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SUMMARY

Score-driven models have recently been introduced as a general framework to specify
time-varying parameters of conditional densities. The score enjoys stochastic properties that
make these models easy to implement and convenient to apply in several contexts, rang-
ing from biostatistics to finance. Score-driven parameter updates have been shown to be
optimal in terms of locally reducing a local version of the Kullback-Leibler divergence
between the true conditional density and the postulated density of the model. A key lim-
itation of such an optimality property is that it holds only locally both in the parameter
space and sample space, yielding to a definition of local Kullback—Leibler divergence that
is in fact not a divergence measure. The current paper shows that score-driven updates
satisfy stronger optimality properties that are based on a global definition of Kullback—
Leibler divergence. In particular, it is shown that score-driven updates reduce the distance
between the expected updated parameter and the pseudo-true parameter. Furthermore,
depending on the conditional density and the scaling of the score, the optimality result
can hold globally over the parameter space, which can be viewed as a generalization of the
monotonicity property of the stochastic gradient descent scheme. Several examples illustrate
how the results derived in the paper apply to specific models under different easy-to-check
assumptions, and provide a formal method to select the link function and the scaling of
the score.
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1. INTRODUCTION

A simple way to introduce dynamics in a statistical model is by allowing time variation
in some features of the probability distribution. One way to do so is by letting some of the
parameters that characterize the distribution itself vary through time. Models that utilize
thisidea are called time-varying parameter models. Cox (1981) gave a categorization of time-
varying parameter models by dividing them into two classes: observation-driven models and
parameter-driven models. The former are models where the updating equation is specified
as a function of the observations; instead, the latter are models where the dynamic equation
is governed by idiosyncratic innovations. In some cases, the same model can be specified
both as a parameter-driven model and as an observation-driven model; see, for example, a
linear Gaussian signal plus noise model and its corresponding filtering recursions (Harvey,
1989; Durbin & Koopman, 2012). The categorization turns out to be useful when nonlinear
observation-driven models are considered, such as the celebrated generalized autoregressive
conditional heteroscedasticity, GARCH, model by Engle (1982) and Bollerslev (1986). We
refer the reader to Koopman et al. (2016) for a discussion on the strengths and weaknesses
of these two classes of models.

Creal et al. (2013) and Harvey (2013) introduced a general class of observation-driven
models that provide a unified framework for specifying observation-driven time-varying
parameters. This class of models is commonly referred to as the class of score-driven mod-
els, and it is also known as the generalized autoregressive score or dynamic conditional
score class. The key feature of score-driven models is that the dynamic of the time-varying
parameter is driven by a process that is proportional to the score of the conditional likeli-
hood taken with respect to the parameter of interest. Score-driven models enjoy statistical
properties that make these models easy to implement as well as convenient to apply in several
diverse contexts, such as, for instance, robust filtering (Harvey & Luati, 2014; Gorgi, 2020),
spatio-temporal modelling with applications to neuroscience (Gasperoni et al., 2023) and
finance (Blasques et al., 2016; Catania & Billé, 2017), quantile estimation (Patton et al., 2019;
Catania & Luati, 2023), mixture models (Catania, 2021) and survival probability models
(Gorgi, 2018). An up-to-date repository on articles that use score-driven models is available
at http://www.gasmodel .com/.

The use of the score to specify the updating equation of time-varying parameters has been
motivated in the literature from a theoretical standpoint by showing that it locally reduces a
local version of the Kullback—Leibler divergence between the true conditional density and
the postulated density of the model. More specifically, Blasques et al. (2015) showed that
the sign of the score is in the direction of reducing a local Kullback—Leibler divergence.
The key limitation of this result is that it is local both in terms of the parameter space and
the sample space on which the Kullback—Leibler divergence is defined. In particular, the
local Kullback—Leibler divergence that is defined by Blasques et al. (2015) is in fact not a
divergence measure as it can also take negative values. Furthermore, the result is also local
in the parameter space as only the sign of the score matters and not the size of the update,
leading to the fact that any parameter update with the same sign is equivalent in terms of
the optimality definition of Blasques et al. (2015). Therefore, the result does not provide any
theoretical insights into the optimality of the scaling of the score or into the choice of the
link function as any rescaling of the score and any monotone link function are equivalent
in terms of the resulting sign of the score.

In this paper, we show that score-driven parameter updates satisfy stronger optimality
properties that rely on a global definition of Kullback—Leibler divergence. It is shown that
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the expected score-driven parameter update reduces the distance with respect to a pseudo-
true time-varying parameter, which is defined as the time-varying parameter that minimizes
the global Kullback—Leibler divergence between the true conditional density of the data-
generating process and the, possibly misspecified, conditional density postulated by the
model. Hence, we refer to optimality in conditional expected variation. We provide different
sets of conditions under which optimality can hold either globally over the parameter space
or locally, requiring the size of the score update to become arbitrarily small. We also show
that, locally, optimality in conditional expected variation implies a reduction in the mean
squared error with respect to the pseudo-true parameter. We discuss through several exam-
ples how these conditions provide practical insights into how to select the scaling factor
that multiplies the score in the updating equation and the link function of the time-varying
parameter.

The results in the paper are related to the stochastic gradient descent literature and they
formalize the practical intuition given by Creal et al. (2013, pp. 779) to justify score-driven
models, i.e.,

The use of the score for updating the parameter is intuitive. It defines a steepest ascent
direction for improving the model’s local fit in terms of the likelihood or density at
time ¢ given the current position of the parameter. This provides the natural direction
for updating the parameter.

More precisely, the score-driven update can be seen as a time-varying optimization problem,
where the sequence of objective functions is given by the conditional log-density postulated
by the model. The resulting optimality properties can be viewed as a natural generalization
of the monotonicity property of the updates of a gradient descent scheme.

2. FILTERING WITH SCORE-DRIVEN MODELS

Let {y;};ez be a time series process with elements taking valuesin ) € R. Assume that the
probability density function of y,; conditional on F,_| = o (y;—1, ¥s—2, .. .) is given by p;(y),
ie, y; | Fi—1 ~ p:(y). We refer to p;(y) as the true conditional density function, which is
assumed to be unknown. We specify a conditional density function to model the time series
process

Vel Fre1 ~py | Ao, (1)

where p(y | A;) is a probability density function and X, is a time-varying parameter that takes
values in the set A C R. In practice, p(y | A;) may be a parametric density function that also
depends on a static parameter vector to be estimated; however, this is not relevant for the
optimality results discussed below. The conditional density p(y | A;) may be misspecified
with respect to the true conditional density, namely, there may not be a value of A; such
that p(y | X)) = p;(»). Depending on the variables of interest and on the time-points at
which they are evaluated, the model density in (1) will be equivalently denoted as p(y; | A),
POl A orp(y | 2).

The score-driven framework of Creal et al. (2013) and Harvey (2013) provides a general
approach to specify observation-driven time-varying parameters. A first-order score-driven
model for the time-varying parameter A; is described by the equation

Aip1 = o + Bri +aSA)s(yr, Ay), (2
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where S();) is a positive scaling factor and s(y;, A;) is the score of the predictive log-density

dlogp(yi | Ar)
S he) = hs .
In the literature, the scaling factor S(A,) is typically selected to be a transformation of the
conditional Fisher information (Creal et al., 2013) and different scaling factors give rise to
different model specifications; see also Ayala et al. (2023) for an empirical comparison of
scaling factors in score-driven models.

Blasques et al. (2015) showed that score-driven parameter updates are locally optimal in
reducing a local version of the Kullback-Leibler divergence between the true conditional
density and the conditional density of the model. The Kullback—Leibler divergence between
the true conditional density function p,(y) and the conditional density function of the model

Py A)is

Pi(»)
Py [ A)

KLD,(%) = fR 510 log

The local Kullback—Leibler divergence defined by Blasques et al. (2015) replaces the
integration set R with a small interval ), C R around the observed value y;.

The optimality results in this paper extend the work of Blasques et al. (2015) in several
respects. In particular, the results in this paper are based on the global Kullback—Leibler
divergence KLD; (1) and not a local version. This is a major feature since the local Kullback—
Leibler divergence in Blasques et al. (2015) is, in fact, not a divergence measure as it can
be negative. As noted by Blasques et al. (2018a), the local Kullback—Leibler divergence in
Blasques et al. (2015) is positive only if p,(y,) > p(y; | A;). However, y; is a continuous
random variable and therefore, in general, we have p,(y;) < p(y; | A,) with positive proba-
bility. This affects the interpretation of the results, as they do not actually entail that there
is a divergence measure such that the assumed density p(y | A;41) is closer to the true one
Pp:(y) compared to p(y | Ay).

Blasques et al. (2015) considered the Newton-score parameter update, which is a special
case of the score-driven update in (2) with 8 = 1 and w = 0,

A1 = A +aSA)s(ye, Ar), (3)

and showed that the local Kullback—Leibler divergence between p,(y) and p(y|Ai;41) is
smaller than the local Kullback—Leibler divergence between p,(y) and p(y|A;) for an
arbitrarily small value of the score innovation S(A;)s(ys, A¢).

In the following section, we derive optimality results for score-driven parameter updates
with respect to the pseudo-true time-varying parameter that minimizes the conditional
Kullback—Leibler divergence KLD,(4). In particular, we show that the score-driven param-
eter update from A, to A4 gets closer in expected value to the pseudo-true time-varying
parameter. This provides a clear interpretation of score-driven filters as optimal approxima-
tions of a pseudo-true time-varying parameter in a misspecified framework. The criterion
function used to characterize the otherwise nonunique concept of optimality is formalized
in the next section.
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3. OPTIMALITY OF SCORE-DRIVEN UPDATES

3.1. Optimality results in conditional expected variation

Let us define the pseudo-true time-varying parameter A} as the value that minimizes the
Kullback-Leibler divergence

Af = argmin KLD,(%).
rEA

We refer the reader to White (1982) and Akaike (1998) for interpretation of Kullback—
Leibler divergence and its use in statistics and econometrics. Throughout the paper, we
use the shorthand notation E;(-) to denote the expectation conditional on F, i.e., E(-) =
E;(- | F;). We also define the function f;(1) as

Ji() = Ei—1llogp(y: | M].

The conditional expectation E;_i[logp(y; | A)] is with respect to the true conditional distri-
bution of y, i.e., p;(y). Hence, minimizing KLD;(}) is equivalent to maximizing f;(1) and
therefore A} maximizes f;(1).

We classify a parameter update from A; to A,1 as optimal in conditional expected varia-
tion if the distance between the expected updated parameter £;_1(A,+1) and the pseudo-true
parameter A} is smaller than the distance between A, and A}. The interpretation is that the
parameter update from A; to A,11 is based on the observable y;, which is generated under
the true conditional probability measure p,(y). A conditional expected variation optimal
update is expected to process the information in y, to update A, in the correct direction in
such a way that, on average, A, gets closer to A}. Namely, the conditional expected vari-
ation from A; to A4 is in the direction of the pseudo-true parameter A;. The expectation
E;_1(A11) averages out only the impact of y,, which is the most recent observation in the
filter A,1 1. A formal definition of conditional expected variation optimality is given below.

DEFINITION 1 (CONDITIONAL EXPECTED VARIATION OPTIMALITY). A parameter update from
At Lo Myx1 s optimal in conditional expected variation if

A, — E—1GugD| < A7 — x| 0f A F AT,
E 1) =47 if A =27

We start by introducing some regularity conditions on the model conditional density.

Assumption 1. The function f;(1) is twice continuously differentiable in A with prob-
ability 1. Furthermore, the derivative and the conditional expectation of the conditional
log-density p can be interchanged, i.c.,

fi(x) = Ei—1s(y;,A) forany A € A.

Assumption 1 is a standard regularity condition that enables us to interchange integration
and differentiation of the conditional log-density.

Assumption 2. The set A € R is open and convex. The pseudo-true time-varying
parameter A} is the unique global maximum of f;(1) in A with probability 1.
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Assumption 2 ensures the existence and uniqueness of A} and imposes some smoothness
conditions on f;(1).

Assumption 3. The function S(1) is continuously differentiable. There is a constant ¢ > 0
such that

IS0 _

0< o < ¢ almost surely for any A € A. 4)

Assumption 3 requires the expected score innovation to be a decreasing Lipschitz continu-
ous function with respect to A. Under these assumptions, we obtain optimality in conditional
expected variation of the Newton-score parameter update.

THEOREM 1. Let Assumptions 1-3 hold. Then, the Newton-score parameter update defined
in 3) with 0 < o < 2/c is conditional expected variation optimal.

The proof, in the Appendix, follows similar arguments as those that are typically used
to prove convergence of the gradient descent algorithm. Assumptions 1-3 involve only the
conditional expectation, with respect to the true density, of the model log-density. In prac-
tice, this expectation often reduces to some moment conditions on y;. As we shall see in
§4, in practice, the most restrictive assumption is the Lipschitz continuity of the expected
score innovation in Assumption 3. We consider a weaker Lipschitz condition that provides
an alternative to Assumption 3. This assumption can be used to deliver a local version of
the optimality result in Theorem 1.

Assumption 4. For any compact subset A, C A, there is a positive F;_j-measurable
random variable ¢; such that the condition in (4) with ¢ replaced by ¢; holds for any A € A.

Assumption 4 is weaker than Assumption 3 as it only requires the expected score function
to be Lipschitz on compact subsets of A instead of the whole set A.

THEOREM 2. Let Assumptions 1, 2 and 4 hold. Then, there exists a; = a;(As, AY) > 0,
where ay is an F,_1-measurable random function, such that the Newton-score parameter update
defined in (3) with a replaced by «; is conditional expected variation optimal.

Theorem 2 provides a local result in the sense that it only guarantees that there is a small
enough «;, such that the Newton-score update is optimal. The size of «, depends on A, and
A} and therefore o; may become arbitrarily small, depending on the current states of A, and
A}. Several examples are presented in § 4 that illustrate how the choice of the scaling function
S(2), as well as the link function for the time-varying parameter A;, can affect whether the
global optimality result or the local optimality result holds. It is important to remark that
the concepts of local and global apply here to the parameter space A, not to the range of
;. As the updating scheme in score-driven models is based on a derivative with respect to A,
it is expected that, in the absence of high-level assumptions on the data-generating process,
optimality holds when small variations in the time-varying parameters are considered; see
also the discussion in Lange et al. (2022).

The results in Theorems 1 and 2 rely on the assumption that the function S(A)f/ (1) is
strictly decreasing. This ensures that f;(1) does not have stationary points other than the
global maximum A}, ruling out, for instance, the possibility of local maxima. As we shall
see in §4, for some models, this assumption may not be satisfied or, in general, it may be
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difficult to check that it holds because f; (1) may not be available in closed form. In the
following, we consider a weaker version of the results derived so far, which only requires
the function S(A)f/ (1) to be strictly decreasing in a neighbourhood of the global maximum

of (V).

Assumption 5. The condition in (4) holds for any A in an open neighbourhood of the
global maximum of f;(1) for some value ¢ > 0 that may depend on A;.

Assumption 5 is a milder version of Assumption 3 that is required to hold only on a
neighbourhood of the global maximum of f; ().

THEOREM 3. Let Assumptions 1, 2 and 5 hold. Then, there exists an € > 0 such that the
Newton-score parameter update defined in (3) is conditional expected variation optimal for
refre A |A—Af| <e€l

Theorem 3 delivers the conditional expected variation optimality of the Newton-score
update under the constraint that the parameter value A, is close enough to the pseudo-
true parameter A;. This condition is needed as the function f;(A) is not required to be
strictly concave in A; otherwise, the parameter update may go in the direction of a local
maximum.

Theorem 3 applies to a very large class of models under standard regularity conditions,
provided that the conditional density function is correctly specified, i.e., p,(y) = p(y | A}).
If the conditional density is correctly specified then A} is the time-varying parameter of the
true conditional density. Therefore, in this case, f;"(A}) = —I(A}), where I(A) is the Fisher
information associated with the conditional density function p(y | A). Under standard regu-
larity conditions on the density function p(y | 1), the Fisher information /(1) is a continuous
functionand I(A) > O forany A € A. Theequality f;'(A;) = —I(%;) does not hold for A; & 1}
as the conditional expectation in f;”(1,) is taken with respect to the true parameter 1. How-
ever, under continuity of the function f;"(A), we have f;’(x,) — —I(x}) as |», — A7| — 0.
Theorem 3 imposes that A, is arbitrarily close to A} and, thus, since /(A7) > 0, we find that

/() < 0 and is bounded from below by a function of A}. This implies that Assumption 5
holds.

Finally, the conditional expected variation optimality results presented in this section
also entail that the parameter update reduces the mean squared error with respect to the
pseudo-true parameter A; for a small enough .

COROLLARY 1. Let the assumptions of either Theorem 1, Theorem 2 or Theorem 3 hold.
Furthermore, assume that E;_15(y;, \)> < oo almost surely for any » € A. Then, for any
(At A7), At % AT, there exists a small enough o > 0 such that the Newton-score update reduces
the mean squared error with respect to the pseudo-true parameter A7, i.e.,

E {0 = 1)) < O — 202

The result in Corollary 1 can only hold for a small enough « that depends on A, and 7. This
is intuitive as o must be zero in the limit case where A7 = X, to achieve A;41 = A;, which
implies that E;_1{(L} — A,41)%} = (AF — A)2.

In summary, Theorems 1, 2 and 3 establish conditional expected variation optimality
results under the easy-to-verify conditions given in Assumptions 3, 4 and 5, respectively.
The result of Theorem 1 is global as it holds for any 4; over the parameter space A and
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8 P. Goral, C. S. A. LAURIA AND A. LUATI

uniformly for a fixed value of «. On the other hand, the result of Theorem 2 is local in
the sense that it holds for any A; over the parameter space A, but not uniformly as «
depends on A; and A}. Finally, the result of Theorem 3 is fully local as it holds for A; in
a neighbourhood of the pseudo-true parameter A;. The Kullback—Leibler divergence is in
all cases the global one, defined over the whole sample space. It is easy to see that Assump-
tion 3 implies Assumption 4, which itself implies Assumption 5. Assumption 5 holds for a
very wide class of models under high-level conditions on the true density. Assumptions 3
and 4 can be easily checked for any given density specification, including different choices
of the scaling factor and of the link function. Section 4 below illustrates through several
examples how Theorems 1, 2 and 3 can be applied in practice and also their implications
on the range of optimality of the score coefficient «. Finally, Corollary 1 shows that,
under the same assumptions as in Theorems 1, 2 and 3, conditional expected variation
optimality implies a reduction of the mean squared error with respect to the pseudo-true
parameter.

3.2. Discussion on mean reversion

The conditional expected variation optimality discussed in § 3.1 concerns the pseudo-true
time-varying parameter at time ¢, i.e., A}. In practice, the updated time-varying parameter
Ar41 18 useful to approximate A7, | and not A7. However, the parameter update from 2, to
As11 relies on the observable variable y, at time ¢. Therefore, assumptions on how y,| relates
to yy, or, equivalently, on how A} 1 relates to A}, are required in order to make any claim
on the optimality of the score-driven parameter update with respect to A7, ;. In the rest
of the section, we discuss how conditional expected variation optimality is retained with
respect to A7, | under some conditions. The discussion below also motivates the use of the
mean-reverting score-driven specification in (2), which is often considered in the empirical
applications instead of the Newton-score specification.

First, we note that a form of conditional expected variation optimality also holds
with respect to A7, ; when the pseudo-true parameter is a martingale process such that
E 10y L) = A7. Under this condition, and together with Assumptions 2-3, we find that if
At £ A7 then IE,_1(kf+1 — A+1)| < [A7 — A4|. This result implies that the distance between
the expected 17 4 and A,; is smaller than the distance between A} and A,. The result follows
immediately from Theorem 1 as we are assuming here that £, (A} ) = A7

Second, if we assume that A} is a mean-reverting process with conditional expectation
given by E,_l(kf+1) = o + BA}, and B (0,1], we obtain an optimality property for
the general case of a score-driven parameter update in (2). In particular, following the
same arguments as in the proof of Theorem 1, it is straightforward to prove that, for
0 < & < 2B/c, the score-driven update in (2) satisfies |E;—1(A7 | — A1)| < BIA] — A 0f
A7 % A;. The implication is that the distance between the expected A7 . and A,y is smaller
than the distance between A} and A, multiplied by the autoregressive coefficient g. The inter-
pretation is that, due to its mean-reverting behaviour, 47, ; can be predicted to revert towards
its unconditional mean and the score-driven parameter update reduces the expected devi-
ation between A7, and A,y more than the reduction due to the predictability implied by
mean reversion. The intercept and autoregressive parameters w and g are assumed to be the
same for A, and A}. In practice, @ and B in (2) are not known and they have to be estimated.
Because of the parametric nature of score-driven models, the static parameters are usually
estimated by the method of maximum likelihood (Blasques et al., 2022) under conditions

of filter invertibility (Blasques et al., 2018b).
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4. EXAMPLES
4.1. Beta-t-EGARCH model
Consider the Student-7 scale model with exponential link function

Ve = exp(rs/2)ey,

where ¢; has a Student-z distribution with zero mean, unit variance and degree-of-freedom
parameter 2 < v < oo. For this model, the conditional Fisher information of the parameter
of interest, A;, is a constant. Using a unit scaling, i.e., S(A;) = 1, leads to the score innovation

v + 1)y?

A Ae) = -
e e Y .

The corresponding model is the Beta---EGARCH originally proposed in A. Harvey’s
unpublished 2008 University of Cambridge working paper, see also Harvey (2013) as a
model for the scale parameter of a Student-7 distribution with v > 0.

In this example, the conditions of Theorem 1 are satisfied. The conditional log-density
of the model, up to additive constants, is

A v+ J’%
| =t P el 2L
ogp(ye | A1) 5 ) 08 { + (v —2)exp(ry)

Assumption 1 can be shown to hold by the dominated convergence theorem, provided that
E,_1(»?) < oo with probability 1. Furthermore, E;_1(y?) < oo implies that Assumption 2
holds, as the Student-¢ loglikelihood has a unique maximum with respect to the variance
parameter; see Fan et al. (2014). As concerns Assumption 3, we have

ISIW) _ . (=2 + Dyl exp(h)
2 - expl) +y72

which is strictly negative and uniformly bounded from below by a constant that depends on
the degree-of-freedom parameter v € [2, 00).

4.2. Beta-t-GARCH model
Consider the following scale model with Student-7 innovations:

Ve = s

Here ¢; has a standardized Student-7 distribution with v > 2 degrees of freedom. Selecting
the inverse of the conditional Fisher information as a scaling function, S(i;) = 2k%, yields
the following score innovation for the time-varying parameter:

(v + 1))?

SA)sere) = m -

The resulting score-driven model is the Beta-r-GARCH model discussed by Creal et al.
(2013) and Harvey (2013).
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10 P. Goral, C. S. A. LAURIA AND A. LUATI

For this model, the assumptions of Theorems 1 and 2 are not satisfied, but the assump-
tions of Theorem 3 hold. The conditional log-density of the model, up to additive
constants, is

1 v+ 1 y?
Ing(yt | )\t) = —Elogkt — Tlog{l + m}

Assumptions 1 and 2 hold as discussed in the previous paragraph for the Beta---EGARCH
model, while neither Assumption 3 nor Assumption 4 can be directly verified, as

IS®) _ byt
a2 ETUNEYRREE

On the other hand, Assumption 5 can hold, depending on the shape of the true conditional
density. For instance, Assumption 5 is immediately satisfied if the conditional density is
correctly specified. In the limit case v — oo, the Student-¢ distribution converges to the
normal and the score innovation becomes

SA)s(ye, Ay) = Y% — Ar.

As discussed by Creal et al. (2013), the resulting score-driven model corresponds to the
integrated GARCH(1,1) model of Bollerslev (1986). Theorem 1 holds for this example as
Assumption 3 is satisfied, given that

IS ()
BV h

—1.

By Theorem 1, as ¢ = 1, the global optimality condition holds for 0 < o < 2.

Finally, choosing different scaling functions in the score innovation, such as the identity
or the square root of the inverse of the conditional Fisher information, leads to different
results. For instance, using the latter up to a proportionality constant, i.e., using S(A;) = 2X;,
the score innovation is

(v + Dy?
S(A )= —"———1
(A)ses Ar) v — 2% +y%

and, consequently,

ISGIG) _ . D =27
on -2

By taking the limit A — 0, we can see that d.S(1)f;(1)/d is not bounded from below by a
constant, and therefore Assumption 3 does not hold. On the other hand, Assumption 4 is
satisfied and the local optimality result of Theorem 2 applies.

4.3. Exponential Poisson autoregression
Consider the following Poisson time series model with exponential link function:

Ve | A ~ Polexp(Ay)}.
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Here Po(it) denotes a Poisson distribution with mean . Selecting the inverse of the con-
ditional Fisher information as a scaling function, S(A;) = exp(—X;), leads to the following
score innovation for the time-varying parameter A;:

Vi

SGS (k) = s =

The resulting score-driven model is equivalent to the Po-EINGARCH model of Gorgi
(2018) and it is a special case of the class of Poisson observation-driven models of Davis
et al. (2003). See also Blazsek & Escribano (2016) for a generalization of this model to panel
data.

For this model, the assumptions of Theorem 1 are not satisfied, but, instead, the
assumptions of Theorem 2 hold. In particular, the conditional log-density of the model is

logp(yi | &) = yiry — exp(ry) — log(y:)).

Assumption 1 holds provided that E; ;(y;) <oo with probability 1. Furthermore,
E;_1(y;) < oo ensures that the pseudo-true parameter A7 = log{E;_(y;)} 1s the unique max-
imizer of f;(A) = E;_1{logp(y; | A)} with probability 1 and therefore Assumption 2 is
satisfied. Finally, we note that

aS()»)ﬂ()») . _Et—l(yt)
A T expn)

Therefore, given the open set A = R, Assumption 3 does not holdas 1/ exp(A) — coasi —
—oo and, furthermore, E,_|(y;) may not be necessarily bounded by a constant, depending
on the true conditional density. Instead, Assumption 4 holds as, for any compact subset
A. C R, we can define the F,_j-measurable random variable ¢; = E,_1(y;)/ infyeca, exp(})
that satisfies —9.S(1)f/(A)/dr < ¢, forany A € A..

4.4. Poisson autoregression
Consider the Poisson time series model with identity link function

Vel A ~Po(Xy).

Choosing the inverse of the conditional Fisher information as a scaling function, S(1;) = A,,
leads to the score innovation

SA)se A) =ye — M.

The resulting model is the Poisson autoregression of Fokianos et al. (2009). For this model,
the assumptions of Theorem 1 are satisfied. The conditional log-density of the model is

logp(y: | &) = yilog(hy) — A, — log(y).

Assumption 1 trivially holds provided that E;_1(y;,) < oo with probability 1. Furthermore,
E;,_1(y) < oo implies that A7 = E;_(y,) is the unique maximizer of f;(1) = E;_i{logp(y, |
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A)} with probability 1 and therefore Assumption 2 also holds. Finally, Assumption 3 holds
immediately as

IS ()
BV h

—1.

Therefore, Theorem 1 applies with 0 <« <2 asc = 1.

Contrary to the Beta--(E)GARCH examples, where the exponential link function leads
to global optimality, in exponential Poisson autoregressions, choosing the identity link
function leads to global optimality, while the exponential link function leads to local
optimality.

4.5. Student-t location model
Consider the location model with Student-7 innovations

Ve = At + &y,

where &, has a Student-¢ distribution with zero mean, v degrees of freedom and scale o.
Selecting the constant S(A;) = v/(v + 1) as a scaling function yields the following score
innovation for the time-varying location A;:

e =2 /o
1 + (y; - )LI)Z/O’ZU‘

SA)s(ye, M) =

The resulting model is the score-driven location model given by Harvey & Luati (2014). The
conditional log-density of the model, up to additive constants, is

v+1 — )2
logp(ye | A1) = —TIOg {1 + (yi/vat> }

Similarly to the case of the Beta---GARCH model, Assumptions 1 and 2 hold as long as
E,_1|y:] < oo with probability 1. In addition, we have

0SW ) _ o e=2P/ov — 1o
T T =02 e

)

from which we note that Assumptions 3 and 4 do not hold and therefore Theorems 1 and 2
do not apply. Instead, Assumption 5 holds under some conditions on the true conditional
distribution. For instance, if p;(p) is symmetric, the pseudo-true parameter A} is the condi-
tional expectation of the true conditional distribution. Then, if the parameter o2 is close
to the variance of y, and v is relatively large, Assumption 5 holds and Theorem 3 applies.
Another case where Theorem 3 immediately applies is when the Student-¢ density is cor-
rectly specified, as, for A; close to A7, f/'(%;) in (5) is negative and bounded from below by
the negative Fisher information evaluated at A}, i.e., ¢ = I(A}) = (v + D)(v + 3)/ v2; see
Harvey & Luati (2014, Equation 11). Therefore, the correctly specified Student-z score-
driven location model is locally conditional expected variation optimal, as stated by Theo-
rem 3, for 0 < & < 2v2/{(v 4+ 1)(v + 3)}. This result is novel in the score-driven literature as
no arguments on the range of « are available.
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The examples considered in this section show how the specification of a different link
function for the time-varying parameter and the selection of the scaling factor give rise to
different models and affect the optimality properties of the score-driven parameter update.
The examples also illustrate that Assumptions 3-5 form a practical framework to determine
if global or local optimality results hold for a specific model. The results immediately extend
to the stationary case, as discussed in §3.2. For example, the correctly specified stationary
Student-z score-driven model for the location parameter is locally conditional expected vari-
ation optimal, as stated by Theorem 3, for 0 < o < 28v2/{(v + 1)(v + 3)}, where 8 is the
autoregressive parameter of the stationary score-driven filter.

5. CONCLUDING REMARKS

Time-varying parameters of observation-driven models are often interpreted as misspec-
ified filtering recursions. Theoretical analyses of these models are mainly concerned with
their stochastic properties, such as stationarity, ergodicity and invertibility; see Blasques
et al. (2018b) for a discussion on the latter. In contrast, for linear models, filtering recur-
sions are often studied according to optimality properties that they possess with respect
to criteria such as the minimum mean square distance or mean absolute deviation, with the
literature that dates back to Kalman (1960). This paper contributes to the literature that aims
to investigate optimality properties of nonlinear models, according to specific criteria that
characterize the nonunique concept of optimality, with a focus on the class of score-driven
models. The paper provides optimality properties for score-driven filters in the direction of
the pseudo-true parameter. The parallel drawn with the stochastic gradient descent method
constitutes the basis for possible extensions to the case of multivariate score-driven filters,
where the choice of the scaling matrix of the score is an open topic of debate.

APPENDIX

Proof of Theorem 1. First, we show that Assumption 3 implies the so-called co-coercivity of the
function S(A)f; (1), namely,

'/ -/ 1 ~/ !
(SO () = SO)f] (A} (A — ) < —;{S(M)f, (M) — SO ())* forall A1, 4s € A.
In particular, by the mean value theorem we obtain

d, () (a1 = ha) = (SODS (1) = SG)f] (M)},
where d,(1) = dS(L)f](1)/dx and X is a point between A, and A,. Assumption 3 imposes that —c¢ <

d,(A) < 0 almost surely for any A € A. Therefore, we immediately obtain the desired result:

1
{ﬂMW@O—&MM@M@r%ﬁ=;aﬂﬂMW@o—&MM@mz

1
< -
WP

1
< —Z{S(M)f;(?\l) — S)f] (M)}

{SONS (k1) = SQ)f (M)}
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14 P. Goral, C. S. A. LAURIA AND A. LUATI

Next, by Assumption 1, we have

{E 1 (gr) = AP = (A +aSO)f () — A7)
= (b — A2+ 2aSO)f )y — X)) + 2SS (M)

Therefore, from the co-coercivity of S(A)f; (1) and taking into account the fact that f; (A7) = 0 almost
surely, since, by Assumption 2, the function f, is continuously differentiable and A} is its unique
maximizer in the open set A, we obtain

{E 1Oup) = AP < — A0 — %aS(mzf:(A,)z + @S] (1)

<y — A = a(% - a)S(mZﬂ(mz. (A1)

Finally, we note that 0 < « < 2/c by assumption. Hence, we have |E,_j(A41) — AF| < |A, — AF| if
S(A)f! (&) F 0. Assumption 3 implies that the function S(L)f; (%) is strictly decreasing. This, together
with f/ (A7) = 0, implies that S(1,)f;(x,) = 0 if and only if A, = A}. Therefore, we conclude that
|E—1 (A1) — A7l < A = A1 Ay & A7 and B (Ap1) — A7 = 01f A, = A7, 0

Proof of Theorem 2. The proof is equivalent to the proof of Theorem 1 with the difference that
the co-coercivity of S(1)f; (1) holds only on compact subsets of A and that the Lipschitz constant
¢, 1s an F,_j-measurable random variable. For any 1, A, € A, we define the compact set A(r{, ;) =
[min(X, A2), max (i, A2)]. Since A is convex, A(i, A;) C A. Next, by Assumption 4, we obtain

1
(SO (M) = SO )} — A) = —=—{SO)f (k1) — SO)f] (M)}

di(X)
< BTN S A ’ A _ S A / 2 2’
Cz()vl,)»z){ A1)y ) (A2)ff (A2)}
where ¢, (A1, A2) = —SUP; o, 5, @ (1). The proof then follows the same argument as in the proof of

Theorem 1 by replacing « in the updating equation in (3) with «, = §/¢,(%,, A7) for some 8§ € (0, 2),
which together with

{EiOupn) = AP < (0 — A0 — a[{ SO (h)?

)
T
(A A7)
implies the desired result. O

Proof of Theorem 3. The proof follows the same argument used to prove Theorem 1 with the only
difference being that the result holds in the subset A¥ = {A € A: [L — Af| < €} instead of the whole
parameter set A. In particular, we have A, € A by assumption and A7 € A7 by the definition of set A}.
Assumption 5 implies that there is a small enough € such that Assumption 3 holds for set A} instead
of A. Finally, Assumptions 1 and 2 also hold for set A} as they hold for set A, and A¥ is a subset
of A. O

Proof of Corollary 1. First, we show that the conditional variance of A, given F, | is

var,_i (A1) = o> S(h)’g(Ay),
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where g,(A) = var,_{s(y, A)} and g,(A) < oo almost surely by assumption. Next, we show that the
result holds under the conditions of Theorem 1. From the inequality in (A1), we obtain

E {0 = A1) = var (hyt) +{E 1 Ousr) — AFY

<var_ () + (= A —«a (% - a)S(A,)Zf;(A,V
2
< —AD + aS(A»Z[a{g,(m + £/ () — ;}.

Therefore, it follows that E,_{{(Af —A,41)*} < (A, —A¥)> when o < 2/[c{g,(A,) +//(A)*} and A, & AF.
Finally, the result also holds under the conditions of either Theorem 2 or Theorem 3 instead of
Theorem 1 based on an equivalent argument. |
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