < 12
with vtot > 300 km s−1, and include a Gaussian error on the total
velocities with σ = 30 km s−1. Note this exercise is for illustration
rather than quantification of the observational results (see Section 4).
In Fig. 7 we show the 2D confidence contours in the k and vesc(r0)
space for the three example Auriga haloes shown in Fig. 4. Here,
we have marginalized over the power-law slope of the potential (γ ),
but note that this parameter is generally poorly constrained when
there is a limited radial range and small number of tracers (see
Fig. 9). Fig. 7 shows that, although the true k and vesc(r0) values
are contained within the 1 − σ confidence regions (plus symbols),
there is a strong degeneracy between k and vesc(r0) , such that the
escape velocity varies by hundreds of km s−1 when k is unknown.
The dotted lines indicate the approximate range of k predicted based
on the velocity anisotropy of the halo stars (see Fig. 6) – this prior

knowledge can substantially narrow down the allowed range of
vesc(r0) values. Note that we impose a range of k, rather than a fixed
value, to account for the scatter in k at fixed β.

For several reasons, the case of our own Milky Way appears rather
fortuitous! First, the currently accepted origin of the inner stellar
halo – namely from the debris of one massive dwarf, accreted several
Gyr ago – suggests that the majority of the stellar halo material,
at least near the solar vicinity, is well phase-mixed. Secondly, as
mentioned previously, our knowledge of the halo stars’ orbits in the
solar vicinity places a constraint on k, with 1.0 < k < 2.5. Thirdly,
the fact that the Milky Way likely has a low k value means that the
high-velocity stars can more strongly constrain the escape velocity.
For example, if k = 1, the high-velocity tail linearly declines to a
truncation at vesc. Thus, in this case, the fastest star in the sample
is likely very close to the escape velocity. In contrast, if k is high, a
long, poorly populated tail extends to the escape velocity, and thus
the escape velocity is more difficult to constrain.

On that optimistic note, we end this section exploring the Auriga
simulations, and proceed to constrain the local Galactic escape
speed using Gaia data.

4 THE GALACTI C ESCAPE SPEED FROM GAIA
D R 2

In this section, we apply the LT90 formalism described in Sec-
tion 2.1 to Gaia DR2 (Gaia Collaboration et al. 2018). We use
the information gleaned from the simulations to help constrain the
escape velocity by applying a prior on the k value, which is tailored
for our own Milky Way galaxy.

4.1 Gaia DR2 data

We select stars from Gaia DR2 with parallax, proper motion and
radial velocity information. We apply the same quality flags as
Marchetti et al. (2018) and Monari et al. (2018) to make sure
our sample is free from spurious objects. In addition, we only
include stars with re-normalized unit weight error, RUWE < 1.4
(Lindegren 2018), which ensures stars with unreliable astrometry
are excluded. Our estimate of vesc(r0) is sensitive to the fastest
moving stars, hence we restrict our analysis to stars with accurate
parallax measurements, with 0 < σ ( )/ < 0.1. To estimate
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Figure 7. The 2D confidence contours in the k and vesc(r0) space for three
example Auriga haloes (see also Fig. 4). We have marginalized over the
radial power-law slope of the escape velocity (γ ), and the contours show the
1 − (grey filled) and 2 − σ (solid line) confidence regions. Here, we have
randomly chosen N = 240 star particles in the radial range 4 < r/kpc < 12
with vtot > 300 km s−1, and include a random error on the total velocities of
30 km s−1. This approximately mimics the sample size and uncertainties in
the Gaia data (see Section 4). The degeneracy between k and vesc(r0) is clear.
Moreover, with smaller sample sizes and/or relatively large velocity errors,
the degeneracy becomes even more pronounced. The dotted lines indicate
the approximate range of k predicted based on the velocity anisotropy of
the halo stars – the addition of this constraint can narrow down the allowed
region of vesc(r0) substantially.

distances, we use the procedure outlined in McMillan (2018),
which uses a prior designed to apply to the Gaia data with radial
velocities. We adapt the method1 to only include a prior relevant for
a halo population. In practice, this means only considering a halo
density component (rather than multiple Galactic components), and
assuming a flat age and metallicity prior. We assume a power-law
slope with index −2.5 for the halo stars, in agreement with the
most recent constrains for the density profile of the inner halo (e.g.
Faccioli et al. 2014; Pila-Dı́ez et al. 2015). In our analysis, we only
include stars in the immediate solar vicinity with D < 3 kpc: this
cut ensures our distances are dominated by the parallax information
rather than the prior. Finally, to avoid any contamination from disc

1The code from McMillan (2018) is available here: https://github.com/Pau
lMcMillan-Astro/GaiaRVStarDistances

Figure 8. The velocity distribution of N ∼ 2300 counter-rotating stars
in the Gaia DR2 catalogue. These stars have measured proper motions,
radial velocities and parallaxes. We select stars within 3 kpc of the solar
neighbourhood, with less than 10 per cent parallax errors. In the right-hand
panel, the red line-filled polygon shows the best-fitting model to the high-
velocity tail.

stars, we only consider counter-rotating stars (cf. Monari et al.
2018). Our final sample of stars is N ∼ 2300, of which N ∼ 240
have vtot > 300 km s−1. With future Gaia data releases we can be
less restrictive, and explore a wider range of distances. Here, we
focus on a local sample in order to robustly determine vesc(r0).

The distances, proper motions and radial velocities are converted
to Galactocentric coordinates, assuming a circular velocity of
vc(r0) = 230 km s−1 (Eilers et al. 2019) at the position of the Sun
(r0 = 8.3 kpc), and a peculiar solar motion of (U�, V�, W�) =
(11.1, 12.24, 7.25) km s−1 (Schönrich, Binney & Dehnen 2010).
If the adopted circular velocity is lower or higher by 10 km s−1

then our derived total velocities are only mildly affected, and our
measured escape velocity is not significantly changed. We propagate
errors in our analysis using a Monte Carlo technique. Samples
are generated N = 1000 times with proper motions, distances and
radial velocities drawn from their respective error distributions.
The data are resampled with replacement (cf. Smith et al. 2007),
and in each iteration we only consider stars with vtot > 300 km s−1,
vφ < 0 km s−1 and D < 3 kpc. We employ a brute force grid-based
method to estimate the likelihood values, with uniform grids in the
range k ∈ [0, 10], vesc(r0) ∈ [400, 900] and γ ∈ [0, 1].

4.2 Results

The total velocity distribution of the Gaia data is shown in Fig. 8,
where stars with vtot > 300 km s−1 are shown in the right-hand
panel. When we adopt a flat prior of 1 < k < 2.5, which is appropriate
for the highly eccentric orbits in the solar vicinity, the best-fitting
model is indicated by the red band. The width of the band indicates
the 90 per cent confidence region.

The confidence regions for k, vesc(r0) and γ are shown in Fig. 9.
The filled grey region and solid black line show the 1 − and 2 −
σ confidence intervals, respectively. Here, we have assumed flat
priors for k and γ and employed a Jeffrey’s prior for vesc(r0). We
show the posterior distributions for each parameter in the inset
panels. The degeneracy between k and vesc(r0) is clear, as seen
in the previous section (and earlier work by Smith et al. 2007;
Piffl et al. 2014). The red and blue lines illustrate the effect of a
prior on k. Specifically, the dashed red line applies our new prior
– based on the orbits in the solar neighbourhood, and calibrated
on the Auriga simulations – of 1 < k < 2.5. For comparison, we
also show the prior adopted by Piffl et al. (2014) and Monari et al.
(2018), which is also based on cosmological simulations: 2.3 <
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Figure 9. The results of applying our likelihood analysis to the Gaia data with vtot > 300 km s−1. Here, the degeneracy between vesc and k is clear. When we
adopt a prior of 1 < k < 2.5 (red dashed line), appropriate for the strongly radial orbits observed in the solar neighbourhood, we find vesc(r0) = 528+24

−25 km s−1.
Note that adopting the same prior as Monari et al. (2018) and Piffl et al. (2014), 2.3 < k < 3.7 (blue dot–dashed line) results in a larger escape velocity:
vesc(r0) = 580+32

−32. We find little evidence for strong radial variation in vesc over the range we are probing (i.e. γ ∼ 0), with γ ≤ 0.7 with 90 per cent confidence.

k < 3.7. In these works, the prior spans the range of k values
found in simulations. However, our adopted prior is tailored towards
the highly eccentric stars in the Milky Way, which leads to lower
k values.

Assuming 1 < k < 2.5 we find vesc(r0) = 528+24
−25 km s−1. This

value is lower than the recent determination by Monari et al. (2018)
using Gaia DR2 data. However, the reason for this difference is
owing to the prior information on k. If we adopt the Piffl et al.
(2014) prior, we find vesc = 580+31

−31 km s−1, which is in excellent
agreement with Monari et al. (2018). Note that our error bars are
smaller than Monari et al. (2018) because we do not use narrow
distance bins, but rather use all the data and allow for a radially
varying escape velocity. Our estimate of the local escape velocity
is in good agreement with the values found by Smith et al. (2007),
Piffl et al. (2014) and Williams et al. (2017), who used line-of-sight
velocity data from RAVE and SDSS to derive vesc. However, it is
curious that these works find a similar escape velocity, as in all
cases larger values of k were adopted – which should, presumably,
bias towards larger vesc values. These works used samples of high
latitude stars with line-of-sight velocity measurements only, and
thus if there was any flattening in the stellar halo distribution in
the z direction, the total speed estimates based on the line-of-sight
velocities could be biased low. In particular, we now know that the
inner stellar halo is significantly flattened (e.g. Iorio et al. 2018), and
the highly eccentric orbits that dominate the high-velocity tail are
generally confined close to the Galactic plane (e.g. Myeong et al.
2018). Thus, we suggest that the line-of-sight analysis performed
by Smith et al. (2007), Piffl et al. (2014) and Williams et al. (2017)
would underestimate vesc if they used the correct k prior. Instead, we

postulate that the underestimate due to the flattened halo combined
with a bias towards larger k values has conspired to give an answer
consistent with our results!

Finally, we remark that our constraint on γ is weak, with γ = 0
consistent with the data. This is unsurprising given that we do not
explore an extensive distance range. However, when we can probe
to larger distances with future Gaia data releases, our methodology
can be used to also constrain γ , and hence the slope of the potential.

4.2.1 Bound or unbound?

The local escape velocity has often been used to ascertain whether
or not stars with extreme velocities are bound to the Milky Way.
Indeed, there exists a population of stars with velocities exceeding
the escape velocity, which are often labelled as ‘hyper-velocity stars’
or ‘hyper-runaway’ stars (see e.g. Brown 2015). There are several
plausible mechanisms that may have formed these fast moving
stars, including interactions with the central supermassive black
hole (e.g. Hills 1988), ejection from the Large Magellanic Cloud
(e.g. Boubert & Evans 2016), dynamical encounters between star
clusters (e.g. Leonard & Duncan 1990), and supernova explosions in
stellar binary systems (e.g. Portegies Zwart 2000). However, while
there exist a small number of extreme cases, the origin of many
stars with high velocities is uncertain, as their velocities straddle
the boundary of the Galactic escape velocity. Thus, an accurate
measure of the escape velocity is vital in order to determine the
origin of the fastest moving stars.

Recently, several works have used Gaia DR2 data to compile
samples of candidate stars with extreme velocities (e.g. Bromley
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et al. 2018; Hattori et al. 2018; Marchetti et al. 2018). However,
based on both orbital and chemical arguments, Boubert et al. (2018)
and Hawkins & Wyse (2018) argue that the vast majority of these
candidates are likely bound to the Milky Way, and comprise the
high-velocity tail of the stellar halo. Our constraint on the local
escape velocity, coupled with the observational errors, agrees with
this hypothesis. More accurate constraints on the escape velocity,
and hence the Galactic potential, will allow a more stringent clas-
sification of the origin of the apparently extreme stars. Moreover,
while Gaia DR2 is a giant leap forward in Galactic astronomy, future
data releases will limit the number of statistical outliers, which are
inevitable with these early Gaia data releases.

The evidence that several of the fastest moving stars occupy the
high-velocity tail of the stellar halo reinforces the finding of this
work. Namely, that the high-velocity tail of the local stellar halo is
well populated owing to the significant radial velocity anisotropy of
the halo stars. Indeed, if the velocity distribution was more sharply
truncated, as we saw in some of the Auriga haloes, then we would
see a less significant population of (bound) high-velocity stars.

5 TOTAL MILKY WAY MASS

The local escape velocity is a direct measure of the gravitational
potential. Historically vesc has been regarded as the velocity required
to escape to infinity, so vesc(r) = √

2�(r); however, in practice,
this definition is unrealistic. Instead, one needs to define a limiting
radius beyond which a star is considered unbound (or cannot fall
back on to the galaxy). In Section 3, we found that the appropriate
limiting radius in the Auriga haloes is ∼2r200, thus when we convert
our estimated escape velocity to a total mass estimate we need to
consider vesc(r0) = √

2(�(r0) − �(2r200)).
From this definition, we can constrain the dark matter halo

parameters from our estimated escape velocity. We assume an NFW
(Navarro, Frenk & White 1996, 1997) profile and let M200 and c200

be free parameters. We fix the baryonic components of the Galactic
potential, adopting Miyamoto–Nagai profiles (Miyamoto & Nagai
1975) for the thin and thick discs, and a spherical Plummer potential
(Plummer 1911) for the bulge. We use the parameters of the enclosed
mass, scale-lengths and scale-heights from Model I in Pouliasis et al.
(2017). We vary M200 and c200 uniformly in the ranges log(M200)
∈ [11.5, 12.5] and c200 ∈ [1, 30], respectively. To derive the NFW
parameters, we use the posterior values for vesc(r0) derived in the
previous section, after marginalizing over γ and k, and assuming 1
< k < 2.5.

The grey contours in Fig. 10 show the confidence intervals for
the NFW parameters (grey filled is 1 − σ , grey line is 2 − σ ). We
also show with the blue lines (thicker line is 1 − σ , thinner line
is 2 − σ ) the constraints on M200 and c200 assuming the circular
velocity at the position of the Sun is vc(R0) = 230 ± 10 km s−1

(Eilers et al. 2019). The combined constraint from vesc and vc is
shown with the red contours. Interestingly, the vesc and vc constraints
are perpendicular to each other in the M200, c200 plane: this is because
the escape velocity contains information about the potential exterior
to the solar radius, whereas the circular velocity mainly depends
on the mass interior. This results in a stronger constraint on M200

and c200 when the vesc and vc measurements are combined, and
we find M200 = 0.91+0.31

−0.24 × 1012 M� and c200 = 10.9+4.4
−3.3. Note this

relates to a total mass measurement, including the baryonic mass,
of M200,tot = 1.00+0.31

−0.24 × 1012 M�.
The black dashed line in Fig. 10 shows the mass–concentration

relation derived by Dutton & Macciò (2014) for dark matter
only simulations. For our estimated dark matter mass, M200 =

0.9 × 1012 M�, the Dutton & Macciò (2014) relation predicts a
concentration of c200 = 8.4. Our derived value of c200 = 10.9+4.4

−3.3

is higher than the theoretical prediction, but agrees within the 1σ

errors. Moreover, our derived concentration is in good agreement
with recent constraints in the literature (e.g. Callingham et al.
2019). If, however, we fix the concentration in our analysis to
the Dutton & Macciò (2014) prediction we find a total mass
measurement of M200,tot = 1.29+0.22

−0.22 × 1012 M�. Note that we get
very similar results if we adopt the mass–concentration relations
derived by Schaller et al. (2015) and Ludlow et al. (2016).

Our prior on k prior strongly influences the derived local escape
velocity, and thus also the estimated halo mass. For example, if we
adopt the same prior on k as Monari et al. (2018) then our dark halo
mass estimate is M200 = 1.5 × 1012 M� (or M200 = 1.7 × 1012 if the
Dutton & Macciò 2014 mass–concentration relation is assumed).
These values are in good agreement with Monari et al. (2018),
which is reassuring as they also use Gaia DR2 in their analysis.
Interestingly, although our derived escape velocity is similar to
Piffl et al. (2014), they find a more massive Milky Way halo, with
M200,tot ∼ 1.6 × 1012 M�. However, we find that the main cause
of this discrepancy is the mass–concentration relation assumed
by Piffl et al. (2014). They use the Macciò, Dutton & van den
Bosch (2008) mass–concentration as a prior, which is based on the
WMAP5 cosmology. However, in the Planck cosmology (as used by
Dutton & Macciò 2014) the concentrations are 20 per cent higher.
Thus, by adopting the Dutton & Macciò (2014) mass–concentration
relation based on Planck, our mass estimates are ∼20 per cent
lower. In addition to the different mass–concentration relation, Piffl
et al. (2014) also adopt a lower circular velocity, vc = 220 km s−1.
This also leads to a slightly higher mass estimate (see fig. 13 in
Piffl et al. 2014), but, as we assume a 10 km s−1 error in the
local circular velocity, this difference is subsumed into the mass
uncertainty.

Finally, we also comment on the limiting radius that defines
the escape velocity. In this work, we find that 2r200 is the most
appropriate choice (see Section 3.2). However, if we adopted larger
radii (i.e. ∼2.4–3r200, cf. Smith et al. 2007; Piffl et al. 2014) our
mass estimates would be slightly lower. For example, a limiting
radius of 3r200 reduces our total mass estimate by ∼8 per cent. This
lower mass is due to the limiting radius being overestimated, and
hence the estimated escape velocity is lower than the true velocity
needed to escape. Thus, the choice of limiting radius is an important
consideration when relating local escape velocity measurements to
constraints on the total mass.

Since the first astrometric Gaia DR2, several works have provided
updated estimates of the total Milky Way mass (e.g. Eadie & Jurić
2018; Malhan & Ibata 2018; Watkins et al. 2018; Callingham et al.
2019; Posti & Helmi 2019; Vasiliev 2019). The majority of these use
globular clusters or stellar streams confined within ∼50 kpc, so a
total mass estimate out to the virial radius requires an extrapolation.
Watkins et al. (2018), Posti & Helmi (2019) and Vasiliev (2019)
find Mvir,tot = 1.2−1.5 × 1012 M� using the dynamics of globular
clusters in the inner halo, and extrapolate to the virial radius using
mass–concentration relations. Here, these authors have used the
definition of virial radius adopted by Bryan & Norman (1998) and
Klypin, Zhao & Somerville (2002); the mass is defined within
340�M (≈100) times the critical density. However, when these
masses are scaled to M200 (approximately 16 per cent lower than
Mvir, tot), these total mass estimates are in excellent agreement with
our results, where M200,tot = 1.0−1.3 × 1012 M�.

Callingham et al. (2019) use satellite kinematics to measure the
Milky Way mass, thus, as the satellites extend out to the virial radius,
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Figure 10. The derived NFW halo parameters from our escape velocity measurement. Here, we assume a bulge and two-component disc potential as given
in Pouliasis, Di Matteo & Haywood (2017) (also used in Eilers et al. 2019). The grey filled contour shows the 68 per cent confidence, and the solid grey line
shows the 95 per cent confidence region. The blue contours use constraints on the local circular velocity: vc(r�) = 230 ± 10 km s−1. The red contours indicate
the combined constraint. The black dashed line indicates the mass–concentration relation from Dutton & Macciò (2014). In the top panel and right-hand panel
we show the 1D posterior distributions for M200 and c200, respectively. Our derived dark halo mass is: M200 = 0.79+0.45

−0.17 × 1012 M� (escape velocity only),

M200 = 0.91+0.31
−0.24 × 1012 M� (escape velocity and circular velocity).

their measure is a direct measure of the total mass. Their derived
total mass and dark halo concentration, M200,tot = 1.17+0.21

−0.15, c200 =
10.9+2.6

−2.0, are in good agreement with our results. This agreement is
particularly pleasing as the authors quote one of the most precise
and accurate total mass measurement to date, and use a completely
different analysis technique (and dynamical tracers) to derive the
mass.

These results imply that we are generally converging to a total
Milky Way mass of M200,tot ∼ 1 × 1012 M�. This mass, which
is on the low end of the wide spectrum of advocated masses,
effectively bails the Milky Way out from the ‘too big to fail’
problem. Purcell & Zentner (2012) and Wang et al. (2012) showed
that the number of massive satellites predicted around ∼1012 M�
haloes is in good agreement with the Milky Way dwarf population.
In contrast, many more massive subhaloes are predicted to reside
in more massive host haloes, which led to the original conundrum
posed by Boylan-Kolchin, Bullock & Kaplinghat (2012). Our total
Milky Way mass also has implications for the identity of the dark
matter (e.g. Kennedy et al. 2014; Lovell et al. 2014), the influence
of reionization on the dwarf satellite population (Bose, Deason &
Frenk 2018), and the uniqueness of some of the satellite dwarf
galaxies (e.g. the Magellanic clouds and Leo I, Boylan-Kolchin et al.
2013; Cautun et al. 2014). Indeed, the wide-range of Milky Way
mass estimates quoted in the literature has allowed this parameter to
frustrate our investigations into apparent small-scale problems with

the �CDM model; now in the era of Gaia we can hope to remove,
or at least narrow down, this important degree of freedom in future
analyses.

6 C O N C L U S I O N S

In this work, we have investigated the high-velocity tail of local
Galactic halo stars using a combination of analytical models,
cosmological simulations and six-dimensional Gaia data. We make
use of recent constraints on the origin of the inner stellar halo, which
affects the velocity distribution of the halo stars, to construct a prior
on the shape of the high-velocity tail. We use this insight to estimate
the local Galactic escape speed, and relate this measurement to the
total Milky Way mass. Our main conclusions are summarized as
follows:

(i) Using simple, analytical models we show that the shape
of the high-velocity tail is strongly dependent on the velocity
anisotropy and density profile of the halo stars. We find that for
a fixed gravitational potential, systems with highly radial velocity
anisotropy and/or shallow density profiles have more extended
velocity tails.

(ii) The shape of the high-velocity tails in the Auriga simulations
agrees with the predictions from the analytical models. We further
find that the assembly history of the halo, namely the mass and
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epoch of the most massive dwarf satellite mergers, impacts the
form of the high-velocity tail. We also use the simulations to define
the outer radial boundary for the escape velocity. An appropriate
choice, based on the orbits of the stars in the simulations, is 2r200.

(iii) By modelling the high-velocity tail with a functional
form ∝ (vesc − v)k (LT90), we use the simulations to construct
an appropriate prior on k. Recent observations of highly eccentric
orbits in the inner halo, caused by a massive, early accretion event,
conspire to form a prior appropriate for relatively extended velocity
tails, with 1 < k < 2.5. This allowed range of k is lower than
previous priors derived from cosmological simulations (Smith et al.
2007; Piffl et al. 2014), as these works consider the entire range of
assembly histories available rather than the particular case of the
Milky Way.

(iv) We apply our formalism to Gaia DR2 and measure a local
escape velocity of vesc(r0) = 528+24

−25 km s−1. We use the definition
of the escape boundary (2r200) to relate this measurement to the total
Milky Way mass. By combining our escape velocity measurement
with the local circular velocity (vc(r0) = 230 km s−1, Eilers et al.
2019), we find M200,tot = 1.00+0.31

−0.24 × 1012 M�, and c200 = 10.9+4.4
−3.3.

Our mass and concentration measurements are in good agreement
with Callingham et al. (2019) (see also Patel et al. 2018), who use
a completely independent methodology to model the dynamics of
satellite galaxies out to the virial radius of the Galaxy.

The premise of this work is to use our knowledge of the assembly
history of the Milky Way halo, and the corresponding phase-space
distribution of halo stars, to inform our modelling of the high-
velocity tail, and hence place a stronger constraint on the mass of
the Milky Way. In the past months since the first astrometric Gaia
data release, our knowledge of the Milky Way halo has increased
dramatically. Now we can start to use that knowledge to inform
our models, and reduce the wide parameter space set by cosmic
variance. In the present application to the high-velocity tail, the
Universe has conspired to be kind to us. The dominance of an early,
massive accretion event, and the resulting highly eccentric orbits
of the halo stars, leads to an extended, and well-defined, high-
velocity tail. This fortuitous situation allows us to make a robust
measurement of the local escape velocity, and hence the total Milky
Way mass. The future Gaia data releases will continue to further our
knowledge, and place even tighter constraints on these fundamental
parameters.
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