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Abstract

We show that the first eigenfunction of the fractional Laplacian (—A)*, s € (1/2, 1), is
superharmonic in the unitary ball up to dimension 11. To this aim, we also rely on a computer-
assisted step to estimate a rather complicated constant depending on the dimension and the
power s.
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1 Introduction

The fractional Laplace operator is an integro-differential nonlocal operator of non-integer
order. It is defined as

(—A)’u(x) =

4T(m/2+s) / u(x) —u(y) dy s€(0.1), x € R"

Vv
Ao e =

where “p.v’ means that the integral is taken in the principal value sense. We refer to [2, 8,
10, 12] for all its basic features.
Here, we recall that it is naturally related to the fractional Sobolev space

2
H*(R") = {u e L>(R") : [u]? ::[ / lu@) = u)I” dy dx < 00

v =y
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1462 N. Abatangelo and S. Jarohs

and, when the attention is restricted to a bounded domain  C R”, to the space
0 ={ueH R :u=0inR"\Q},

which is encoding a natural notion of homogeneous boundary conditions in R” \ €: for this
reason it is sometimes also known as the restricted fractional Laplacian. From a functional
analytic perspective, (—A)® is a positive self-adjoint operator on {u € L>(R") : u = 0 in R"}
with compact inverse. It has therefore a discrete spectrum and the eigenvalues have finite
multiplicity. In particular, the first eigenvalue, which we denote by A = A(£2), is simple. It is
known that the first eigenfunction ¢ € H{)(Q) is smooth inside €2 and that it can be chosen
to be strictly positive.

In this paper we partially answer a conjecture raised by Bafiuelos, Kulczycki, and Méndez-
Hernéndez [6, Conjecture 1.1]:

If n =1and Q = (—1, 1), then ¢ is concave in its support. (1.1

This has been previously established by Bafiuelos and Kulczycki [5, Theorem 4.7], fors = %,

and by Kafmann and Silvestre [13] and Bafiuelos and DeBlassie [4, Theorem 1.1], whenever
s~! € N; moreover, in general dimension and for a general bounded Lipschitz domain, [4,
Theorem 1.1] also shows that ¢ is superharmonic, again under the assumption s~' € N.
Another related result is contained in [6, Theorem 1.1], which states that ¢ is mid-concave
(see [6, Definition 1.1]) on rectangles Q2 = (—ay, ay) X -+ X (—ay, ap) C R™.

Here, we give a computer-aided proof of Eq. 1.1 for any s € (%, 1).

Theorem 1.1 Lets € (%, 1)andn = 1. Let ¢ € HB((—l, 1)) denote the first eigenfunction
of (—A)* on the interval (—1, 1). Then

¢’ <0 in(-1,1).
More generally, our approach is able to reach the following.

Theorem 1.2 Let s € (%, 1), 2 < n < 11, and By C R”" denote the unitary ball. Let
¢ € Hy(B1) denote the first eigenfunction of (—A)® on By. Then

~A¢p >0 inB. (1.2)

We believe the threshold n < 11 to be merely technical and due to a few sub-optimal
estimates involved in our analysis.

Our strategy begins with a purely analytic approach to reduce A¢ in an integral form. At
the core of this strategy we exploit the semigroup property of (—A)* in that we split

—Ap = (=N (=AY P = (=A) T (A + 1rn 5, (—A) B)
= A=A (g + 1rny g, (=AY @) + (=A) 7 (1rm 5, (—A)* @) in By.
(1.3)

Next, we write suitable integral representations for the different terms that appear: these use
in a crucial way our standing assumption s > %, so that (—A)!~2S stands for the convolution
with the fundamental solution in R”. A central role in these formulas is played by the nonlocal
Poisson kernel of B

y(n,s) (1=|x?)’
e=yI" (1yP-1)""

r)

g € By, y e R"\B;.
AT Iy -~ By eRib

Py (x, )’) =

y(n,s):
(1.4)
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On The Shape Of The First Fractional Eigenfunction 1463

The splitting of —A¢ is performed in Section 2. A refinement of Eq. 1.3 leads to write Eq. 1.2
as an integral inequality not involving directly ¢ or A (see Eq. 2.8 below). At this point we
split our analysis in three different cases:

e Forn =1lands = % the argument can be concluded by hand, without too much of a
hustle: this is done in Section 3.

e Forn=1ands € (%, D\ {%} the integral quantities can be simplified a lot via estimates
from belows; still, the resulting inequality contains a quite complicated expression in s
and we therefore plot and verify it using a computer: this is done in Section 4;

e Forn > 2 asimilar approach to the previous point is taken, with the important difference
that in this case hypergeometric functions make their appearance in our study: these
make the analysis even more complicated and we consequently need to rely even more
on numerical evaluations: this is done in Section 5.

Many details will be deferred to Appendices, in the attempt of not breaking the flow of
the exposition with technicalities. Nevertheless, we would like to mention that in Appendix
B we derive an upper bound for the first eigenvalue A on B for general dimension n and
power s, while in Appendix C we derive from a representation formula for certain s-harmonic
functions some symmetry and monotonicity properties which are useful in our analysis and
might be of independent interest.

1.1 Notations

We denote by B, the n-dimensional ball of radius » > 0 centered at 0. We set

K, 2", ke, 1) = TG-9 TeR 1— 2 ¢N
’ T g2 T .
Fe(2) = e ZeR"\ {0).
(2Tt reR, r— e Ny,
Tl+t-5HI () 2
(1.5)

Note that F; is the fundamental solution of (—A)® in R” if T > 0 and for T € (—1, 0) itis
the kernel of the fractional Laplacian of order 2. For a measurable set A C R”, 14 denotes
the characteristic function of A and A = R" \ A the complementary set of A.

2 Set-up of the proof of Theorems 1.1 and 1.2

2.1 Representation of the Laplacian of the eigenfunction

In this paragraph we perform the splitting of —A¢ announced in Eq. 1.3.

Lemma2.1 Fors € (0, 1) it holds (—A) ¢ € L'(R") and we have
(—AY'¢=rp —1pc(F_yx¢) inR"\3B). @2.1)

Proof Consider ¥ € C°(R"). Then

/ ¢(—A)S¢=/ ¢(—A)SGs[(—A)S1ﬁ]=1f ¢ Gs[(=A)'¥]
R” B B
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1464 N. Abatangelo and S. Jarohs

Above, we have denoted by G; : L*(B)) — H(B1) the solution map to the Dirichlet
problem

(=AY u=f in By, f € L*(By).
which admits a representation in terms of the Green function
Gl f1(x) = f Gs(x,y) f(y) dy forx € By,
B

Gs(x,y) =Fi(x —y) — / Ps(x,z) Fy(z — y) dz forx,y € By,
By
Ps(x,y) = / F_s(z—y)Gs(x,2) dz forx € By, y € Bf, (2.2)
By
see [7, Definition 1.9] and [1, equation (25) and Theorem 1.2]. We have then
1 ) )
X/ b (—A) Y =/ ¢<x)/ Fox = ¥) (A ¥ () dy dx
R» B By
—/ ¢(X)/ Px(x,z)f Fi(z =) (=AY (y) dy dz dx
B Bf B
= [ ov-[ o0 [ Rea-pesrveraya
By B Bi‘
[ o [ Pwov@dzas
B, Bf
+/ ¢(x>/ Ps<x,z>/.Fs<z—y> (=AW (y) dy dz dx
B B¢ B¢

:f ¢y — qb(x)/ Ps(x,2) ¥ (2) dz dx
By By Bf

+f ow (/,Ps(x,z>Fs<z—y)dz_Fsu—y))(—AW(y)dydx.
B Be \ /B¢

As it holds (see [15, equation (1.6.12°)])

/ Py(x,2)Fs(z — y)dz = Fy(x —y) forx € By, y € Bf,
BC

1

then

/¢>(—A>wf=x/ w—x/ ¢<x)f Py(x.2) Y (2) dz dx
Rn By By B¢

=A/ w—/ vf(z)/ Py(x. ) A (x) dx dz
B Bf B

=A/ wf—f w(Ffs*Gs[m]):A/ w—/ V(Fy %)
B Bi' B Bf
2.3)

where we have used Eq. 2.2. The stated equality Eq. 2.1 holds also pointwisely in view of
[18, Proposition 2.4].
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On The Shape Of The First Fractional Eigenfunction 1465

Proposition 2.2 For s € (%, 1) it holds
—A¢ =12 Fas1 5 ¢+ (Fot = AFag1)  [Lge (Fs % §)] (2.4)
= A2 Fa—1 % ¢ + A(Fy—1 — AFa_1) % Py[] in By, (2.5)

where
PUOIO) = 1) [ Rrp@wdx fory e R,
By
Proof Starting from the last lemma, we compute (all equalities hold only in Bj)

—Ap=(=A)"" (=AY $= (=) [hp — g (F_s % §)|=h(=A)' 7§ + Fyy % [1pc (F_g % §)].

Note that
(—=A)'7°¢ = Fag 1 % (=A)'¢ = Fag1 % [A¢ — 1pc (F 5 §)]
thus Eq. 2.4 follows. In expanded form, Eq. 2.4 reads, for x € By,
—A) = AQ/B oy 1(x = ) 6 () dy
1

+ / (Fym1(x —2) = AFp—1(x — z))/ F_s(z—y)¢(y)dydz

B By

= / ¢()’)|:)L2F2sfl(x -+ / (Fom1(x = 2) = AP 1 (x — 2)) F—s(z — ) dZ] dy.
B «

By

Also, identity
(F_s*¢)<z>=xf Pi(y.0) () dy  forze B,
By

holds (we have already used this one in Eq. 2.3 exploiting Eq. 2.2). In expanded form, Eq. 2.5
reads

—A¢(x) =A2/B Fas_1(x — y) $(y) dy
1

+2 /.‘_ (Fym1(x —2) = AFp—1(x — Z))/ Ps(y,2)9(y) dy dz

By By

= K/}; ¢>(y)[/\FzH (x—y+ /BC Py(y,2)(Fs—1(x —2) = AFps_1(x — 2)) dZ] dy.
1 1

We know that, by uniqueness, ¢ and —A¢ are radial, so that for any x € B; fixed
1

—A -
P |8B\x|| 0By

A¢(0) db.
Keeping this in mind, we define

1
7/ Fr(0—y)do forn>2,x,yeR' x#y
‘8BIX|‘ 0By

Fr(x —y)+ Fe(x +y)
2

Je(x;y) = (2.6)

forn=1, x,yeR, x #y.
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1466 N. Abatangelo and S. Jarohs

Using Eq. 2.5, we then write
—A¢(x) =)»[B ¢(y)[?»12s71(X;y)+/ Py(y, 2) (Js—1(x; 2) = Mag—1(x3 2)) dz] dy, x € Bi.

Since

mxil(x;yH/ Py(y. ) (Joo1 (3 2) — Adas_1(x: 2)) dz =

l

=A(J25_1(x;y) —/ Py(y, 2) Jos—1(x; 2) dz) +/ Ps(y,2) Js—1(x;2) dz,
Bj Bj
the positivity of —A¢ follows once we show
A(stfl(x; y)—/ Pe(y,2) Jas—1(x; 2) dz)+/ Py(y,2) Jy—1(x;2) dz=0, x,y € By.
B B

As the second addend is clearly positive in the above inequality, we may replace A with a

larger constant (see Appendix B, equation Eq. B.1)

HST(1+5)>TA+25+ %)
(s + 3T A +2s)

A< An,s) = 2.7)

and it is then enough to show

Jos—1(x; y) —/ Ps(y,z) Jos—1(x;2) dz + / Ps(y,2) Jy—1(x;2) dz > 0,
BY Bf

A(n,s)
1
s e <§’ 1), x,yeB. (28

Notethats—l—ﬂ <Oforalln e Nand s € (%,1),but2s—1—%GNOifandonly

if s = 31 and n = 1. Hence, this case differs strongly from the other cases as an effect of
definitions Eqgs. 1.5 and 2.6. We begin with some general estimates to simplify Eq. 2.8.

2.2 Reformulation of Eq. 2.8

The first step is to note that the left-hand side of Eq. 2.8 actually depends only on |x| and |y|.
Lemma23 Foranyn € N, 7 € R, and s € (0, 1) we have
Jr(x;y) = Je(|xler, [yler) x,y R x #y,
/ P(y, 2)Je(x; 2) dz =/ P(lyler,2) Je(Ixlei;z) dz x,y € Bi, x #y.
B} By
Proof First note that F;(x) = F;(|x|e;) for any x € R" \ {0} by definition Eq. 1.5. To see

the statement for J;, note that this is obviously true for n = 1 from definition Eq. 2.6 and for
n > 1 we have by a rotation forx € By, y € R” \ {x}

Je(xiy) = e 16— yler) d6 = f (Y1=20-y+1yPer) do
|aB|Y\| BB‘ x| ( ) |aB\X|| 9By
1
(Vi-2bbi+iyRen dv= o [ F(v=Iyler) dv=Je(lxlers Iylen.
|aBu||/&I 0Byx| Jas,, o ) '
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On The Shape Of The First Fractional Eigenfunction 1467

Similarly, we have with a rotation

Iz 1— 2y\s
| P di= - © | e nlens e dz
B¢ 72T (A =) Jpe (z]° =Dy — 2]

e vl2)s
SR 2 f (1=l  Je(xler: [zlen) d=
T2 LOTA=5) JBi (12P=1)2 (1 =2y - 2+12?)?
r') (1—]y»)*

_ / — Je(lxler: [ulen) dv
A ECOTA=5) S5 (o2 =13 (lyP—20ylvr +]vl?)

_ r'%) / (1 —1yP*
730D —s5) Je (J0]2 = D¥|lyler — v

Jz(|xler; [vler) dv

|)‘l

=/ Pylyler. v) Je(lxler: v) do.
5

In view of the last lemma Eq. 2.8 reduces to

1
125_1(|x|e1;|y\e1)—/ Pyyler. 2) a1 (ixlers 2) dz+—/ Pyyler. 2) Jy—1(Ixler: 2) dz 20,
BS An,s) Jpe

1
€ 7,1), ,y € By.
s (2 nyen

Lemma24 Letn > 2. Fore,r > 0and o € R it holds

/ dx wm'T /1 (1—"% "
= r -_
9B, |x — gey ‘2“ F(%) —1 (r2 + 2 — 28”)0:

In case r = &, we additionally require 2a < n — 1. In particular, we have for T — 5 ¢ Ny

n—1 n—3

2m 7 1 1—H7

St y) = =y K(n,r>|x|"—1/ =02 4 xyewr,
55 1 (62 + [y — 20xlylr)?

where we require additionally |x| # |y| if T > %

Proof Via an explicit calculation

/ dx =r”_]/ dy =r"_1/ dy _
0B, |x — €eq |2a dB |ry —&eq |2a 9B (r2 — 2r8y1 + sz)a

2T 1 (1-— tZ)nE3

= r"_l/ — _dt.
—1 2 2 o
r“=) 1 (r +e —28rt)

The last part follows by setting r = |x|, & = |y|,anda = 5 — 7.

Lemma2.5 Forx €[0,1)ands € (3, 1) let
f1:10,00)\ {x} — R fa:(l,00) — R
y > Jas—1(xeq; yer) z > Js—1(xer; zey).
The following holds.
(1) If n = 1, then f1 is (cf. Figure 1):
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1468 N. Abatangelo and S. Jarohs

Fig.1 On the left, a qualitative graph of f] and of its s-harmonic extension as entailed by the Poisson integral
in Eq. 2.8 in (—1, 1) (dashed line) for % <s< %; on the right, the analogue picture for % <s<l1

(a) positivefor% <5< %,
(b) negativefor% <s<l,
(c) decreasing in (x, 00),
(d) increasing and convex in (0, x).
(2) Ifn=1,s = %, then f1(y) = —ﬁ In |x2 —y?|, so fi satisfies (c) and (d) in 1. Moreover,
f1>0in[0,v1+x)\ {x}and fi < 0in (v/1 4+ x2, 00).

(3) f» is positive and decreasing.
(4) For n > 2 the function f1 is positive and satisfies (c) and (d) in (1).

Proof For (3) note that by definition and Lemma 2.4 we have

21273 —5)(1 —s)

253 253
x — + |x + ) n=1;
e U7 (l Z| [x + z|
2 Z = n—>s
(-G —s+D) | /‘ U
X 7 n>1,
223 /AT ()T (551) 1 (82 4 22 = 2xzr) 35
from where it easily follows that we have f2’ (z) <0< fo(z) forz > 1.
For (4) note that by Lemma 2.4 we have
(2 —2s+1) ! (1 -7
hO) = s 1 / 7, At
283/l (2s — DI() J-1 (x2 + y2 —2xyt)T
and from here the statement follows again.
Lemma 2.6 Foranys € (%, 1), neN, andx,y € [0, 1) it holds
Jas—1(xer; yer) — / Py(yer,z) Jas—1(xey;2) dz > 0 ifx <y,
By
2.9)
Jas—1(xer; yer) — / Ps(yer, z) Jos—1(xer; z) dz > Jos—1(xer; 0) — Jos—i(xer;e1)  ify <x,
By
(2.10)
/ Ps(yer, 2) Js—1(xer; 2) dz > / Ps(0, 2) Jy—1(xer; 2) dz. (2.11)
By Bj
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On The Shape Of The First Fractional Eigenfunction 1469

Proof Note first that Jo,_1(xey; z) forx € [0, 1) and z € B is maximized by Jo;—1(xey; e1)
using Lemma 2.5. Thus, by the positivity of Py we have

/ Ps(yey, 2) Jos—1(xe1; 2) dz < Jog_1(xey; 61)/ Ps(yey,z) dz = Jos—1(xey; e1),
Bf Bf

because the integral of the Poisson kernel is normalized, see e.g. [7]. For x < y < 1, by
Lemma 2.5, point (1.c) resp. (4), we have Jog_1(xey; yer) > Jog—1(xey; e1), so that Eq. 2.9
holds. For y < x < 1, by Lemma 2.5, point (1.d) resp. (4), we have Jos_1(xey; ye;) >
Jos—1(xer; 0) and thus Eq. 2.10 holds.

The last inequality Eq. 2.11 finally follows from Lemma 2.5, point (3), and Proposition 5.0

In view of Eq. 2.9, it follows that Eq. 2.8 is satisfied for |x| < |y| < 1. So, we can reduce
our analysis of Eq. 2.8 to the range 0 < |y| < |x| < I: on this we use Eqgs. 2.10 and 2.11. In
this way, Eq. 2.8 will be completely verified once we show the nonnegativity of the function

[0,1) — R
1
An,s)

x > Jog—1(xer; 0) — Jos—q1(xer; er) + / Ps(0,2) Jy—1(xer; 2) dz.
Bf

2.12)

Noting that the last addend is positive, the positivity of the above immediately follows for
those x € [0, 1) for which one has Jy;_1(xeq; 0) > Jos—1(xeq; e1), which is what we study
next.

Lemma2.7 Lets € (%, 1). Then there exists x,(n, s) € (%, 1) such that
Jos—1(xer; 0) > Jos—1(xer;e1)  forall x €10, xi(n, 5)].

More precisely, one can take (Fig. 2)

2
= for n=1ands =

3.
R
Xy(n,s) = 1 3

; forn=1ands # —, orn > 2.
1 4 (2 — 24s=2-n) &7 4

Remark 2.8

(1) Note here that x,(1,s) > % The statement of Lemma 2.7 hence gives an alternative
proof to the mid-concavity as shown in [6, Theorem 1.1], although just in dimension
n=1.

(2) Similarly to the previous point, x,(n, s) > % for any n € N. The statement of Lemma
2.7 gives therefore super-harmonicity in the ball By, in any dimension.

(3) To show Theorems 1.1 and 1.2, it is in view of Lemma 2.7 enough to show the positivity
of Eq. 2.12 for x € (x4(n,s), 1) and s € (%, 1).

Proofof lemma 2.71fn = 1,5 = 3, then

1
Pge1(6) = Jy (5 y) = =5 —In(x? = y2]) forx € [0, 1), y = 0, with x # .
JT
Hence,
1 1 1 1
0= Jasm1(x:0) = Jasma (i 1) = = - In(x2) + 5 Il - X2y = S-ln (;2 - 1)
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1470 N. Abatangelo and S. Jarohs

if and only if x < § and clearly x,(1, %) = % < %

Ifn=1ands # %, it follows that Jo;_1(x; 0) > Joy_1(x; 1) holds for those x’s, where we
have

2r(3/2 — 25)x% 3 > 1'3/2 — 2s)((1 —oM 3+ x)4"—3).
Noting that I'(3/2 — 2s) changes its sign at s = %, the claim amounts to checking

13
28 B> 1% 3 L1 +0% 3 forse (5, Z)’

3
24P (1 ="+ (140" fors e (T.1).
A sufficient condition, is then given by

(2 _ 24573))‘_4‘?73 > (l _ x)4573 (2 _ 24373)){43‘73 < (1 _ x)4_3‘73

24S73x4S73 Z (l +x)4573 or 243‘73){43‘73 f (1 +x)45‘73
() ()
*=\2% ERRVE
which are both equivalent to

1
22453y <1—x,
2x <1+ x.

This gives Jog—1(x, 0) > Jos—1(x, 1) for all x such that

s 1+(2_;4s—3)4s13 = e, ve <l’ 1>\{§}'

It can be easily verified that x. (1, -) : (%, 1\ {%} — R satisfies

3 2
sil{r/lzx*( 7S) 55 sl%?x*( ,S) ’ 5‘*1::?/4)6*( 7S) 33
4 (ls) >0 im 4 x,(1.s) = 81n2 a )e<3 1)
—xx(1,5) >0, im—x,(l,s) =8In2, xx(1,s -, 1).
ds™* st ds™ " * 5

Finally, let » > 2. By Lemma 2.4 we have for x, y € [0, 1)
F+1-25x"1
Dos—1(xer; yer) = : JG.y), (2.13)

421 /70 (2s — DT (%)

where we put

! (1-7'7
1 (@? + b2 — 2abr) 2172

j 10,11 x [0, 1] — [0, 00], j(a,b) :f
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On The Shape Of The First Fractional Eigenfunction 1471

Note here, that fora > 0

3
: n=3 5 <oo fors > Z;
jaa) = (2“)45_2_”/ (1+07T (1-0*"2dr :
- =oo0 fors < -,
4
! n= st
Jja,0) = a4S727n/ (1— tz)T3 dt = a4s,2,n(27n)\/7?, and
! I'(3)
! n—3 1
j@,0)—ja,l) = / a- 25 (ab 2 — ,, "
! ( (a®>+1- 2at)7+1—2s)

Since

a4s—2—n > 1

2 _ 2
_(a2+1—2at)%“*25 & a“+1—2at >a” & 1> 2at

it follows that we have j(a,0) — j(a, 1) > 0 fora € (0, %]. To be more precise on the
estimate, next note that it also follows for a € (%, 1)

1
2a n—3 1
i(a,0) — j(a, 1 =/ 1—t2)T(a45—2—"— _ )d:
j@,0) = ja, 1) m @41 —2aniHi
1 n—3 1
_ (1 _ t2)7< - _ a4S—2—n)dt
2 (@ +1—2ar)2t'=%

1
> <a45_2_" - L )/ -7 ar
@ +1+2a)27172/ )y

1
_( 1 _ _a4s—2—n>/ a _[2)% dt
(@>+1—2a)2F1"2 0

_reshve
2r' (%)

<2a4s—2—n _ (LZ + 1)4s—2—n _ (1 _ a)4s—2—n>.

Arguing as in the case n = 1, s # %, we see that j(a,0) — j(a, 1) > 0 holds for all
a € (0, x«(n, s)] with the claimed x.(n, s). With Eq. 2.13, this concludes the proof.

The analysis carried out so far allows us to reduce the condition in Eq. 2.8 to the following
stronger one:

1
A(n,s)

Jas_1(xer: 0) — Jos_i(xer: 1) + / Py(0,2) Jy—1(xer: 2) dz = 0,
5

1
s € (5, D), x(ns) <x <1 (214)

Before we turn to the study of Eq. 2.14, let us prove a technical lemma which will be
needed in the following.

Lemma2.9 Forx € (0, 1) and s € (%, 1) it holds

00 _ 253 253 _
/ (z—x) + (Z—:X) dz > ra : S)ﬁ(l _x2)s—2(2x _ 1).
1 z(2-1) rG-s
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1472 N. Abatangelo and S. Jarohs

1.0

0.9

0.71

0.6 T T T T T T T T T 1
0.5 0.6 0.7 0.8 0.9 1.0

Fig.2 A graphof x4(1,5), } <5 <1

Proof With the change of variables z = % we write

12 dt

[oo (z— )25 -3 + (Z+X)2S 3 / a- )Ct)zs -3 + (1+Xl)2s 3 2 /l (]_xt)25—3
1 b4 (z — 1 1 — t2) —1 (1—[2)‘

(1 xt)Zs 3 (1 xt)ZS 3
1 — t2 12 (1 -y
We integrate the second integral in the above expression by parts, obtaining

1 1
_ 1 _
/ (1—x)» 3 (1= tz)l Sdt = —/ (1 —x)5 (1= 1*) "t dt.
—1 X J-1

Via another change of variable, namely = 27 — 1, we obtain

1 — 25—3 14+x—2 25—3
/ (I —x1) di — o1~ 23/ I+ XT) de

1-[2 75 ( l—r)s
27T —5)?
T TQ2-2s)
21=B7(1 — )2 5 2x \5-2 x
=" ‘?—3(1— ) 1 -
re—2 0% 1+ ( 1+x>

1-2s _ )2
— 2 I'(l—s) (1 _xz)s—Z
e —2s)

2
(1 +x)25*32F1(3—2s, | — 52— 25| )
14+x
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On The Shape Of The First Fractional Eigenfunction 1473

(where we have used Egs. A.3 and A.9) and, similarly,

(1 )25 (1 )25 1 (1 _ xl)Zs—Z s
1 — s
/ N f ey YL Ay G

_gts [ (=20 df_zzfzsfl (x = 20m)>2
0 (1 —1) o
- 2172sl—w(1 —S)2

(1-1)'"" dr

2x
25—2 _ e S P
(14 x) 2F1(2 25,1 —5:2—2s 1+x)

-~ T@2-2)
iy ~ 2x e R .
_92 2.\(l+x)23 2(1_ 1+x)/0 h_:s {a —‘L’)l S dt
21=25p(1—5)2 ) 2x
== 7 q 72, (2 =25, 1 — 532 — 2
F—2y) (I+x) 2 1( s, S s 1+x>
22-210(1 — )2 — 2
- 15(3 S)z )( S)(l+x)2s73(17x)2F1<372s,lfs;372s lf )
— 4§ X
21=2p(1 — )2 ) 2x \s—1
== v " s=2(1 —
F@—25 O+ ( 1+x>
21=250(1 — )2 2 2x \s—1
- " q 31 —x)(1 -
Fa_2y T ”( l+x)
21251 (1 — 5)2 s -
=Tty [0 e
2121(1 — )2 -
=taoay 0 —x3) 71— x) - 2x.

We then deduce

X (=" 4 2+ 0¥ 217511 —5)? 2)5-2
J c@1) P2 Trgoay (T F) 2 0)

The constant in front the above expression can be transformed using the identities on the
Gamma function, namely the Legendre duplication formula

3
ra-— s)F(f - s) —21-20=-9 /72 = 25),
2
concluding the proof.

3 The one-dimensional case: s = 3/4

Note first, that in this case it follows from Eqgs. 1.5 and 2.6 that

1
Jas—1(x; y) s l=J%(x;y):—Eln|x2—y2| forx,y € R, x # y.

==
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1474 N. Abatangelo and S. Jarohs

Moreover (cf. Eqs. B.2 and 1.4)

2r(H)
A1, %) = r(§4) :

VZoo(1=x3)7

P3 (x,2) = T . A forx € (=1, 1), |z| > 1,
27 |x — ) (2 — 1)
. — o) — -3/2 -3/2
S| —J_%(x,z)—4m(|x—y| Pile4y|™¥2) forx, yeR, x#£z

As our goal is to verify Eq. 2.14, we have to prove

X (z—x) 324 (z4x) 732

—2Inx+In(1—x3)+ /
2A(1, Z)f 2(22-1)"*

3 2
dz>0 forx*<1, 7>:7 <x<l1.
4 3

To this aim, we estimate the integral above using Lemma 2.9, which gives us

X (z—x)2 4 (z+x)73? F(HJ7
/ 3/4 zz (1
1 z(z2-1) re)

In this way, we are left with verifying

x2)75/4(2x —1).

INCORNE)) —5/4
—2Inx 4 In(1 — x> N ox—1) =
nx + In( X 4F()1"( )( x) (x )
142
= —2Inx +1In(l —x%) + %(1 —x) 72 —1) =0 for§ <x<l

Using the fact that
3 2 2\—5/4 2\—1 2
2x=2z—3(1-x7) and (1=x3)""=(1-x%) for 3 <x <1

in the following we rather show

_ 2 5r(hH)?
—2Inx+In(1—x2)+c(1-x2) 1(1—%(1 —x2)> 20 forg<x<le= r((43))2 -
We do so by re-labeling = 1 — x> and by checking
» 3 5
—In(l—1)+1Int +et (I—Et)ZO for0 << 3. 3.1)

The above inequality follows by computing the minimum of the left-hand side in the given
range for ¢. Indeed,

d 1 3 1 1 c 5
E[—ln(l—t)—i—lnt—i—ct (1—5t>i|—ﬁ+;—t—220 f0r0<t<§
if and only
5
04769... = —— <t < —
1 9
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On The Shape Of The First Fractional Eigenfunction 1475

so that the left-hand side of Eq. 3.1 attains its minimum at ¢/(c + 1) where it equals

3 ¢ c

C
c+1

C
—In(1 — ——) +1
n( c—i—l)_'—n

Hence, Eq. 2.14 holds forn = 1 and s = %.

4 The general one-dimensional case

In the following, we analyze Eq. 2.14 with s # % and n = 1. Recall the definition of x, (1, s)
in Lemma 2.7. As an application of Lemma 2.9 and of definitions Egs. 1.5 and 1.4 we rather
check that

2x4s—3 _ (1 _ x)4s—3 - +x)4s—3

Epe +u(1 —x?) 2 (2x — 1) > 0,

1 3
fors e (E’ 1) \ {Z}’ x(l,s) <x <1,

where (recall Egs. 2.7 and B.2)

- | 252 mr2s—1) 2% M1 —s)y7 TG +9)r2s—1)
KE2AroIrG-nl r@g -2 s PTG 4293 —25)
Note that the function

0.1]5 x —> (2x4s—3 — 1+ x)4~?—3)

—4s
is decreasing. Indeed, this follows by differentiation:

1 4
" d—(2x4~‘—3 —a +x)4s—3) - —(2x4<s—1> —qa +x)4(s—‘>) <0 forx e (0,1].
— 45 ax

Then, fixing a, b € [%, 1] with a < b we find with this for x € (a, b)

2x4s—3 _ (1 _ x)4s—3 - +x)4s—3

+u(l=x3)202x — 1)

3 —4s
2b4s—3_ 1+b 453 1— 45—3 )
> D A (1 by 2@a— (1202 = g (5. ).
3—4s 3 —4s

A direct computation gives that the function (a,b) > x — ¢4,(s, x) is controlled from
below in (a, b) by the value

1

35—1

Ga (5. Xap(5)),  where x,(s) =1 — ((1 F)2Q2a— 1)@ - s),u)

Keeping this in mind, we split

3
(3’ 1) = (a1, b1] U (a2, b2] U (a3, b3] U (as., bs)
b am= L h—ay= o by —as= —, by =1
lll—gy 1—a2—ﬁ, 2—03—55 3—‘14—E5 4 = 1.
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1476 N. Abatangelo and S. Jarohs

In each of these subintervals it holds that
1 3
Ga; b; (S, X) > qa; b, (S,xai,b[ (S)) >0 forx € (ai,b), s € (57 1)\{1}’ ief{l,2,3,4}

see Figure 3. From this it follows that Eq. 2.14 holds for n = 1.

5 The higher-dimensional case

In the following we test the validity of Theorem 1.1 for the dimension 2 < n < 12. In view
of Lemma 2.7, it remains to show that, for x € (x,(n, s), 1) and x, as in Lemma 2.7, it holds

/1 (1 _ tZ)% (x4s727n _ 1 ) dl,
-1 (2 4+ 1—2xr)2F1=2

00 1 2\ 253
+M@»n s)/ ! / d-r) > dtdr>0 (5.1)
e (=) S (242 = 2 0 -

0.8
0.8+
0.6
0.6+
0.4+
0.4+
0.2
0.2+

=3
W
o
o
=3
=
o
)
=3
=)
o
=]
W
o
o
o
=
=]
=)
o
=)
o

0.8
0.6
0.4 0.5

0.2

T T T T T 1 T T T T T 1

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
s s

Fig.3 A graphof g, 5 (s, x4 p(5)) for% < s < 1 with (a, b) = (0.9, 1)—top left—, (a, b) = (0.8, 0.9)—top
right—, (a, b) = (0.7, 8)—bottom left—, and (a, b) = (0.6, 0.7)—bottom right
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1477
with (recall Egs. 1.4, 1.5, and 2.7)

n

_2m2 yn,s)k(n,s — 1)
M= R A k.2 — 1)
2

_ G+HTHIA+2s)  T(G+1-s5) 2% r2s—1)
S TOTA—9)25TU+5)2T(§ +1425)223I(s — D| T +1-25)
(1-9)T(1+2)FQ2s— 1) (1 +29)CET G +1—5)
- 2T (1 —9) T2+ 142905 +1—2)

where we have used Lemma 2.4, the transformation into polar coordinates, and some refor-
mulations of the constant using properties of the Gamma function. Note here, that

1 1 n—1 n—2mn=142
n=3 1 n=3 () 2" T(=)
/(l—tz)Zdt:/r_Z(l—r)Zdr:fnz = 2
-1 0 I'(3) [(n—1)
and with the transformation # + 1 = 2t we have
1 1—)"7 1 2-20)'F 20T
/ ( ) - dz:Z/ ( )7 Q29 —
-1 (x241—2x1)2" 0 (x2+1-2x@r—D)2" "
1 n=3 n-3
) P L ke
0 ((x 412 —dxr)? %
on=2 U n=3 4x 2s—4-1
. — Ta-0T(1-—— St
(x+1)"+2*4-f/0 =7 ( (x+1)27)
7= T(h? A" s ] 1‘ 4x
= — — 25 n— s
G+ )FETE—1 2 \2 T2 +1)?
(5.2)
where we have used Eq. A.3. Similarly, we also have
! 1 -7 ! -7
/ ( i Tl dt:f ( : U
1 (x2+ 72+ 2xr1) 2" 1 (x2 472 = 2xr1)2"
on=2 /1 /173(1 )g(l dxr )5—%—1 dt
= T 2 — T 2 —_—
(x +r)nt2=2s [, (x +r)21
=2 (g2 n n—1 4xr
= Fil=+1- in—1 .
G+ 2B Ta—1)° 1<2+ T (x+r)2)

(5.3)
We now perform some transformations on the hypergeometric functions appearing respec-

tively in Eqgs. 5.2 and 5.3. For this,letoc =1 —2soro =1 —sandlett = lort =r (so
that # > 1). Then note that

n—1 4xt t—x
—(n—1) and l—— =,
2 (x+12 t+x

PR T I
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1478 N. Abatangelo and S. Jarohs

so that, by Eq. A.10, we have

F + n—1 ! dxt
o, —n—1—1] =
272 2 (x +1)2

t—x\—20-n n n n—1 1 n—1 1)/1-1222
L R IR ETERE N
tirx e I R S L S |

t+x
t —20—n 7 n | n|x2
_<t+x) 2 1(54-0, +0,§‘?).

With this, Eq. 5.1 translates to

xR (g +1—2s,2—2s; %‘x2>
r2s—n—3 n n x2
+M(n,s)/l mm(E +l-s5.2-5 5‘72) dr > 0. (54)
We exploit next the series expansion of the hypergeometric function, see Eq. A.4. We have,
due to the absolute convergence of the integral and the involved infinite sum,

00 ,25—n—3 n ni1x2
/ ﬂ2F1(7+1—S,2_S;5‘7>d7‘:
1 — 1)

I—-(n i +l—s+k) rQ2—s+k) x2k /oo p2s—n—3-2k J
= — .. ar
FGE+1-5)FQ-s = r'(5+k) KOS =
B r(%) ir +1—s+k)r(2—s+k)x2’</1 o3tk J
(A 1-s)TQ2—s) ¢ r(% +k) K Jy a=pp P
B r(%) i (5 +1=s+K)TQ@—s+k) x> (5 +k+1)T(1 =)
A3+ 1-5)TQ—s) T'(%+k) kb T(5+k+2-y5)
r) $~Brare=s+h

TGl (-9 Ftk+tl-s K

O

where we have used a change of variables with p = r~2 and Eq. A.2. As it holds

n
5+ k

I
<1 f eN, keNU{0}, se(5,1), (5
n+2—2s T Aqktlos oW o) se(31). 69

we deduce from the above calculation that

P(3+)TA=s) 50 [ r2n3 n n|x F(B)TA=s), 50
2r(Z+2-s) (1= 5/. r2—1y zFl(E“_S’z_s’i‘*)drfﬁ(l_x )

Indeed, it holds
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Fig.4 The plots of
(%1) X (%,1) — R
(s, x) —> min {%,x‘“_z_" —9 F (% +1—2s5,2—2s; % x2>
M(ns)T(4+1) T(1-s)

! > s—2

2 (Z+2-9) ( - ) }

for n = 2 (top left), n = 3 (top right), n = 4 (center left), n = 5 (center right), n = 6 (bottom left), and
n=717,...,11 (bottom right)
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see Eq. A.8. Hence, Eq. 5.4 is satisfied once we have

M, s)I'(5+1)T(1— -
xH=2en zFl(E—i—l—Zs,Z—Zs; E’x2> (. 5) (2+ ) ( s)( _xz)s 2 > 0.
2 2 2r(5+2-s)
(5.6)

In Fig. 4 we present the plots of the left-hand side of Eq. 5.6 forn = 2, ..., 11, where this
is indeed positive.

Remark 5.1 By avoiding estimate Eq. 5.5 and keeping the series expansion of the hypergeo-
metric function, see Eq. A.4, it is possible to see that also the case n = 12 is actually covered
by this approach. However, for larger n this keeps failing, although there always are some
ranges of s where the left-hand side of Eq. 5.4 stays positive. Finally, let us mention that for

n = 127, the left-hand side of Eq. 5.6 seems to be positive again. Indeed, again with the
series expansion of the hypergeometric function, see Eq. A.4, it holds for n > 4

o 2k
n n re—2s+kx 2252
Fi\ = 1—2,2—2;7‘2 < —_—— = (1 - ,
21(2+ S Szx)—lg ra@ 29 & ()
see Eq. A.8. So that it remains to check

x4s727n _ (] _ x2)2s—2 + M(l’l, S)F(% + 1) F(l — S)

_ 2\s—2
(% +2-s) (1-x%)"" =0 (5.7)

which is numerically positive for n = 127, see Fig. 5. Let us remark that in numerical

experiments it also remained positive for any other choice of n > 127 we made. This could
be driven by the fact that the left-hand side of Eq. 5.7 is greater than

x4s—2—n _ (1 _ x2)23*2’
which pointwisely diverges to 400 asn 1 oo fors, x € (%, 1), although not uniformly. For
these reasons, we conjecture that inequality Eq. 5.7 holds true for all n > 127.

Let us mention here that our strategy strongly relies also on estimate Eq. B.1 and that a
more precise estimate here could improve a lot the number of dimensions covered in our
analysis.

’ 0.107
0.08~

1
1
| - )
0.08 |
(J,(J(r_ll ll, \
) |
0.067
0.04-] | |
) 1
. |
n.n:JJ 0.04 4 \
. 002 _
1
,I 0.5
i T 05
03506 [ e 2 06
200705 (J'.;]—i:rol.o og *
X :

Fig. 5 On the left, Eq. 5.6 fails for n = 12. On the right, Eq. 5.6 is recovered for n = 127 via the weaker
condition Eq. 5.7
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On The Shape Of The First Fractional Eigenfunction 1481

Appendix A: Special Function

For the reader’s convenience we list here the definitions and some properties about the special
functions that we use.

Appendix A.1: The Gamma Function
As usual, the Gamma function is defined by
oo
I'(z) = / x*le™ dx, forz > 0.
0

As it satisfies the recursive formula
F'z+1)=zT(2)

its definition can be extended using this formula to z € R\ {0, —1, =2, ...}. The Gamma
function satisfies in particular the duplication formula (see, e.g., [3, equation 6.1.18]) s

JrTQ2z) = 25711 (z) F(z + %) for z > 0. (A1)

Moreover, it holds (e.g., [3, equation 6.1.17])

F@r -z = forz e R\ Z.

sin(rz)
Furthermore (e.g., [3, equation 6.2.1]),

1 00 z—1
z—1 _ aw—l1 _ r* _ F(Z) F(w)
/0 (1 —1) dt_fo R dt = Fetw)’ z,w > 0. (A.2)

Appendix A.2: The Hypergeometric Function

We collect here some facts about the hypergeometric function 5 Fj. We suppose in all the
following that a, b, ¢,z € R withc¢ > b > 0 and z € [0, 1), although some formulas might
hold in broader generality (we refer to [3, Chapter 15]).
Recall first the integral representation
I'(c)

1
N R A b—1 _oe—b—1.1 _ —a
2F1(a,b;clz) = T&) T —b) Jo (1 —1) (1 —zr) " dt, (A.3)

see [3, equation 15.3.1], and the series expansion

. T@© STa@+bre+ih
2Fl(“’b’cm_r(a)r(b)g Tc+k) kI (A4

see [3, equation 15.1.1].
In particular one can consider —a € N U {0}, in which case one has that , F| reduces to a
polynomial of degree —a. For example:

2F1(0,b;clz) =1, (A.5)

b
201(=1, b;clz) =1 — o (A.6)
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1482 N. Abatangelo and S. Jarohs

see [3, equation 15.4.1].
Among the many possible transformations, the following one is important to our purposes:

2Fi(a,biclz) = (1 —2) "2 Fi(c —a, ¢ — b; clz). (A7)

Indeed, Eq. A.7 alongside Eqs. A.5 and A.6 respectively, bears the following identities
(corresponding to the particular cases ¢ = a and ¢ = a — 1 respectively):

»Fi(a,byalz) = (1 —2)7" ifa>b>0, (A8
—b—1
SFia, bia—1)2) = (1 —z)*”*l(l - a71z> ifa—1>b>0  (A9)
a_
Finally, according to [3, formula 15.3.17],
_ 1 11/1 —&/1 —2\2
Fi(a. b: 2b|7) = 224(1 + V1 —z2) @ F<a,a—b+7;b+f‘ 7) )
2F1( 1z) ( ) 2R > Z(H_m
(A.10)

Appendix B: A Bound On The First Eigenvalue

Let X be the first eigenvalue of (—A)® in B;. A direct bound in terms the first eigenvalue A;
of the classical Dirichlet Laplacian —A on the same ball is given by
A< (M),

see [17, Theorem 1.1] or, also, [9, 16]. To have a more explicit estimate—which turns out
to be a better one for s away from 1 and n = 1—recall that the function u; € C*(R"),
ur(x) = ks (1 — |x[%)%,, where

['(n/2)4=%

T A+ + D)

satisfies (—A)*u; = 1 in By. In particular, we have

W R

: 2 :
MEZ'(#(Bl) ”u”LZ(B ) ”ul”LZ(Bl)
Here,
2 n/2 1
= dx = 1—r)r" ' d
[u1]g /Blul(x) x Knsr( )f( r
n/2 1 N ra
N B P PR T L e ) N
I‘(f) 0 F(1+s+*)
272"1/2 1 11/2
2 2425 .n—1 _ _ 2v
”T”LZ(BI) '”1"( )/(1—r) r dr = K,”F( )/ 1-1

> L4295
.8 FA+2s+%)

where we used Eq. A.2 twice. Thus,

L 1 TA+9TA+25+%) 4TA+s)>TA+2s+ %)
T s TA+29T+5s+45) s+ 5TG) T +2s)

=K,

=An,s). (B.1)
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In the particular case n = 1, we have with the properties of the Gamma function (see
Appendix A, in particular Eq. A.1)

_#ra +5)2T(3 +25)  s#T)?TE +25) 2T TG +25)  T(+5)T(3+2s)

TGAOTMHTA+2)  VEAU+29TQs) (14290 +s)  TG+s)
(B.2)

Related results in this direction are contained in Dyda, Kuznetsov, and Kwasnicki [11].

Appendix C: On the shape of some s-harmonic functions

We discuss here some features of s-harmonic functions in B; associated with particular data
in Bf. Specifically, we assume

g : (I,00) — R 1is anon-increasing function, (C.D
I8
—————dy < 0. (C2)
/R"\Bl L [y

We denote by
by = sup{y € (1,00) : g(y) >t} fort € (—00,3), ?leﬁg(y)- (C3)

Let 7 : R" — R be the s-harmonic extension of y — g(|y|) in By, namely

1— 2\ S
h(x>=/\Ps(x,y>g<|y|> dy:ym/( i ) sy
Bi e \IyI* =1/ |y —x|

Proposition C.1 Assume Egs. C.1, C.2, and that g is non-negative. The function h defined as
in Eq. C.4 is radial, radially increasing, and subharmonic in Bj.

dy, for x € Bj.

(C4)

Proof Starting from the representation formula Eq. C.4, we write
oo ,n—1
3 p" " g(p) do
h<x>=y,1—|x|23/ : dp
né( ) 1 (pz_l)Y 9B, ‘,09—)(’”

and, in view of Lemma 2.4, it holds for x € By and p > 1

/ o 2T /1 (1—"5 "
agy [p0 —x|" T Jor (02 + Ix2 = 2plx]0)?

_olgtr /1 T(-)'T
- —1 n
P Jo (o + 1xD)? — 4plx|r)?

n—1
et _ n n—1 4p|x|
2 (o +1xI) nzﬂ(*,*'n—l 7)

211717.[ 5
r¢st) ra—1 27 27 (o +1x)?

2n—1 % r n—1 2
= i 5 )/07"2F1<E,12E‘%)
-1 22l
_ogn—1 5t regh et
B C(n—1) p? —|x|?

dt
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where we have used Egs. A.3, A.10, and A.8 in this order. Using the layer-cake representation
for g

g
g(p) =f Lapy(p)dt, p>1,
0

with b; and g defined as in Eq. C.3, we write for x € B

s 2p 8(p)
h) = (1= F) /1 (P2 = 1) (0% = Ix?)

g b 2p
_ R S/ / dy dt
yis(1—1x1%) o Ji (02 =1)"(p2 —|x?) '

where, for any b > 1,

b 2p b dz b=l dz
d = -— - - = _—- =
/1 -0 -wp /1 @D — P /0 2+ 1—xP)

|

_ =[x [2 dw s [ v
=(1—Ix?) 5/ = (1-]x]%) S/ , —— dv.
0 wS(w+ 1) 2y 41

b2-1

[ee)

Therefore

g oo vsfl
h(x) = Vl,s/o /l—mZ | dvdt forx e By.
b3 -1

As a consequence, for any x € By,

- ¢ — a 1—s
P\ —2x yso1 [ (b7 —1)
Vh(x) = =y, / ( dt =2y s x(1 —|x]7) / ———dt
“Jo \p2—1 1b—2|x|12+1b,2—1 3 ) 0 b —Ix|?
2

This proves the radial monotonicity. Moreover, for any x € By,

7 2 _ 1—s
—Ah(x) = =2y15 div( (1—xP)! /g -1 dt)
0

bi = IxP?
- 1—s - (1.2 1—s
_ 251 [ (btz_l) 2 252 % (bt _1)
= —2ny1s (1—1x1%) /0 Wdr—m—s)m [x|* (1= x]%) A Wdt
N
— oy (1 = P 1/ S
l,s ( ) 0 (b,z _ |X|2)2

is (strictly) negative for x € Bj.
Remark C.2 Analogue calculations can be performed when g is non-negative and non-
decreasing instead. This would lead to a radial, radially decreasing, and super-harmonic

s-harmonic extension.

Remark C.3 The non-negativity assumption in Proposition 5 can be dropped: if we split
g = g — g~ we can directly apply Proposition 5 to g+ and Remark 5to g ™.
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