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The Medical Device (MD) Regulation EU 2017/745 (MDR) has provided a

completely new and more robust regulatory framework at guarantee of the

safety and efficacy of therapeutic options accessing the market. At the same

time, the MDR poses several challenges for stakeholders, among which, the

most significant lying on MDs made of substances (MDMS) whose mechanism

of action should be non-pharmacological, immunological, or metabolic.

Moving from single active substances to very complex mixtures, such as the

case of natural products, the demonstration of the non-targeted, non-

pharmacological mechanism, is even much more challenging since it is very

hard to specifically identify and characterize all the interactions each

constituent can have within the body.

New scientific paradigms to investigate these multiple interactions and

delineate the principal mechanism of action through which the effect is

achieved are necessary for the correct regulatory classification and

placement in the market of MDMS.

This article will discuss the difficulties in delineating the boundaries between

pharmacological and non-pharmacological mechanisms, practical approaches

to the study of complex mixtures and the challenges on the application of

current experimental paradigms to the study of the mechanism of action

of MDMS.
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Introduction

The incoming Medical Devices Regulation (MDR) No 2017/

745 (Regulation (EU) 2017/745), fully in force since 26May 2021,

has introduced several innovative aspects throughout the life-

cycle of a medical device (MD), especially for high-risk MDs,

including: 1) mandatory clinical data (introducing, albeit not

defining, the concept of sufficient clinical evidence); 2) proactive

post-marketing clinical follow-up (PMCF) plan, comprising a

Periodic Safety Update Report (PSUR) to be updated at least

annually; 3) a new international Unique Device Identification

(UDI) system and a publicly accessible European database

(EUDAMED) to increase traceability and transparency of

MDs (Antich-Isern et al., 2021). This European legal

framework mirrors the regulatory scenario of medicinal

products, albeit with notable differences (Van Norman, 2016a;

Van Norman, 2016b; Van Norman, 2018; Cipriani et al., 2020;

Naci et al., 2020) (Table 1).

While promoting a real proactive pre- and post-marketing

risk-benefit assessment, the MDR poses a number of challenges

for stakeholders, including manufactures, notified bodies and

researchers (pharmacologists and toxicologists), and formally

recognizes the role of “medical devices made of substances”

(MDMS), especially addressed by Rule 14 and 21. The former

covers MDs incorporating, as an integral part, a substance which,

if used separately, can be considered to be a medicinal product,

albeit with an ancillary action (e.g., drug-eluting stents); the latter

identifies substance-based MDs introduced via a body orifice

such as the gastrointestinal tract or applied to the skin.

Two key issues should be tackled for MDMS. First, the non-

targeted mechanism of action “not pharmacological,

immunological or metabolic” of the MD is different from the

“therapeutic effect” and should be determined (from the

literature or experimentally) (Racchi et al., 2016; Racchi and

Govoni, 2020), as exemplified by the case of lubiprostone and

glycerine as laxatives (Sardi et al., 2018). Second,

pharmacokinetic and toxicological data, including

biocompatibility, deserve careful assessment, by demonstrating

local and systemic exposure to the (ancillary) medicinal

substance, its potential impact on safety, interactions with

other substances, and relevant disposition of metabolites,

taking into account individual variability.

The most challenging aspect lies on MDs made of complex

natural products, encompassing food supplements, botanicals,

and herbal medicinal products, which do not fit the so-called key-

lock model due to their complex multitarget mechanism (Bilia

TABLE 1 Medical Device versus Medicinal Product: comparison of key regulatory aspects.

Medicinal product Medical device

Regulatory framework Directive 2001/83/EC Regulation 2017/745

Classification NME, generic, ATMP, HMP Depending on risk criteriaa

Organisation responsible for granting
market approval

EMA, FDA or National authorities Notified bodiesb

Availability of expedited development/
approval programmes

YES (e.g., breakthrough therapy/fast track designation, rolling review,
conditional approval)

NOc

Types of organisations which bring
products to market

Mostly large and established pharmaceutical companies Variable: many start-ups and SME, as well as large
medical technology companies

Supportive programme for SMEs YES (e.g., PRIME –priority medicines scheme by EMA) NO

Clinical development phases Well defined (1–4), with several innovative designs (e.g., seamless,
basket, umbrella, adaptive, platform)

Less defined

Clinical study design and quality of
evidence

Highly standardized (RCT as the gold standard, with exceptions) Less standardized (pivotal trials possibly done after CE
marking)d

Post-marketing surveillance and
commitment

Good Pharmacovigilance Practices; PAES/PASS (EMA) PMCF plan and PSUR

Emergency/compassionate use Allowed Allowede

ATMP: advanced therapy medicinal products; EMA: European medicines agency; FDA: food and drug administration; HMP: herbal medicinal products; NME: new molecular entities;

PAES: post-authorization efficacy study; PASS: post-authorization safety study; PMCF: post-marketing clinical follow up; PSUR: Periodic Safety Update Report; RCT: randomized

controlled trial; SME: small-medium enterprises.
aMDCG, 2021-24 provides guidance on classification (rules) of medical devices.
bForMDsmade of substances that are systemically absorbed, before it can issue a CE certificate, the notified bodymust seek a scientific opinion from EMAor a national competent authority

on the compliance of the substance with the requirements laid down in Annex I to Directive 2001/83/EC.

EMA publishes a consultation procedure public assessment report on the opinions prepared by its Committee for Medicinal Products for Human Use following a consultation procedure

with EMA on the quality, safety, benefits and risks of ancillary substances incorporated in a medical device. (https://www.ema.europa.eu/en/human-regulatory/overview/medical-devices/

ancillary-medicinal-substances-medical-devices/chmp-opinions-consultation-procedures).
cThe FDA’s breakthrough devices programme offers intensive interaction and priority review to expedite the development and review for “devices that provide more effective treatment or

diagnosis of life-threatening or irreversibly debilitating human disease or conditions”.
dEvidence standards might vary across different notified bodies. In US, moderate-risk devices and some high-risk devices can be cleared through the 510(k) pathway, which typically does

not require clinical data.
eEmergency use allowed in Europe for non-CE, marked under COVID-19, pandemic.
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et al., 2021), with notable impact on environmental

sustainability. “System biology” has been regarded as a new

scientific paradigm to investigate these multiple interactions

between complex substances and the human body.

Marking off boundaries between
pharmacological and non-
pharmacological mechanism of
action

The regulatory definitions of pharmacological,

immunological, or metabolic means given in Meddev 2.1/3 rev

3 (European Commission, 2009) have been recently amended in

the Guidance on borderline between medical devices and

medicinal products (MDCG 2022–5) with the aim at adding

more precision to such definitions (Supplementary Table S1).

Notably, the term “receptor”, historically associated with the

pharmacological mean, is no more the focus and the

“pharmacological mean” was acknowledged to encompass

several molecular interactions (e.g., covalent bonding,

H-bonds, electrostatic, and van der Waals forces) with

constituents of the human body. It is likely that this new

definition will further fuel the discussion but, an “interaction

at the molecular level”, is still understood as a specific interaction

that should be demonstrated and identified unequivocally. As

proposed by Racchi et al. (2016) and by Bilia et al. (2021), when a

specific primary target cannot define the mechanism of action,

this should not be regarded as a pharmacologic mean. Moreover,

the interaction itself is not sufficient to determine the therapeutic

effect but should trigger a subsequent signal transduction

pathway resulting in “initiation, enhancement, reduction or

blockade of physiological functions or pathological processes”

(Leone, 2022). Note 5 also reads that “Although not an

exhaustive criterion, the presence of a dose-response

correlation is indicative of a pharmacological, metabolic or

immunological mode of action”.

Moving from single active substances to very complex

mixtures, such as the case of natural products, the correct

interpretation of “pharmacological mechanism” is even much

more challenging since it is very hard to specifically identify,

describe and measure all the interactions each constituent can

have each other and within the body.

Typically, the claimed therapeutic effect of MDs is achieved

by a physicochemical mechanism of action. However, based on

Rule 21, the MDR expressly recognizes the existence of MDMS

acting systemically other than locally, de facto acknowledging

that the concept of non-pharmacological mechanisms of action

may go beyond chemico-physical means. Even in such cases, the

effect should not be achieved through specific ligand-primary

target interactions eliciting definite cell signaling changes.

Rule 21 represents the main novelty of the MDR paving

the way for a strong therapeutic innovation while

establishing a robust, regulatory framework as guarantee

of the efficacy and safety of these products. Notably,

MDMS can no longer be classified as class I products and

will face a conformity assessment by the Notified Body; in

addition, for systemically absorbed products, the scientific

opinion of a medicinal competent authority or of the

European Medicines Agency (EMA) will be asked and a

case-by-case evaluation on whether these product fall

within the MDR will be provided.

However, the practical experimental approaches for

classifying MDMS under the definition of “non-

pharmacological mean” remains a major challenge.

Research methodologies on natural
products: From a reductionist
approach to the biological
complexity of mixtures of substances

Historically, ethnopharmacological research on complex

natural products has been aimed at identifying and isolating

the bioactive principle to be further developed as a medicinal

product once the target and pharmacological mechanism of

action was identified. A typical starting point is the

measurement of a given biological activity using in vitro

phenotypic assays followed by target deconvolution

(Terstappen et al., 2007). This approach is particularly

valuable for natural products since bioactive molecules can

be identified without preconceived molecular mechanisms

(Chang and Kwon, 2016).

In the case of complex natural substances, investigations

usually begin with a crude extract tested in vitro assays

followed by biological activity-guided fractionation until a

single active principle or structurally related compounds, are

isolated (Najmi et al., 2022). The mode of action of the main

active ingredient is then characterized by pharmacological

and molecular tools (receptor binding studies, downstream

pathways activation/inhibition or enzymatic activity

modulation).

Several important guidelines for performing rigorous

pharmacological research into natural products were

recently published (Izzo et al., 2020): among those, the

selection of appropriate concentrations or doses reflecting

real-life exposure patterns and the evaluation of the

mechanism of action at such thresholds, are particularly

valuable also for MDMS research. Moreover, since natural

products are often very complex mixtures of different

chemical entities that can be prone to geographical,

seasonal, and environmental variations, the determination

of the chemical composition and its standardization, is

another crucial aspect to be addressed (Mattoli et al.,

2022). Lack of phytochemical qualitative and quantitative

analysis of a particular natural product, may affect the

Frontiers in Drug Safety and Regulation frontiersin.org03

Fimognari et al. 10.3389/fdsfr.2022.1001614

https://www.frontiersin.org/journals/drug-safety-and-regulation
https://www.frontiersin.org
https://doi.org/10.3389/fdsfr.2022.1001614


potency, may result in unreproducible effects, whether they

are achieved through a pharmacological or a non-

pharmacological mechanism of action, and ultimately, may

impact its placement in the market and its clinical

applications.

When the biological activity of a multicomponent mixture is

investigated, the phenotypic change assayed should be observed

in the presence of the combinatorial components acting in

concert in multiple, but not individually identifiable targets,

otherwise, the active principle(s) should be identified, and the

mechanism of action further characterized. Synergistic effects

can be demonstrated against the phenotypic changes observed

with single ingredients: Long et al. (2015) elucidated the

predominant combinatory compounds of an herbal extract

contributing to an anti-inflammatory effect and demonstrated

additive effects by comparing dose-effect curves for single

compounds alone and for multiple combinations. However,

this strategy assumes that the underling mechanism of action

is pharmacological and its relevance and applicability for MDMS

is uncertain.

The concept of additive effects and
synergisms

Regardless of the mechanism through which the effect is

reached, the biological activity as well as the toxicological profile

of either drugs combinations and complex mixtures to be

developed as MDMS, can be influenced, either positively or

negatively, by combinatory effects.

As it is shown in Supplementary Figure S1, the first step is to

demonstrate the real subsistence of an interaction resulting in the

change of the biological activity, if not, different components,

should be analyzed individually. If an interaction is present and it

is positive, it leads to an increased biological activity. This

increase can be additive or synergic depending on whether the

result is the sum or more than the sum of the individual

contributions of each component. On the contrary, if negative,

the reduction in biological activity can be identified as

antagonism, further classifiable as competitive and non-

competitive.

The identification and characterization of interactions are

always important since in case of positive interactions, a similar

final effect can be obtained using lower doses of the different

components, saving costs, reducing any putative secondary

effect, and minimizing the risk of drug resistance development

or MDMS activity reduction. On the other hand, any negative

effect can increase toxicity and/or provoke a loss of biological

activity.

Although these concepts are classically applicable to drug

research, they can also be used for MDMS as they can be

constituted by different interactive molecules whose resulting

mode of action is chemical-physical rather than pharmacological.

How to design an interaction study?

Designing is probably the most important bottleneck for

interaction studies and the most frequent source of mistakes

(Herranz-López et al., 2018). Once an interaction has been

detected, different doses (for drugs) or different substance

combinations and relative abundance (for MDMS) should be

combined to fully characterized the nature of the interaction.

The most common and useful is the checkerboard or dose-

response matrix design, where different mixtures of the

different compounds are mixed in different ratios

(Figure 1). For reference, it is important to previously

know the performance of the individual compounds to

avoid both no and over responses (Vlot et al., 2019). This

design can be used even for 3 compounds including the third

in different plates as described by Herranz-López et al. (2018).

The design for interaction tests using MDMS depends on the

nature of these devices and normally cannot be developed

using plates or similar stuff, but similar procedures, mixing

different conditions in a similar way to checkerboard design is

the most recommendable approach.

Methods for assessing synergy

There are different mathematical approaches to assess

synergy, some of them really complex to non-expert users. All

these methods have their own limitations and assumptions

(Pemovska et al., 2018) and sometimes provide contradictory

results, making the initial selection of the method to be arbitrary

in most cases (Pemovska et al., 2018; Vlot et al., 2019). Although

in a not exhaustive manner, here, some easy-to-use approaches

are summarized.

Fractional inhibition combinatory index (FICI) is

probably the most used calculus for synergy

determination, formerly developed for antimicrobial

research, but applicable to any biological activity, even for

MDMS. It is based on the minimum inhibitory concentration

(MIC) of the individual components and their respective

concentrations in the tested mixture (Tomas-Menor et al.,

2015) but can be easily adapted by substituting the MIC

values with the effective concentration (EC) that is the one

leading to a 50% of the effect or whatever other level, if

described by the authors. According to this last statement,

FICI can be converted to FECI (Fractional Effective

Combinatory Index) as it is shown in Eq. 1, where two

compounds A and B are tested. In this equation, ECx

represents the effective concentration leading to a X% of

the biological effect, obtained for both individual compounds

and for their mixture.

FECI � (ECx (A, mixture)
ECx (A, alone) ) + (ECx (B, mixture)

ECx (B, alone) ) (1)
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FECI results can be interpreted in the same way than FICI

ones: a synergistic effect will be present when FECI≤ 0.5; an

additive effect when 0.5 < FECI≤ 1; an indifferent effect when 1 <
FECI<2; and an antagonism when FECI≥ 2 (Tomas-Menor et al.,

2015).

Another interesting approach is the isobole method,

exceptionally described by Wagner (2011) and updated for

more complex analyses by Ezechiáš and Cajthaml (2018). This

is a qualitative graphical method providing interesting

insights on synergy studies in a more visual way. As FECI,

isobole can be obtained for any given specific effect level,

i.e., 50% of the maximum effect (Ezechiáš and Cajthaml,

2018). Another tool particularly worthy to mention is the

polygonogram (Chou, 2006) that allows to graphically

represent the results for interaction studies in a simple but

effective way.

Other free, but reliable online tools, fully adaptable to this

topic, include Compusyn, developed by Chou (2006),

probably the most well-known, Synergy Finder

(Ianevsky et al., 2020a), Synergy Finder Plus (Zheng et al.,

2022) or Syntoxprofiler, among others (Ianevsky et al.,

2020b).

Finally, as in many other disciplines, artificial intelligence

is undoubtedly the future for predicting synergistic

interactions (Rani et al., 2022) but since appropriate

training of the scientific community is required before it

could be broadly applied, the evaluation of the exponential

number of potential interactions among complex mixtures it

is still challenging.

Experimental approaches to clarify the
mechanism of action

Once established that the observed phenotypic change is due to

the “system of molecules” acting in concert, a further step is to

demonstrate that the effect is not achieved by a pharmacological,

immunological, or metabolic mechanism of action. Sardi et al.

(2018) reported a methodological example of how it could be

experimentally proved; the non-pharmacological mechanism of

action of glycerine was demonstrated against that of lubiprostone

by using two different cellular models, one expressing the specific

target of lubiprostone (the ClC-2 receptor-channel) and the other

almost lacking the same receptor. Other valuable approaches could

be the ones used for target validation in drug discovery such as

genetic manipulation of targets by knocking out/in strategies.

However, there may be cases such as the use of citicoline in

glaucoma, in which the discrimination between pharmacological

and non-pharmacological mode of action is hard to demonstrate

and may change according to the dose, the route of administration

and target selection (Marchesi et al., 2022).

These difficulties exponentially increase in the case of complex

mixtures of substances acting via a multi-target, and/or synergistic

mode of action. Greco et al. (2020) demonstrated the enhanced

water binding and swelling capacity of a natural molecular complex

compared to those reachable by the sum of the individual

components. The mechanism of action was deemed non-

pharmacological since in virtue of its gel forming abilities, the

tested MD was capable to physically sequester lipids and

carbohydrates from the diet. In vivo, the same MD, improved

FIGURE 1
Plate design for interaction testing of two drugs or compounds. Increasing concentrations are mixed in the different wells (purple area) at
different ratios and concentrations depending on the well. Data for individual compounds are also obtained from red and blue dotted areas. Positive
and negative controls (PC and NC respectively) should be also included. Image adapted from Herranz-López et al. (2018).
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metabolic parameters by modulating the gut microbiome and, as

authors stated, by indirectly modulating, the expression of genes

involved in hepatic metabolism.

In virtue of Rule 21, multi-component mixtures acting

systemically, pose further challenges. In this regard, like for

drugs, omics techniques may be valuable in providing a first

overview of the multiple interactions that complex mixtures can

have with a biological system in terms of genes, proteins and

pathways modulated. However, these indications should be

further validated by performing target engagement of the critical

pathogenic targets underlying the disease and by verifying the

absence of any specific interaction of each constituent at the

doses/routes of administration used for the intended purpose. A

comparative analysis of omics data with those of a reference drug

tested in the same biological system, could be valuable. Guo et al.

(2021) proposed that natural products sharing similar pathway

fingerprints with approved drugs may have analogous

mechanisms of action; by inference, if not, a non-

pharmacological mechanism of action could be hypothesized.

The network pharmacology
approach

Within system biology, network pharmacology (NP) has

emerged as a paradigm shift for tackling drug attrition during

drug discovery and pre-clinical development (Hopkins, 2008; Berg,

2014; Gomez-Verjuan et al., 2019). By accounting for and

understanding multiple drug-target-disease interactions, multi-

component and multi-target agents represent a more effective and

less toxic therapeutic approach in complex diseases, as compared to

single-target therapy (Hopkins, 2008; Medina-Franco et al., 2013).

In the last decade, NP was especially exploited to elucidate

potential targets and toxicity of natural products, including

traditional herbal medicines, and detect possible synergism of

their constituents (Li et al., 2011; Yuan et al., 2017; Lee et al.,

2019). Thus, can NP help deal with the challenge of benefit-risk

assessment for SBMD of natural products imposed by rule 21?

With regards to clinical benefit, the non-targeted mechanism

of action of MD imposes a careful reflection on the use of NP,

which, by definition, usually exploits druggable targets. A

network should be designed based on physicochemical and/or

physical mechanisms of action that cannot be pinpointed at the

single target/receptor level, as exemplified by MDMS used for

gastrointestinal disorders (Bilia et al., 2021).

With regards to safety, both medicinal products and MDMS

need a full characterization of their potential toxicity. MDMS made

by complexmixtures of substancesmake harder the definition of the

toxicological profile, which cannot be considered the sum of the

toxicity of single components (Racchi and Govoni, 2020). In this

intricate scenario, where the target is considered the function instead

of the receptor, the global safety evaluation could be predicted

through a network toxicological approach, as applied for traditional

Chinese medicine (Zhang et al., 2019). The network approach, also

applied to system biology, could take advantage from the so-called

“omics-based” technologies (Thomford et al., 2018) to booster

innovation and development in the field of MDMS made of

natural products.

Conclusions and open questions

Several chronic, multifactorial disorders with unsatisfying

medical treatment can benefit fromMDMS regulation; this is the

case of treatment of some gastrointestinal illness (Corazziari,

2020; Bilia et al., 2021) or metabolic disorders (Guarino et al.,

2021), even in the pediatric population (Strisciuglio et al., 2021;

Stagi, 2022). In this scenario, MDR provides opportunities for

therapeutic innovation with complex substances while

guaranteeing patients with standards of efficacy and safety.

Another therapeutic opportunity for complex substances,

either natural or synthetic, is Rule 21, and its first and second

indent referring to MD which need to be absorbed to achieve

their intended purpose.

However, the practical approaches and scientific evidence

that is required to demonstrate a non-pharmacological

mechanism of action are still blurred: current paradigms,

including system biology and network pharmacology are

applied to the study of the complexity of the biological

activities elicited by both drugs and mixtures of natural

substances and how they can be applied to the study of the

mechanism of action of MD is still uncertain. The difficulties in

delineating the boundaries between pharmacological and non-

pharmacological mechanism of action and the regulatory

classification of even a single substance, such as citicoline in

glaucoma (Marchesi et al., 2022), exponentially increase in the

case of complex mixtures of substances.

We encourage pharmacologists and toxicologists to take

advantage of this journal section as a forum for open

discussion of novel proposals on experimental set ups, for

reviewing current research and sharing opinions and

experiences on both preclinical and clinical research in this area.
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