
23 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Montori, F., Liao, K., De Giosa, M., Jayaraman, P.P., Bononi, L., Sellis, T., et al. (2023). A Metadata-Assisted
Cascading Ensemble Classification Framework for Automatic Annotation of Open IoT Data. IEEE INTERNET
OF THINGS JOURNAL, 10(15), 13401-13413 [10.1109/JIOT.2023.3263213].

Published Version:

A Metadata-Assisted Cascading Ensemble Classification Framework for Automatic Annotation of Open IoT
Data

Published:
DOI: http://doi.org/10.1109/JIOT.2023.3263213

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/959709 since: 2024-02-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2023.3263213
https://hdl.handle.net/11585/959709

1

A Metadata-Assisted Cascading Ensemble
Classification Framework for Automatic Annotation

of Open IoT Data
Federico Montori∗, Kewen Liao†‡, Matteo De Giosa§, Prem Prakash Jayaraman‡,

Luciano Bononi∗, Timos Sellis¶, Dimitrios Georgakopoulos‡

∗University of Bologna, Italy
†Australian Catholic University, Australia

‡Swinburne University of Technology, Australia
§University of Milano Bicocca, Italy

¶ Athena Research and Innovation Center, Greece

Corresponding author’s E-mail: federico.montori2@unibo.it

Abstract—Public Internet of Things (IoT) platforms, such
as Thingspeak, significantly increased the availability of open
IoT data and enabled faster and cheaper development of novel
IoT applications by reducing or even eliminating the need for
deploying their own IoT sensors and platforms. However, open
IoT data is often heterogeneous, sparse, fuzzy, and lacks accurate
description (which we refer to as IoT metadata). These limitations
make open IoT data challenging to integrate and use, and
prevent the efficient development of IoT applications. In fact,
while several sensor data description models have been proposed
and standardized, open IoT data currently lack or include only
partial metadata description. Therefore, novel techniques for
automatically annotating open IoT data are needed to fully
unleash the power of open IoT. This paper proposes a novel
Metadata-Assisted Cascading Ensemble classification framework
(MACE) for the automatic annotation of IoT data. MACE is
capable of sequentially combining standalone classifiers, enabling
it to cope with heterogeneous IoT data and different domains of
information (e.g. numerical and textual), which have not been
considered previously. MACE incorporates a novel ensemble ap-
proach for automatically selecting, sorting, filtering, and assem-
bling classifiers in a way that improves annotation performance.
The paper presents extensive experimental evaluations of MACE
using public IoT datasets. Results demonstrate that the MACE
framework significantly outperforms existing solutions for open
IoT data by as much as 10% in classification accuracy.

Index Terms—Internet of Things, Classification, Annotation,
Open IoT Data, IoT Metadata, Sensors

I. INTRODUCTION

The connected future is set to be dominated by a significant
growth of the heterogeneous Internet of Things (IoT) devices
that are estimated to surpass the total number of mobile
phones by 2022 [11]. This has led to a phenomenal increase
in IoT data that is contributed by IoT devices across the
globe. A significant subset of IoT data is available for use
by any third-party IoT application via public IoT platforms

This paper is a significant extension of the conference paper [28] appeared
at WISE’18.

Federico Montori and Kewen Liao contributed equally to this work.

[27] such as the Environmental Protection Agency (EPA)
(https://www.epa.gov/) and ThingSpeak (https://
thingspeak.com/).

In this paper, we refer to such IoT data as “open IoT
data”. Open IoT data offers enormous potential to address
grand challenges that have been too hard to solve before, in
domains such as Smart Cities, Healthcare and Environmental
Monitoring, as well as to enhance the participation of citi-
zens in traditional policymaking. Open IoT data dramatically
improves the effectiveness of environmental and smart city-
oriented solutions, by filling the gap of missing information
or anticipating obstacles (stemming from increased urban
migration, climate change, etc.) [27]. More specifically, var-
ious open IoT data projects are shaping smart cities of the
future, by relying on both institutional and crowdsourced
open IoT data. Examples include InfoAmazonia Colombia
(https://colombia.infoamazonia.org), the Open
Data Barometer (https://opendatabarometer.org),
and BlindSquare (https://www.blindsquare.com)
among many others. However, the heterogeneity and ambigu-
ity of open IoT data significantly reduce the ability of IoT
applications to integrate and use such data. Heterogeneity
is due to the diversity in the type and the way IoT data
observations are made by different IoT devices and platforms
(e.g. different sensor type and accuracy, location discrepancy,
non-alignment in time, etc.) while ambiguity is caused by the
fact that open IoT data contributors use different annotation
policies, if any, to annotate the data.

The Semantic Web 3.0 vision has fueled the development of
several sensor data description models (e.g. Semantic Sensor
network and SOSA), capturing the IoT sensor description in
the form of metadata that includes an observation type (e.g.
temperature, humidity), and a corresponding unit of measure
(e.g. Celsius, Fahrenheit). However, most publicly available
open IoT data lack such IoT sensor metadata and, often the
type of the observation and its unit of measure produced by
the IoT device is unclear [39].

2

Such challenges demand the development of automatic
classification techniques for annotating public open IoT data
which makes the data usable by facilitating integration with
the IoT application.

To address these open IoT data annotation challenges,
this paper proposes Metadata-Assisted Cascading Ensemble
(MACE) – a novel ensemble classification framework to tackle
the challenge of annotating open IoT data. MACE incorporates
techniques to tackle heterogeneity and ambiguity issues by
classifying open IoT data that 1) lacks metadata description
and 2) provides partial, incomplete, or inaccurate textual meta-
data (e.g., an IoT device that produces temperature (IoT data)
may be described/annotated using non-machine-interpretable
names such as “temp”, or “t1”).

In our previous effort in addressing the problem of auto-
matic annotation of open IoT data [28] we established via
experimental evaluations that Time Series Classification (TSC)
algorithms, which have been used extensively in the literature
[2], do not perform well on open IoT data.

Thereby, we proposed a preliminary version of a sequential
ensemble classification approach, namely Top-k Sequential
Ensemble (TKSE), which produced promising results. How-
ever, in [28], TKSE only supported ensembling two layers of
classifiers, which were handpicked, i.e. there was no defined
rationale for choosing efficiently classifiers nor how to sort
them. In this paper, we build on our preliminary version of
a sequential ensemble classification and we extend the con-
cept into a more generic multi-layer classification framework,
namely MACE, with significantly improved classification ac-
curacy and strategies for multiple classifiers’ selection, order-
ing, and filtering. Novel contributions of this paper include the
following:
• A Metadata-Assisted Cascading Ensemble (MACE) clas-

sification framework for systematically and efficiently
annotating public open IoT data. MACE is a significant
improvement over TKSE [28]. In particular, we highlight
(i) novel heuristics for selecting and ordering classifiers
in MACE and (ii) novel strategies for filtering classes
between the ensemble of classifiers in MACE.

• A new open IoT dataset for conducting experimental
evaluations involving open IoT data classification. We
produced this by extracting, cleaning, and manually an-
notating an existing dataset from ThingSpeak. We made
this dataset available online to support further research
on open IoT.

• An extensive experimental evaluation that illustrates
the performance of MACE. In this evaluation, MACE
achieved a classification accuracy between 84% and 90%
which outperforms all existing classification techniques
for open IoT data.

The rest of the paper is organized as follows: § II provides
the background and the related work in the domain of IoT data
classification and annotation. § III defines formally the prob-
lem and describes the proposed MACE framework with novel
mechanisms for it to function effectively. § IV defines our
experimental setup and introduces the datasets used throughout
this study. § V details the experimental evaluations and § VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

IoT data is typically conceived as ordered sequences of
sensor readings, which can be naturally seen as what in the
literature are called “time series”. Time Series Classification
(TSC) problems, indeed, differ from ordinary classification
problems in that data values are ordered (not necessarily in
the dimension of time). Within the last years, several TSC
approaches have been proposed [2] as alternatives to the One
Nearest Neighbor (1NN) approach using pointwise Euclidean
Distance as a similarity measure between series. The common
agreement among researchers as a “hard to beat” de-facto
standard distance measure between series is Dynamic Time
Warping (DTW) [3], for which several approaches have been
proposed in order to contrast its high time complexity [22].
The above mentioned are called whole-series methods, since
they extract similarities by pointwise comparisons over the
whole sequence. Other recent TSC approaches are shapelet-
based, which aim at finding a subsequence, called “shapelet”,
yielding the highest information gain that can discriminate
among classes within a tree-based classification algorithm
[41][33]. A third type of method, namely dictionary-based
approaches, splits the time series in time windows and extracts
patterns out of each window as features. Such methods tend
to be faster than the aforementioned ones due to feature
numerosity reduction. Examples are Bag-of-Patterns (BOP)
[25], which uses piecewise aggregate approximation (PAA)
through Symbolic Aggregation approXimation (SAX) words
[24] and Bag-of-SFA-Symbols (BOSS) [37], which encodes
subsequences through Discrete Fourier Transform (DFT).
In contexts where the inference is uncertain, ensemble
algorithms have been shown to be able to capture different
facets and types of data distribution [35]. Ensemble methods
can be further divided into styles of parallel and sequential,
where in the first case a number of classifiers are built/trained
independently on the original data and the class of an unseen
example is guessed by aggregating the outcomes of each
parallel classifier (e.g. through bagging, voting, stacking); in
the second case, classifiers function together in a pipeline with
each taking input from the output of the previous classifier
(e.g. boosting, cascading). In this paper, we promote the use
of cascading classifiers [1], a type of ensemble where a single
classifier is active at each time. This is a convenient choice
when the data to be classified is heterogeneous and each
standalone classifier is able to discriminate certain classes
or domains with high accuracy, but is unable to classify
other categories of objects [15]. Cascading classifiers, even
in recent literature, mostly operate by applying classification
models in sequence until a certain threshold of confidence is
reached, such as in [4]. Another example is the work in [5], in
which authors apply repeatedly binary classifiers to obtain a
filtering-based ensemble applicable to a non-binary problem.
They order classifiers by applying first the most confident
ones (confidence is measured through multiple metrics).
In this paper, we make use of a class filtering process in
which classifiers are selected and ordered a priori and then
classes are filtered out at each stage, which is poorly explored
in literature. A similar approach is found in [32], – they

3

denominate it a “class set reduction” – in which a genetic
algorithm is proposed as a meta-heuristic method to find the
best combination and ordering of classifiers to be included.
Differently from our approach, they only explore a reduced
case study of two classifiers, whereas our solution supports
n-classifiers, including strategies for ordering them, and is
supported by extensive experimental evaluations including up
to 5 classifiers.

The classification of open IoT data stemming from
heterogeneous IoT devices has been investigated in the
literature. The work in [8] proposes a PAA-based approach
that treats the sensor data classification as a dictionary-based
TSC problem and uses interval slopes as features. A different
approach was taken in [6], aiming to assess the validity
of open IoT data by comparing it with certified ground
truth. In [27] open IoT data was classified using only the
metadata provided, i.e. the user-assigned stream name. More
recently, other research efforts have been conducted in this
research domain, particularly oriented to the inference of the
sensor type in building automation systems (BAS) application
domain [14][19][18]. The majority of these works leverage
TSC, while few others use the metadata associated with
sensors [13]. A more recent work classifies numerical data
from sensors through Image Encoded Time Series (IETS),
also assessing the high performance of statistical features
[20]. TSC and semantic inference methods, however, work
well when the physical place to be monitored is small enough
so that similar sensor readings tend to have a consistently
similar trend and similar metadata encoding. On the other
hand, outside the BAS application domain, there is a need
for a combined approach and very little research has been
conducted in such a direction. We also acknowledge related
work in the field of classification of IoT data and devices
from their network traffic profiles. It is the example of [40],
which uses a multi-stage classification algorithm based on
several domains of information, [30], which proposes a
probabilistic framework using stacked autoencoders, and [26],
which uses random forest trained on a whitelist of devices to
identify possibly malicious ones in a network. However, these
studies assume that IoT devices provide access at network
level, which is usually not the case for open IoT data.

In summary, heterogeneous open IoT data obtained from
open data sources often faces the drawback of being unlabeled
(lack of metadata) and sparse, leading to hardly intelligible
data values. Even in instances where some metadata is avail-
able, the meaningfulness of this metadata varies significantly,
posing challenges in classifying the open IoT data. TSC
algorithms, which have been used extensively in literature
[8], bear in general low performance on open IoT data, as
the data heterogeneity hinders the discovery of discriminant
patterns. Our preliminary work [28] was the first approach
that employed ensemble methodologies in order to consider a
combination of both numerical characteristics of the open IoT
data and its metadata for classification, however, the solution
only supported two handpicked classifiers. Therefore, the work
presented in this paper is, to the best of our knowledge, the

first complete approach able to combine automatically and
efficiently an arbitrary number of classifiers for the task of
open IoT data annotation.

III. METADATA-ASSISTED CASCADING ENSEMBLE
(MACE) ALGORITHMIC FRAMEWORK

In this section, we outline the problem of classifying open
IoT data in order to enable automatic annotation and propose
to tackle it through our algorithmic framework. Hereafter, we
will use the term “datastream” to refer to an individual series
of chronologically ordered numerical sensor readings – in this
paper, these are also referred to as “observations” or “measure-
ments” – each of them produced by a single real or virtual IoT
sensor, together with its metadata. Therefore, we assume that
each sensor reading of a single datastream is about a single
data type (e.g. temperature). To avoid misinterpretations, a
datastream is not necessarily bound to the classic concept of
streaming [29], instead, datastreams can also be stored and
queried through offline batch analyses.

A. Problem Formulation

Formally, we are given n IoT datastreams NS =
{S1,S2, . . . ,Sn} and ∀i ∈ [1, n] : Si = {Di,Ri}. Specif-
ically, Di represents a dictionary of metadata (e.g. XML-
like attribute-value pairs) with or without annotations (i.e. the
attribute has a value or not). The time-ordered fractional sensor
readings are contained in tuple Ri = 〈ri,1, ri,2, . . . , ri,m〉
that resembles a numerical time series. Each ri,j is a read-
ing from i-th stream at time τj . For instance, consider a
temperature stream Si with annotated metadata name and
description while the annotation for metadata type is missing;
then Di = {(name : “outdoorTemp”), (description :
“ESP8266 with DHT11”), (type : “ ”), . . .} and Ri could
be 〈21.5, 23, 25.4, . . .〉. Without loss of generality, we assume
datastreams to have the same temporal length m (thus, NS
can be viewed as a column-ordered matrix of size n×m) and
time intervals {τj+1 − τj} between two consecutive readings
in each datastream are near-uniform.

As, in our scenario, several textual metadata type values
that indicate the classes of datastreams are missing, the goal
of the annotation problem is to recover the datastream classes
(the type value in {Di}) from both the information of sensor
readings and the available metadata. When both are available,
then we are in presence of data from multiple information
domains. To achieve this goal, the possible categorical types
are mapped to numerical labels {yi} first, i.e. datastreams are
transformed to the form {Si, yi}. Then, datastreams in NS
are split into a training set with size t and a test set with
size n− t. Specifically, from the training set, existing classes
are mapped to c distinct numerical labels L = {l1, l2, . . . , lc}
and, normally, c� n. In the training phase classifiers are built
for the later testing phase to infer, from L, which class each
missing yi in the test set belongs to. In the following, § III-B
adopts the formulation/notation defined here. Throughout the
paper, we use bold symbols to denote multi-dimensional data
structures such as vectors, matrices, and dictionaries. Note
that, for the sake of simplicity, in our problem formulation

4

Fig. 1. A pictorial overview of the MACE framework.

the type metadata embeds any attribute-wise data class. This
means that if a data type would ideally include one or more
sub-types, then we flatten such a hierarchy by making each
sub-type a type of its own. For instance, if a scenario admits
the temperature to be measured both in Celsius and Fahrenheit,
then this would result in two totally detached types; the
same applies, e.g., for indoor and outdoor temperature. In
practice, we assume observations belonging to the same type
to have compatible behaviors, which is necessary for applying
supervised approaches.

B. An Overview of the MACE framework

In this section, we propose a Metadata-Assisted Cascading
Ensemble (MACE) algorithmic framework. For each unclas-
sified datastream, MACE acts as a filtering-based multi-class
cascading framework which, at each step, selects from the
output of the current standalone classifier the most probable
remaining classes that the next classifier must consider (i.e. an
“output-filter-relay” cascading process).

The overall mechanism of p-stage MACE (where p is the
number of selected standalone classifiers in the ensemble)
is displayed in Figure 1. Following the formulation from
§ III-A, suppose that a set of Θ supervised classifiers Γ =
{Γ1, . . . ,ΓΘ} are independently trained on the same training
set TRAIN = {(S1, y1) , . . . , (St, yt)} with ground truth
classes |L| = c and ∀i ∈ [1, t] : Si = {Di,Ri}. Then
the testing set is TEST = NS\TRAIN with datastreams
having unknown class labels. For a test example (T, y) ∈
TEST, its class y can be easily inferred from a standalone
classifier such as Γi(T) that outputs a rank/tuple of classes in
L (descendingly ordered by classification probabilities) for T.

On the other hand, within MACE we define the composed
filtering classifiers in an ordered cascading ensemble as func-
tions Γ̂ =

〈
Γ̂1, . . . , Γ̂p

〉
. Let Cout,i be the filtered output class

tuple from classifier i and f be the class filtering function (to
be described later), then we have

Cout,1 = Γ̂1(T,Γ1,L) = Γ1(T) (1)

∀i ∈ [2, p] : Cout,i = Γ̂i(T,Γi, f(Cout,i−1)) (2)

where equation (1) is the base case and for (2) we define

Γ̂i(T,Γi, f(Cout,i−1)) = Γi(T) ∩ f(Cout,i−1)) (3)

and denote ∩ as an order-preserving (according to the tuple
operand) intersection operator between a tuple output from Γ
and a filtered class set from f (both contain elements in L),
rather than its conventional use between two unordered sets.

Hence, we can regard f as a filtering or mapping function that
always keeps high-probability classes (i.e. top-ranked classes)
for the multifaceted considerations of a series of classifiers or
otherwise removes low-probability classes. For instance, for
a test example, T assuming initially there are 5 classes such
that L = {1, 2, 3, 4, 5} to be chosen from and the first two
standalone classifiers (without filtering) produce class ranks
Γ1(T) = Cout,1 = 〈2, 4, 5, 3, 1〉 and Γ2(T) = 〈3, 4, 5, 2, 1〉
respectively. Further, we assume, with the involvement of
a filtering strategy/rule the first filtered class set becomes
f(Cout,1) = {2, 4, 5}. Therefore, the sequentially ensembled
class output from the second classifier evaluates to Cout,2 =
〈3, 4, 5, 2, 1〉 ∩ {2, 4, 5} = 〈4, 5, 2〉, preserving the ordering
in Γ2(T). Note that in the above recursive formulation (2)
of the MACE framework, the ensemble outputs follow the
property that ∀i ∈ [2, p] : |Cout,i| ≤ |Cout,i−1| due
to |f(Cout,i)| ≤ |Cout,i|, and in the end |Cout,p| = 2
containing its TOP-1 result as the final class prediction. In
other words, in the testing phase, MACE creates filters by
consecutively applying the filtering function f on output ranks
Cout,1, . . . ,Cout,p until |f(Cout,p)| = 1.

The training phase of MACE is composed of the following
two Cross-Validation (CV) steps:

• Stratified K-fold Cross-Validation with standalone clas-
sifiers from Γ.

• Stratified K-fold Cross-Validation with the cascading
ensemble Γ̂.

Together above with the MACE recurrence relation formula
(2), the first CV step is to determine the final selection and
ordering of standalone classifiers (§ III-C) from {Γ1, . . . ,ΓΘ}
for composing an ordered sequential ensemble

〈
Γ̂1, . . . , Γ̂p

〉
.

The second CV step is for training the designed filtering
strategies (§ III-D) in MACE, that is, training the parameter of
f . We pick the fold number K = 5 for both CV steps while
stratification ensures classes are balanced in the training set.
In the rest of this section, we detail both CV procedures.

C. Selecting and Ordering Classifiers

It is not hard to see that, despite the performance of
individual classifiers, the efficacy of MACE heavily relies
on the organization and configuration of cascading classifiers.
Deciding an optimal subset Γ′ ⊆ Γ of standalone classifiers
to form Γ̂ as well as their optimal ordering in Γ̂ implies
a computationally intensive cross-search phase in which we
need to evaluate all the k-permutations of Θ elements for
each k ≤ Θ. To overcome this issue, we instead propose two
simple yet effective and efficient heuristics in MACE for (i)
selecting the subset of classifiers and (ii) ordering them. Let
us first define the top-accuracy of a standalone classifier Γi

with a function Ai(k) that returns the K-fold CV accuracy
of its top-k predicted classes ranked by probability. In other
words, the function calculates the percentage of true positives
included in the classifier’s predicted top-k rank over all test
examples. For instance, Ai(1) is the actual accuracy of Γi,
while, by construction, ∀i : Ai(c) = 100%. Furthermore, all
Ai(k) functions are monotonically increasing by construction.

5

In order to decide Γ′ from Γ, we employ a dominating
heuristic based on the top-accuracy values of standalone
classifiers. Now, given the top-accuracies, we would ideally
keep in Γ′ only the classifiers from Γ that have the best top-
accuracy for at least one value of k. In other words, only non-
dominated classifiers are kept where, conversely, a dominated
classifier i satisfies:

∀k ∈ [1, c] ∃j 6= i : Aj(k) ≥ Ai(k). (4)

In order to determine Γ̂, selected classifiers in Γ′ are ordered
based on another backward search heuristic as follows. The
classifier search starts backwards from the largest k = c down
to k = 1. At any c > k ≥ 1, the dominating classifier with the
highest top-k accuracy has an index arg maxiAi(k) (ties not
allowed) and the heuristic composes the ensemble with such
unique dominating classifiers found from backward search as

Γ̂ =
〈
Γarg maxiAi(k1),Γarg maxiAi(k2), . . . ,Γarg maxiAi(kp)

〉
(5)

where c > k1 > k2 > . . . > kp ≥ 1 and the constrained
unique condition in the search is:

∀j ∈ [1, p] , h ∈ [j + 1, p] : arg max
i
Ai(kj) 6= arg max

i
Ai(kh).

(6)
Essentially, the condition is to decide what the discrete

points kj’s are for extracting unique classifiers in a backward
non-repeatable fashion. The search is also made more efficient
with the dominating heuristic applied before in order to
remove the dominated classifiers. The rationales behind our
dominating and backward search heuristics are i) classifiers
performing better for higher values of k are suitable as front
filtering classifiers as they are likely to get rid of wrong
classes at an early stage; ii) vice versa, classifiers performing
better for lower values of k are more powerful in guessing
the right class in the end, becoming a much easier task
when many wrong classes have been already filtered out; iii)
classifiers consistently performing worse than others should
not be included in the ensemble. The effectiveness of the
heuristics is demonstrated later in § V. In particular, examples
of these heuristics in practice are given in § V-B.

D. Class Filtering Strategies

A cascading filtering strategy defines the filtering factor/ra-
tio/map between every two consecutive cascading classifiers
in MACE. In order to properly configure p selected and
ordered classifiers to achieve better performance, the filtering
function f aiming at gradually removing wrong classes has
to be determined, since, an inappropriate filter would impact
negatively on the performance by either missing many classes
or introducing much noise. The straightforward approach is
a top-k filtering strategy that tries all discrete values of
k ∈ [c] and chooses, at each filtering step u, the optimal
top k∗u classes to keep from Cout,u which yields the highest
accuracy in the second CV step for training the cascading
ensemble Γ̂. However, such a method would imply trying
all the possible values of k for each of the p − 1 filtering
steps, i.e. as slow as taking O(cp−1) computational steps. For
this reason, we extend f to be a generalized function such

that ∀u ∈ [1, p] : ku = f(z,Cout,u) where z is a constant
filtering parameter. Such generalized definition reduces the
ensemble parameter space into a common filtering parameter z
to be optimized across all classifiers. In terms of computation,
this cuts the number of CV steps down to O(1) (i.e. cross-
validating the ensemble over all the possible values of z,
which is constant). Function f and its parameter z can be
designed differently for different filtering strategies. Here, we
propose three specific filtering strategies that will be used in
our experiments. The filtering strategies are named Top-k, PF,
and SoF and are grouped into two macro-categories that will
be described below: rank-based and distribution-based.

1) Rank-Based Strategy: This category of strategies aims
to directly extract the most likely classes from the produced
rank of output classes, that is, the list of classes descend-
ingly ordered by their output classification probabilities. The
straightforward Top-k strategy, which simply slices from the
top of the rank by directly specifying a value of k for each
filtering stage, is a part of this category. However, this strategy
suffers from computational inefficiency in searching fixed k’s
as stated above. In order to overcome this issue, we revise
the Top-k strategy such that the number of filtered classes
between two sequential stages is determined heuristically as
the maximum value of k at which the former classifier Γ̂i gets
dominated by the latter Γ̂i+1, i.e. the maximum k such that
Ai+1(k) ≥ Ai(k). For instance, let us consider two classifiers
Γa and Γb, such that Γa gets dominated by Γb for k ≥ 6, i.e.
the top-accuracy of Γb is greater than that of Γa for such values
of k. Then, after ordering the classifiers as Γ̂ = 〈Γb,Γa〉, the
Top-k strategy selects heuristically as 6 the number of top-
ranked classes to be kept after applying Γb.

We also define another rank-based adaptive strategy called
Percentage Filtering (PF), which is defined by ∀u ∈ [1, p] :
ku = |f(z,Cout,u)| = dz · |Cout,u|e where z ∈ (0, 1).
The generalized function f simply specifies the top-ranked
ku classes to be kept in a filter in terms of a ratio over the
size of output classes. For instance, if z = 0.25, then the upper
quartile of Cout is passed onto the next cascading stage. Note
that when the size of cascading ensemble p = 2, PF is similar
to top-k, for which PF can be seen as its generalization.

2) Distribution-Based Strategy: This category includes
strategies taking into account the distributions of probabilities
output by the classifiers in order to locate the portion of
classes to be passed on. Under this category, we define
an alternative strategy called Survival of the Fittest (SoF),
which keeps the classes such that P (l) ≥ µ + zσ, where
P (l) is the probability attributed by a classifier to a class l,
µ is the mean of the normalized classification probabilities
and σ is the standard deviation of these probabilities,
tuned by a parameter z. Then, SoF can be defined by
∀u ∈ [1, p] : f(z,Cout,u) = {l ∈ Cout,u |P (l) ≥ µu + zσu}.
This way, only outstanding classes are selected, also, this
strategy produces filters of adaptive sizes as different unseen
examples can cause different classification probability
distributions.

Algorithm 1 below summarizes the entire algorithmic pro-
cess of the MACE ensemble classification framework. The

6

feature extraction (line 1) is a generalized process depending
on the type of features needed by the single standalone
classifiers. Used standalone classifiers are detailed in § V.
After such step, for notation simplicity, TRAIN and T are
substituted with extracted feature data to be trained and tested
respectively. In addition, the cascading process (lines 6-10) in
the algorithm exits either when |Cout| = 1 (perhaps several
classifiers are left unused) or Γu is the last classifier in the
cascading ensemble.

Algorithm 1 The overall algorithmic process of MACE
Require: Training set TRAIN = {(S1, y1), . . . , (St, yt)}, a

test example (T, y) ∈ TEST, a set of Θ classifiers Γ
Ensure: output y ∈ L

1: extract classes L and features for TRAIN and T
Training phase

2: perform stratified K-fold CV with each Γi ∈ Γ on
TRAIN to extract top-accuracies Ai’s

3: select Γ′ ⊆ Γ according to dominating heuristic eqn (4)
4: order Γ′ to form Γ̂ according to backward search heuristic

eqns (5) and (6)
5: select a filtering strategy f with parameter z and perform

stratified K-fold CV with Γ̂ to train z on TRAIN
Testing phase

6: Cout = Γ̂1(T,Γ1,L) # Γ̂i’s are computed from eqn (3)
7: for Γ̂u ∈ Γ̂ \ Γ̂1 based on the ordering in Γ̂ do
8: Cout,u = Γ̂u(T,Γu, f(z,Cout))
9: Cout = Cout,u

10: end for
11: return y = top-1(Cout)

IV. EXPERIMENTAL SETUP

We evaluate our proposal by running three types of exper-
iments. In the first experiment (§ V-A) we test individually
a large set of standalone classifiers as a baseline against
our open IoT datasets. In the second experiment (§ V-B)
we present the overall performance of MACE against the
baseline. This experiment has multiple goals: first of all, it
shows that our MACE heuristic ensemble strategy outperforms
all the standalone classifiers that are part of it, while still
holding a comparable training time. In fact, the whole process
takes two CV steps: the top-accuracy estimation, which takes
O(|Γ| · t ·K) (where t is the average time taken by standalone
classifiers and K is the number of folds in the CV stage), and
the tuning of z, which takes O(|Γ̂| · t ·K ·Z) (where Z is the
number of tested z values). Since K and Z are small constants,
the time becomes O(|Γ| · t). Furthermore, we show how this
method outperforms Majority Voting, a widely used parallel
ensemble strategy with comparable training time. Finally, in
the third experiment (§ V-C) we evaluate the effectiveness
of our heuristics for selecting and ordering classifiers against
all the other possible combinations of classifiers obtainable
from the same initial pool. This experiment is twofold: we
compare the accuracy of the MACE heuristic ensemble first
with its brute-force optimum and then with the whole set of
all possible combinations and orderings.

In all experiments, we performed a stratified split over
the datasets assigning 70% to the training set and 30% to
the test set. All tested algorithms in this paper are imple-
mented in Python 3.6.9 on top of scikit-learn [31]
for the standalone algorithms, except the implementation of
BOPF [23], for which we used the original C++ code pro-
vided by the authors. The code of the MACE framework
is available at https://github.com/matteodeggi/
IoT_Classification.

In the remainder of this section, we detail our open IoT
datasets and describe briefly all the standalone classifiers used
in the experiments.

A. Open IoT Datasets

Here, we introduce the open IoT datasets we have created
by extracting and cleaning open IoT data obtained from
public data sources. The datasets cover a good represen-
tation of publicly available IoT data that differ in spatial
granularity ranging from city-wide area, region-wide area to
country-wide area. Specifically, the ThingSpeak dataset is
our contribution to the current literature as we performed
the extraction and it needed a thorough adaptation including
cleaning and pre-processing to be used for the problem of
annotation. The datasets are available at https://github.
com/stradivarius/TSopendatastreams.

1) ThingSpeak (abbr. TS): a dataset that we extracted
from the online cloud platform of the same name (https:
//thingspeak.com/) to which users can subscribe and
push sensor data produced by their IoT devices onto personal
public “channels” through dedicated APIs. Each channel hosts
a set of datastreams (one for each measurement made by
the sensor connected to the IoT device) and user-annotated
metadata: a name, a description, a name for each datastream,
and a geolocation in GPS coordinates. Metadata is user-
assigned, thus it can vary in accuracy significantly. We created
our dataset in a similar way as in [28], with a significant
improvement both in the methodologies and in the number of
resulting instances. We scraped all the TS channels (756,322
at the time of writing) through a dedicated HTTP call1 that
returns a JSON object, containing the metadata and the last
8000 readings in year 2019 from the datastreams belonging
to the queried channel. Subsequently, all the datastreams were
made independent from their channel, filtering out those with
either no location data, a poor amount of sensor readings or
no public access. We then clustered, for each datastream, the
data points in 15min time chunks and kept the average as a
single data point value for each of them. In order to make the
datastreams consistent with each other, we also operated a spa-
tial and temporal clustering to select a country-wide area with
a reasonable number of observations within a reduced time
window (∼24hrs). Hence, we applied a DBSCAN algorithm
[38] to all the locations of the datastreams isolating the major
clusters. As can be seen in Figure 2(a), the clusters roughly
reflect the continents. We then selected the most populous one
and operated a second filtering DBSCAN to identify the most

1https://thingspeak.com/channels/{#channel}/feed.
json?results=8000\&start=2019-01-0100:00:00

7

873 (noise)
1944
10786
5001
992
509

(a) DBSCAN on the whole world (ε = 0.01,min samples = 300).

5288
5497

(b) DBSCAN on Europe (ε = 0.45,min samples = 1700).

Fig. 2. Spatial clustering operations through DBSCAN in building the TS dataset. The number of dots per cluster is indicated in the legend.

densely populated country-wide area. Figure 2(b) shows the
chosen area in Europe, which comprehends parts of Germany,
Poland, Czech Republic, Slovakia, Hungary, and Austria. At
the same time, we identified the best time window by cluster-
ing the measurements per day and selecting the day for which
the number of datastreams with at least ψ observations in such
day is maximum. The parameters ψ for temporal clustering
and the parameters ε and min samples for DBSCAN have
been tuned experimentally through a grid search. Finally, we
homogenized all the datastreams interpolating the missing
points by means of cubic splines, then we annotated manually
the dataset, filtering out datastreams for which the class was
uncertain from human analysis (after an automatic preprocess-
ing which includes translation into English through Google
Translate API). The final dataset contains 2121 datastreams
with metadata (therefore, with multiple information domains),
each of them with 96 data points and belonging to 21 different
classes: appliance temperature, humidity, pressure, indoor air
temperature, outdoor air temperature, wind speed, light, air
quality, wind direction, wind temperature, voltage, current
intensity, wireless RSSI, heat index, dewpoint, rain index, UV,
PM 1, PM 2.5, PM 10 e CO2. This dataset is released publicly
by us and comprehends a country-wide area.

2) Swiss Experiment (abbr. Swissex): is a web platform
that enables publishing environmental sensor data located
within the Swiss Alps mountain range in real-time. Data
is highly noisy, comes from different microscopic locations
and it is taken within different time spans. The sampling
rate is also different among sensors making the phase shift
of data series very significant. Neither semantic annotation
nor timestamps were originally provided. To the best of
our knowledge, the Swiss Experiment dataset (for which an
annotated version is available at http://lsirpeople.
epfl.ch/qvhnguye/benchmark/) is one of the few
IoT heterogeneous datasets used in research for tasks similar
to ours [8]. The dataset contains 346 datastreams without
metadata (therefore, with a single information domain), each
of them with 445 data points and belonging to 11 different
classes: CO2 (carbon dioxide), humidity, lysimeter, moisture,
pressure, radiation, snow height, temperature, voltage, wind
speed, and wind direction. The original data is organized in
time series of slightly different lengths, therefore we cut each
time series to the length of the shortest stream in the dataset.

Swissex is an example of a region-wide dataset.
3) Urban Observatory (abbr. UrbObs): is a pioneer-

ing programme led by the University of Newcastle within
the development of an urban sensor network in the
city of Newcastle, UK, which produces publicly avail-
able real-time environmental data [21]. The data from
one day has been extracted from http://newcastle.
urbanobservatory.ac.uk/ and pre-processed into a
dataset of 1065 datastreams without metadata (therefore, with
a single information domain), each of them with 864 data
points and belonging to 16 different classes: NO2 (nitrogen
dioxide), wind direction, humidity, wind speed, temperature,
pressure, wind gust, rainfall, soil moisture, average speed,
congestion, traffic flow, journey time, sound, CO (carbon
monoxide), NO (nitrogen monoxide). IoT data in this dataset
is highly correlated, both because the region of interest is
city-wide and because it comes from the same source. As
a matter of fact, the UrbObs data does not suffer from the
open crowdsourced open IoT data issue reported in § III, as
data is actually annotated; we used it as a comparison for our
methods.

B. Standalone Classifiers
For our experiments, we make use of three families of

supervised classification algorithms: Time Series Classifica-
tion (TSC) algorithms, standalone classifiers learning from
our engineered statistical features, and a Natural Langauge
Processing (NLP) classifier using metadata.

1) Time Series Classification (TSC) Classifiers: TSC is the
state-of-the-art approach adopted to address the problem of
annotating open IoT data, which, being by nature organized in
series, appears to be highly suitable for this type of algorithms.
We make use of the following well-known TSC algorithms:
• One-Nearest-Neighbor with Euclidean Distance (1NN-

ED): a whole-series naı̈ve method that operates a 1NN
approach using the sum of the distances of data points
between two series.

• One-Nearest-Neighbor with Dynamic Time Warping
(1NN-DTW): considered the golden standard in TSC, it is
a whole-series method that operates an optimal alignment
between two series when calculating the distance. Despite
being well-performing it is computationally expensive.
We use the fast implementation presented in [36].

8

• Bag of Pattern Features (BOPF): a linear-time dictionary-
based algorithm using the information gain of SAX-
encoded patterns [23].

• Slope Distribution Encoding (SDE): a dictionary-based
algorithm that has been used in literature to deal with
IoT data, therefore meaningful for comparison [8].

• Learning Time-Series Shapelets (LTS): a shapelet-based
algorithm that finds a matching of subsequences in series
with a high information gain [17].

2) Bag-of-Summaries (BOS) Classifiers: With Bag-of-
Summaries (BOS) we mean a set of statistical features ex-
tracted from a time series that leverage different aspects and
therefore can provide several planes of separation between
classes depending on their information gain. More in de-
tail, we extracted 11 features from the datastreams without
normalization: mean, median, maximum, minimum, standard
deviation, root mean square error (RMS), quantile, inter-
quantile range (IQR), kurtosis, and range. With the engineered
feature sets, we then experimented a set of standalone vanilla
classification algorithms widely used in machine learning:
C4.5 Decision Tree, Support Vector Machines (SVM), k-
Nearest Neighbors (kNN), Logistic Regression (LR), Ridge
Classifier and Gaussian Naı̈ve Bayes (GNB). These algorithms
have been optimized via a grid search on their parameters.
Together with standalone classifiers, we also experimented
standard ensemble classifiers using two approaches that rely on
the replication of one base classifier either in parallel (bagging)
or in sequence (boosting). For both categories we chose
decision tree as a base classifier, resulting in Random Forest
(RF) for bagging ensemble and Gradient Booster (GBoost) for
boosting ensemble.

3) Metadata-Based NLP Classifier: As said, sometimes
open IoT data comes with textual metadata (in our case the
TS dataset) that carry meaningful information. In particular,
MACE takes into account the datastream name, other metadata
such as description and channel name can also be considered.
Since most datastream names are in the form of abbrevia-
tions, a fuzzy string matching-based classifier focusing on the
“shapes” of words would be more appropriate than a semantic-
based NLP classifier. Building on such considerations, a sim-
ple supervised dictionary-based NLP classifier is adopted with
its earlier version introduced in [27]. Algorithm 2 outlines the
classification algorithm: in the training phase, a “dictionary”
for each class Lj ∈ L is constructed in the form of Bag-of-
Words (BOWj) including all datastream names in metadata
attributed to datastreams within the same class (line 2); in
the testing phase, for each class Lj , the respective minimum
edit distance dj = min{ed(w, s) | s ∈ BOWj} of a testing
example w is computed (lines 4-5). The predicted class is the
one with the minimum edit distance; we also compute the
probability of belonging to a class by inverting and normal-
izing the distances. We chose as ed the Damerau-Levenshtein
edit distance [10] normalized by the maximum length between
two words, which is why we name the classifier Dictionary
Damerau-Levenshtein NLP (DDL-NLP). Other edit distances,
such as the Jaccard and the Jaro-Winkler, have been tested
with slightly inferior accuracies.

Algorithm 2 DDL-NLP Algorithm
Require: Training set TRAIN = {(S1, y1), . . . , (St, yt)},

test example (T, y)
Ensure: y ∈ {1, 2, . . . , c}

1: for all (Si, yi) ∈ TRAIN do
2: BOWyi

← Di(
′name′) # Si = {Di,Ri}

3: end for
4: for j := 1 to c do
5: dj = min{ed(D(′name′), s) | s ∈ BOWj}

T = {D,R}
6: end for
7: return y = {Lj | dj ∈ min{d1, . . . , dc}}

V. EXPERIMENTS

In this section, we assess the performance of the MACE
framework with all the cascading filtering strategies proposed
in § III-D. By using the MACE framework we imply that the
ensemble of classifiers are selected through the dominating
heuristic and ordered through the backward search heuristic,
both introduced in § III-C, as they are embedded in the
framework itself.

A. Performance of Standalone Classifiers

The accuracy of the considered TSC and BOS standalone
classifiers across datasets can be observed in Figure 3, while
the DDL-NLP classifier has been tested separately. TSC clas-
sifiers (Figure 3(a)) have been applied both on z-normalized
data – as per their canonical application – and on non-
normalized data. From the figure, whole-series algorithms have
decent performances on non-normalized data, better than their
normalized counterpart; this happens because such methods,
in contrast with the others, can capture properties of the data
magnitude when applied to non-normalized data. However,
looking at the performance of other TSC algorithms, we
realize how data trend is not a sufficient discriminant. Both
shapelet-based and dictionary-based algorithms fail across IoT
datasets, with the exception of the city-wide UrbObs, on which
BOPF yields an acceptable accuracy.

The performance of the considered running standards clas-
sifiers on BOS features across open IoT datasets can be
observed in Figure 3(b). It is immediately noticeable that BOS
algorithms perform better than TSC algorithms, as they can
capture several characteristics of the data types that are not
necessarily connected with their trend (e.g. how a temperature
stream typically looks like, rather than the similarity between
two temperature trends). As BOS features can capture different
facets of data distribution, choosing sequentially which classes
they discriminate the most is typically a tree-based approach,
in fact, we observe that a simple decision tree outperforms
most TSC classifiers and RF, being its ensemble, appears to
be the most promising classifier for these open IoT datasets.
We also observe that the golden standard non-normalized
1NN-DTW achieves similar performance, because it is able
to capture in a different way the similar characteristics as
BOS features do, however, we recall that it is an exceptional
overkill for this problem as it is computationally much more

9

1NN-ED 1NN-DTW BOPF LTS SDE0

10

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

70
.8
%

73
.3
%

41
.4
%

1.
4%

29
.7
%

55
.8
%

74
.0
%

37
.4
%

13
.5
%

31
.7
%

76
.9
%

90
.0
%

74
.7
%

6.
9%

47
.2
%

66
.6
%

55
.9
%

41
.6
%

18
.4
% 24
.0
%

47
.1
%

44
.2
%

44
.2
%

20
.2
%

29
.8
%

67
.2
%

81
.6
%

75
.3
%

26
.2
%

36
.2
%

UrbObs
Swissex
TS
UrbObs [Norm]
Swissex [Norm]
TS [Norm]

(a) TSC algorithms

Ridge SVM kNN LR C4.5 NB RF GBoost0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

31
.4

%

62
.5

%

71
.0

%

61
.1

%

72
.1

%

29
.2

%

75
.7

%

73
.5

%

36
.5

% 43
.3

%

71
.2

%

65
.4

%

66
.3

% 72
.1

% 78
.8

%

75
.0

%

45
.6

%

60
.6

%

83
.8

%

82
.2

%

85
.0

%

79
.1

%

88
.1

%

85
.6

%UrbObs
Swissex
TS

(b) BOS algorithms

Fig. 3. Performance evaluation of TSC and BOS standalone algorithms with optimized parameters against the open IoT Datasets

expensive than BOS methods by several orders of magnitude
[28]. The DDL-NLP algorithm standalone (not shown in the
figure) yields an accuracy of 73.2%, which is aligned with the
best-performing BOS classifiers, although using a completely
different dimension of information.

B. Accuracy and F1-Score of the MACE Framework

This experiment aims to evaluate the performance of the
MACE framework given a sufficiently comprehensive ini-
tial pool of classifiers Γ. The pool has been defined so
that |Γ| = 5, as a higher number would jeopardize our
capability of evaluating the dominating heuristic against an
optimum (see § V-C), which means brute-forcing over all
the possible combinations and orderings of the classifiers.
As a result, we did not consider classifiers that have poor
standalone performances (such as Ridge classifier or BOPF)
as well as those that have an impractically long running time
(such as 1NN-DTW). The final pool of classifiers is Γ =
{1NN-ED,GradBoost,RF, kNN,SVM} for UrbObs and Swis-
sex and Γ = {1NN-ED ,GradBoost,RF, kNN,DDL-NLP} for
ThingSpeak. The rationale behind this choice is that, when
possible, we want to exploit classifiers operating in different
domains, in order to bring much more expressiveness to the
final ensemble. ThingSpeak possesses metadata as a powerful
source of alternative information from a “different point of
view”, which is highly desirable in ensembles. This is why
we included DDL-NLP in its pool. By using these initial
pools we executed the MACE framework by using all the
filtering strategies reported in § III-D, each of them with their
parameter z tuned through CV.

Before assessing the performance, we visually show how
MACE selects and orders the classifiers in the pool through
the heuristics, according to § III-C. Figure 4 shows the top-
accuracies Ai(k) of all classifiers Γi ∈ Γ against all three
datasets in experiments, with k on the x-axis. For UrbObs
in Fig. 4(a), GradBoost classifier, kNN classifier, and SVM
classifier are always dominated by some other classifier and
hence should be discarded, leaving classifiers 1NN-ED and
RF. Then, for the purpose of validating the backward search
heuristic, we start looking backwards from k = 16. When
k > 7, 1NN-ED uniquely dominates RF, so 1NN-ED is
put as the first classifier in the ensemble and, since from
k = 7 downwards RF dominates 1NN-ED, clearly RF is put

as the second. As a result, for UrbObs we will select 1NN-ED
followed by RF and, when using the Top-k filtering strategy,
heuristically set their filtering value of k to 7. A similar
process happens in Fig. 4(b), where only classifiers 1NN-ED
and RF are kept after applying the dominating heuristic. At
k = 10 their tie breaks with 1NN-ED uniquely dominating
RF, swapping their condition at k = 7, where RF starts to
take the lead until the end k = 1. Hence, according to the
unique condition (6), the only kj’s to consider are the change
points k = 10 and 7 since 1NN-ED also dominates the interval
[8, 9] and RF dominates [1, 6], where the unique classifier
condition is not met within these intervals. In a similar way,
for ThingSpeak, classifiers DDL-NLP and RF are chosen.

The accuracy results for each dataset are reported in Table I,
where we observe a positive outcome: first of all, the MACE
framework outperforms each and every standalone classifier
in the pool for all the filtering strategies. This happens by
a couple of percentage points for UrbObs up to more than
ten for Thingspeak, proving the effectiveness of our solu-
tion. Secondly, we report in Table II the F1-Score of each
experiment. Since our heuristics are accuracy-oriented in CV
phase, we consider the F1-Score to be a side-effect (in fact,
F1-scores were not presented in § V-A for space constraints).

UrbObs Swissex TS
Best standalone 88.1% 78.8% 75.7%
Majority Voting 89.1% 83.7% 79.6%
MACE with Top-k 90.6% 84.6% 84.3%
MACE with PF 90.6% 83.2% 83.4%
MACE with SoF 90.6% 82.7% 88.2%
MACE brute-force (SoF) 92.2% 86.5% 88.5%

TABLE I
ACCURACY OF ENSEMBLE STRATEGIES WITH AN INITIAL POOL Γ OF 5

CLASSIFIERS.

UrbObs Swissex TS
Best standalone 87.9% 83.2% 71.9%
Majority Voting 86.4% 81.6% 57.8%
MACE with Top-k 87.9% 83.2% 67.7%
MACE with PF 87.9% 83.2% 63.7%
MACE with SoF 87.9% 80.0% 79.4%
MACE brute-force (SoF) 88.7% 84.0% 76.7%

TABLE II
F1-SCORES OF ENSEMBLE STRATEGIES WITH AN INITIAL POOL Γ OF 5

CLASSIFIERS.

10

(a) UrbObs (b) Swissex (c) ThingSpeak

Fig. 4. CV top-accuracy of standalone classifiers over all three datasets. Note that these are CV accuracies, therefore different from the ones presented in
§ V-A, which are reported against the test sets.

Nevertheless, we observe that the MACE framework obtains
higher or equal values compared to the standalone ones for at
least one filtering strategy. For UrbObs we notice that the filter-
ing strategies are somewhat homogeneous and yield the same
accuracy, this is probably due to the already high performance
of individual classifiers on the dataset. Furthermore, we report,
for each dataset, the accuracy and F1-Score obtained through
majority voting. For a well-calibrated strategy, we adopted
Soft Voting, which predicts the class label based on the
maximum of the averages of the predicted probabilities. The
latter strategy handles better classifiers operating in different
domains.

In summary, MACE is designed for learning from heteroge-
neous IoT datasets containing multiple information domains.
Indeed, in the experiments, we observe that the MACE frame-
work outperforms Soft Voting, especially when classifiers
belong to multiple information domains (i.e., in ThingSpeak).

More in detail, despite the more complex structure of
MACE in comparison with Majority Voting, our heuristic
(described in § III) implies a linear computational complexity,
which is in line with parallel approaches. For the sake of
completeness, Tables I and II also include the superior best
accuracy and corresponding F1-Score (as a by-product) of
MACE from its slower brute-force implementation. At the
same time, MACE with heuristics yields a consistently higher
accuracy in presence of multiple information domains, while
holding similar (in most cases slightly better, rarely slightly
worse – a marginal difference of 1%) accuracy to parallel
ensembles given a single information domain. Moreover, even
though the three class filtering strategies are performing differ-
ently (a one-size-fits-all solution is hard to obtain in presence
of such heterogeneity in IoT datasets), we observe that for all
of them the above mentioned performance is consistent.

C. Evaluation of the Selection and Ordering Heuristics

In this section we discuss the performance of the heuristic
strategies presented in § III-C within the MACE framework.
Specifically, we compare the accuracy of MACE against (i) the
maximum accuracy obtained by brute-forcing with the same
initial classifier pool Γ and (ii) the accuracies obtained by all
the combinations of classifiers belonging to the same initial
pool Γ. Differently from the results shown in § V-B, here we
do not always use the set of five mentioned classifiers as the

starting pool Γ, rather, we define multiple starting pools. Let
us define the set Γ used in § V-B as Γtot instead. We then run
several tests by setting Γ to every single member of the power
set P(Γtot) that contains at least two elements (we do not use
initial pools that are empty or singletons). When |Γtot| = 5,
this results in 26 different initial pools, each of them as a
separate experiment with a different starting pool Γ, such that
2 ≤ |Γ| ≤ 5. For each of these experiments, we compute the
accuracy of every possible MACE ensemble obtainable from
Γ, in other words, every ordered k-permutation of classifiers,
with k in the range of |Γ|. In Figures 5 and 6 we show the
results for each of the three datasets as well as each filtering
strategy in the form of boxed scatterplots, which best highlight
the distributions. In both figures, each dot corresponds to the
result of one of the 26 experiments, which are repeated over
the datasets and for each filtering strategy. Figure 5 shows, for
each experiment, the accuracy achieved by MACE normalized
by the best accuracy achievable through brute-forcing over the
same initial pool Γ. A value of 100% means that the heuristic
selects the actual best possible combination and order. This
figure aims to show how much our heuristic selection differs
from the actual optimum. In the vast majority of cases, we
observe a very tiny difference in accuracy. For UrbObs, the
accuracy of the heuristic is, on average, 1-2% lower than the
optimum for all three filtering strategies; similar results are
displayed for Swissex. For both datasets, no major differences
are found among the filtering strategies. Such differences are
more noticeable on ThingSpeak, for which SoF is by far the
best strategy in this evaluation, whereas Top-k and PF present
a 5% lower accuracy for the heuristic on average. We also
observe, for all three filtering strategies, a cluster of results
that perform slightly worse. These occur when DDL-NLP ∈ Γ
and RF /∈ Γ, thus, according to Figure 4(c), DDL-NLP is
always selected as standalone, because the CV accuracy of the
numeric algorithm yields a lower performance. In Figure 6,
for each experiment, we do not take into account only the
best ensemble obtainable from Γ (as in Figure 6), instead,
we consider all the possible ensembles. The figure shows,
for each experiment, the percentile at which MACE, with the
filtering strategy tuned through CV, is ranked against all the
other ensembles obtainable from the same pool Γ across all
filtering strategies. Thus, this figure aims to show how good
the standing/rank of the heuristic is, together with the CV

11

(a) UrbObs (b) Swissex (c) ThingSpeak

Fig. 5. Relative performance of the MACE framework by using three different filtering strategies over all the datasets. The y-axis shows the accuracy of
MACE normalized by the respective optimum obtained from the same initial pool Γ. All dots are different experiments with each from a different starting
pool.

(a) UrbObs (b) Swissex (c) ThingSpeak

Fig. 6. Relative performance of the MACE framework by using three different filtering strategies over all the datasets. The y-axis shows the percentile of
MACE against all the other possible combinations obtained from the same initial pool Γ. All dots are different experiments each with a different starting
pool.

tuning, compared to all the possible alternatives. For instance,
a value of 75% means that, for that initial pool Γ, the accuracy
of the heuristic ensemble sits in the 75th percentile of the
accuracies of all the ensembles obtainable from Γ (i.e. 75% of
them are worse than the MACE ensemble). For UrbObs, more
values are distributed in the topmost part, averaging around
80% and spanning down to 50%, which is highly positive. In
fact, according to Figure 5, we observe a maximum error of
4% compared to the maximum. This suggests that, when the
percentile of MACE is low, most probably accuracies are dis-
tributed close to each other and, even if many others are better,
the difference is negligible. In the case of Swissex, we notice a
similar behavior, with slightly worse overall performances. It is
however interesting to notice how, for this dataset, distribution-
based strategies tend to perform worse than rank-based ones.
ThingSpeak, instead, displays highly positive results, as the
average percentile of MACE is around 90% with the exception
of the Top-k strategy. In fact, we notice how SoF in this case
outperforms the other strategies both in absolute and relative
evaluations. Furthermore, we observe that, even though in
Figure 5(c) sometimes the heuristic accounts for 85% the
accuracy of the optimum, we still find it to be ranked as one
of the top combinations, according to Figure 6(c).

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel algorithmic framework
called MACE to tackle the challenge of annotation and classi-
fication of open IoT datastreams produced from heterogeneous

IoT environments. First, we collected significant datasets from
the literature and released a new comprehensive dataset ex-
tracted from ThingSpeak that composes our experiments at
open IoT scales of city-wide, region-wide and country-wide.
Through experimental evaluations of a number of well-known
classifiers both in the scope of TSC and BOS we observed
that, although IoT datastreams are reminiscent of time series
datasets, due to the heterogeneity in the observations produced
by IoT devices, classic TSC approaches perform poorly while
vanilla classifiers based on statistical features perform signif-
icantly better when considering the numerical characteristics
of the IoT datastream. Secondly, we proposed MACE, which
uses a novel cascading ensemble approach to take advantage
of different domains and dimensions of the IoT data such as 1)
available textual metadata, 2) statistical characteristics and 3)
numerical data points. MACE heuristically selects and orders
classifiers in a pipeline in order to optimize the classification
performance. Through extensive experimental evaluations and
comparisons with state-of-the-art approaches in the literature,
we validated the significant gain in accuracy of the proposed
MACE algorithm with diverse filtering strategies.

Current Limitations and Future Directions

The approach proposed in this paper focuses in particular
on Open Data scenarios with their own distinctive features
and assumptions. We believe that MACE could be extended
to generic IoT scenarios as well, in order to concur in building
efficient future autonomic systems [16], however, this implies

12

tackling additional issues that the current MACE implementa-
tion is not focused upon or not entirely able to cope with.

IoT ecosystems are known to suffer from data mislabeling,
sometimes intentional [34], while Open Data is generally
trusted to be much less problematic. Since MACE is based on
supervised learning, data mislabeling would negatively impact
its performance. Especially when mislabeling or tampering oc-
curs at a large scale, the supervised learning model essentially
learns from noises and yields arbitrary predictions. Tackling
mislabeling problems requires a whole separate study, as label
noise types and tampering patterns are diverse (e.g., label
noise can severely harm decision tree-based algorithms). Some
existing studies [12] outlined label noise-robust, label noise-
tolerant, and label noise-cleansing algorithms. The cleansing
approaches appear to be easier for integration with MACE
(e.g., cleaning training data via anomaly detection, nearest
neighbors clustering, etc.), however, the application of these
methods deserves a separate and rigorous evaluation.

Open Data itself is not subject to privacy concerns, however,
private IoT environments, in order to permit data analysis by
third parties, at times need to undergo a phase of metadata
obfuscation. It is also the case of data regulation enforcement,
as it happens for instance for GDPR [9]. The regulation step
occurs prior to the classification phase, and while MACE
can deal with partial/inaccurate IoT metadata that could be
impacted by privacy regulations, a further in-depth study on
their consequences should be performed. As a matter of fact,
metadata inaccuracies enforced by GDPR are different from
the ones that genuinely appear in the Open Data, so MACE
can only deal with them to a certain extent. For instance, if a
privacy regulation implies that data should be encrypted, the
classification of MACE over encrypted data will not succeed
and a whole different approach [7] is needed. We believe that
a future study on these issues, though challenging, could give
a significant usability boost to MACE in the modern era.

REFERENCES

[1] Alpaydin, E., Kaynak, C.: Cascading classifiers. Kybernetika 34(4), 369–
374 (1998)

[2] Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time
series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery
31(3), 606–660 (2017)

[3] Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance
measure for time series. In: Proceedings of the 2011 SIAM international
conference on data mining. pp. 699–710. SIAM (2011)

[4] Biglari, M., Soleimani, A., Hassanpour, H.: A cascaded part-based
system for fine-grained vehicle classification. IEEE Transactions on
Intelligent Transportation Systems 19(1), 273–283 (2017)

[5] Biglari, M., Soleimani, A., Hassanpour, H.: A cascading scheme for
speeding up multiple classifier systems. Pattern Analysis and Applica-
tions 22(2), 375–387 (2019)

[6] Borges Neto, J.B., Silva, T.H., Assunção, R.M., Mini, R.A., Loureiro,
A.A.: Sensing in the collaborative Internet of Things. Sensors 15(3),
6607–6632 (2015)

[7] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classi-
fication over encrypted data. In: NDSS Symposium 2015. p. 04 1 2.
Internet Society (2015)

[8] Calbimonte, J.P., Yan, Z., Jeung, H., Corcho, O., Aberer, K.: Deriving
semantic sensor metadata from raw measurements. In: Proceedings of
the 5th International Workshop on Semantic Sensor Networks at ISWC.
pp. 33–48. CEUR-WS (2012)

[9] Chaudhuri, A.: Internet of things data protection and privacy in the era
of the general data protection regulation. Journal of Data Protection &
Privacy 1(1), 64–75 (2016)

[10] Damerau, F.J.: A technique for computer detection and correction of
spelling errors. Communications of the ACM 7(3), 171–176 (1964)

[11] Ericsson: Internet of things forecast.
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast,
accessed: 2018-04-30

[12] Frénay, B., Verleysen, M.: Classification in the presence of label noise:
a survey. IEEE transactions on neural networks and learning systems
25(5), 845–869 (2013)

[13] Gao, J., Bergés, M.: A large-scale evaluation of automated metadata
inference approaches on sensors from air handling units. Advanced
Engineering Informatics 37, 14–30 (2018)

[14] Gao, J., Ploennigs, J., Berges, M.: A data-driven meta-data inference
framework for building automation systems. In: Proceedings of the
2nd ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments. pp. 23–32 (2015)

[15] Garcı́a-Borroto, M., Martı́nez-Trinidad, J.F., Carrasco-Ochoa, J.A.: Cas-
cading an emerging pattern based classifier. In: Mexican Conference on
Pattern Recognition. pp. 240–249. Springer (2010)

[16] Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi,
A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta,
H., Ghosh, S.K., Baker, T., Parlikad, A.K., Lutfiyya, H., Kanhere, S.S.,
Sakellariou, R., Dustdar, S., Rana, O., Brandic, I., Uhlig, S.: Ai for next
generation computing: Emerging trends and future directions. Internet
of Things 19, 100514 (2022)

[17] Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning
time-series shapelets. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp.
392–401. ACM (2014)

[18] Holmegaard, E., Kjærgaard, M.B.: Mining building metadata by data
stream comparison. In: 2016 IEEE Conference on Technologies for
Sustainability (SusTech). pp. 28–33. IEEE (2016)

[19] Hong, D., Wang, H., Whitehouse, K.: Clustering-based active learning
on sensor type classification in buildings. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge
Management. pp. 363–372 (2015)

[20] Iddianozie, C., Palmes, P.: Towards smart sustainable cities: Addressing
semantic heterogeneity in building management systems using discrim-
inative models. Sustainable Cities and Society p. 102367 (2020)

[21] James, P.M., Dawson, R.J., Harris, N., Joncyzk, J.: Urban
Observatory Environment. Newcastle University (2014).
https://doi.org/10.17634/154300-19

[22] Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time
warping for time series classification. Pattern Recognition 44(9), 2231–
2240 (2011)

[23] Li, X., Lin, J.: Linear Time Complexity Time Series Classification
with Bag-of-Pattern-Features. In: Data Mining (ICDM), 2017 IEEE
International Conference on. pp. 277–286. IEEE (2017)

[24] Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel
symbolic representation of time series. Data Mining and knowledge
discovery 15(2), 107–144 (2007)

[25] Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series
using bag-of-patterns representation. Journal of Intelligent Information
Systems 39(2), 287–315 (2012)

[26] Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N.O.,
Guarnizo, J.D., Elovici, Y.: Detection of unauthorized iot devices using
machine learning techniques. arXiv preprint arXiv:1709.04647 (2017)

[27] Montori, F., Bedogni, L., Bononi, L.: A collaborative Internet of Things
architecture for smart cities and environmental monitoring. IEEE Inter-
net of Things Journal 5(2), 592–605 (2018)

[28] Montori, F., Liao, K., Jayaraman, P.P., Bononi, L., Sellis, T., Geor-
gakopoulos, D.: Classification and annotation of open internet of things
datastreams. In: International Conference on Web Information Systems
Engineering. pp. 209–224. Springer (2018)

[29] O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.:
Streaming-data algorithms for high-quality clustering. In: Data Engineer-
ing, 2002. Proceedings. 18th International Conference on. pp. 685–694.
IEEE (2002)

[30] Ortiz, J., Crawford, C., Le, F.: Devicemien: network device behavior
modeling for identifying unknown iot devices. In: Proceedings of the
International Conference on Internet of Things Design and Implemen-
tation. pp. 106–117 (2019)

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830 (2011)

13

[32] Rahman, A.F.R., Fairhurst, M.C.: Serial combination of multiple experts:
A unified evaluation. Pattern Analysis & Applications 2(4), 292–311
(1999)

[33] Rakthanmanon, T., Keogh, E.: Fast shapelets: A scalable algorithm for
discovering time series shapelets. In: Proceedings of the 2013 SIAM
International Conference on Data Mining. pp. 668–676. SIAM (2013)

[34] Restuccia, F., D’Oro, S., Melodia, T.: Securing the internet of things
in the age of machine learning and software-defined networking. IEEE
Internet of Things Journal 5(6), 4829–4842 (2018)

[35] Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review
33(1-2), 1–39 (2010)

[36] Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis 11(5), 561–580 (2007)

[37] Schäfer, P.: The BOSS is concerned with time series classification in
the presence of noise. Data Mining and Knowledge Discovery 29(6),
1505–1530 (2015)

[38] Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Dbscan
revisited, revisited: why and how you should (still) use dbscan. ACM
Transactions on Database Systems (TODS) 42(3), 19 (2017)

[39] Siow, E., Tiropanis, T., Wang, X., Hall, W.: TritanDB: Time-series Rapid
Internet of Things Analytics. arXiv preprint arXiv:1801.07947 (2018)

[40] Sivanathan, A., Gharakheili, H.H., Loi, F., Radford, A., Wijenayake,
C., Vishwanath, A., Sivaraman, V.: Classifying iot devices in smart
environments using network traffic characteristics. IEEE Transactions
on Mobile Computing 18(8), 1745–1759 (2018)

[41] Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining.
In: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 947–956. ACM (2009)

Federico Montori received the B.S. and M.S. de-
grees (summa cum laude) in computer science and
the Ph.D. degree in computer science and engineer-
ing from the University of Bologna, Italy, in 2012,
2015, and 2019, respectively. He was a Visiting
Researcher at Swinburne University of Technology
(Australia), Luleå Tekniska Universitet (Sweden),
and Technische Universität Ilmenau (Germany). He
is currently a Senior Assistant Professor at the
University of Bologna. He participated in several
EU projects and he is currently WP Leader for the

H2020 Project Arrowhead Tools. His primary research interests include mobile
crowdsensing (MCS), pervasive and mobile computing, IoT automation, and
data analysis for IoT scenarios.

Kewen Liao holds a PhD degree in Computer
Science from The University of Adelaide since 2014.
He is currently a Senior Lecturer in Information
Technology and a Director of the HilstLab at Aus-
tralian Catholic University (ACU), Sydney. He did
his postdocs at The University of Melbourne and
Swinburne University of Technology. He has over
40 publications including from premier venues of
ICDE, WSDM, WWW, CHI, IJCAI, CIKM etc.
His research interests include data science, machine
learning, and theoretical computer science.

Matteo De Giosa received his bachelor’s degree
(summa cum laude) in Information Science for Man-
agement from the University of Bologna and his
master’s degree (summa cum laude) in Data Science
from the University of Milano-Bicocca in 2019 and
2021, respectively. He is currently pursuing a career
as a Data Scientist.

Prem Prakash Jayaraman is the Head of the
Digital Innovation Lab and a Full Professor at
Swinburne University of Technology. Previously he
was a Post Doctoral Research Scientist in the Dig-
ital Productivity and Services Flagship of Com-
monwealth Scientific and Industrial Research Or-
ganization (CSIRO – Australian Government’s Pre-
mier Research Agency). He is broadly interested
in the research areas of the Internet of Things,
Mobile and Cloud Computing, Health Informatics,
and the application of Data Science techniques and

methodologies in real-world settings. He was a key contributor and one
of the architects of the Open Source Internet of Things project (OpenIoT)
that won the prestigious Black Duck Rookie of the Year Award in 2013
(https://github.com/OpenIotOrg/openiot). He is the recipient of Swinburne’s
Vice Chancellor’s Team Award for Digital Innovation in 2018 and is the
recipient of 2 best paper awards (IEA-AIE 2010 and HICSS 2016) and
several hackathon challenges including, Unearthed Mining Hackathon 2015,
Melbourne, The 4th International Conference on IoT (2014) at MIT media
lab, Cambridge, MA and IoT Week 2014, London.

Luciano Bononi (M), (MSC, Summa cum laude,
1997, Ph.D., 2001), is a Full Professor of Com-
puter Networks, Internet of Things, Wireless and
Mobile Systems, and Mobile Applications at the
Department of Computer Science and Engineering
of the University of Bologna. He has co-authored
more than 140 peer-reviewed conference and journal
publications and 8 book chapters, receiving four best
paper awards, and his research areas include wireless
systems and networks, protocol architectures, Inter-
net of Things, Internet of Energy, Smart Mobility,

modeling, simulation, performance evaluation, mobile services, and mobile
applications. He has been involved in more than 10 international research
projects, and he is an Associate Editor of three international Journals and guest
edited more than 10 special issues. He was chair in more than 15 IEEE/ACM
conferences and TPC member in more than 150 IEEE/ACM conferences on
the above research topics. He is the founder and director of the Laboratory
of Wireless Systems and Mobile Applications at CSE.

Timos Sellis received the Ph.D. degree in computer
science from the University of California, Berkeley,
in 1986. He is the director of the Archimedes
Research Unit on AI, Data Science, and Algorithms
at Athena Research and Innovation Center (Greece).
Till the end of 2012, he was the director of the
Institute for Management of Information Systems
(IMIS) and a professor at the National Technical
University of Athens, Greece. Between 2013 and
2015, he was a professor at RMIT University, Aus-
tralia, and between 2016 and 2020 a Professor at

the School of Software and Electrical Engineering of Swinburne University
of Technology in Australia, and the Director of Swinburne’s Data Science
Research Institute. His research interests include big data, data streams, graph
data management, data integration, and spatio-temporal database systems. He
is a fellow of the IEEE and the ACM. In 2018 he was awarded the IEEE TCDE
Impact Award, in recognition of his impact in the field and for contributions
to database systems research and broadening the reach of data engineering
research.

14

Dimitrios Georgakopoulos is a full Professor of
Computer Science in Swinburne University of Tech-
nology’s Faculty of Science, Engineering & Tech-
nology, and the inaugural Director of the IoT Lab in
the university’s Digital Innovation Capability Plat-
form. He also leads the Industry 4.0 program at
Swinburne’s Manufacturing Futures Research Insti-
tute. Before that, he served as Research Director
(2008-2014) of CSIRO’s ICT Centre and a Professor
at RMIT University (2014-2016). Prior to joining
CSIRO, he held research and management positions

in several industrial laboratories in the USA, including Telcordia Technologies,
Microelectronics and Computer Corporation (MCC) in Austin, Texas; GTE
Laboratories in Boston, Massachusetts; and Bell Communications Research
(Bellcore) in Piscataway, New Jersey. He authored/co-authored 190+ journal
and conference publications in computer science, which include three seminal
papers in the areas of Service Computing, Workflow Management, and
Context Management in the Internet of Things (IoT).

