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Abstract: Finding safe and reliable alternatives to fungicides is currently one of the biggest challenges
in agriculture. In this regard, this experiment investigated the effectiveness of different elicitors,
botanical extracts and essential oils to control grey mold (Botrytis cinerea) and powdery mildew
(Podosphaera aphanis) on strawberry plants. This trial was conducted in field conditions under a
plastic tunnel with strawberry plants ‘Elsanta’. A first group of strawberry plants was treated before
flowering with elicitors [acibenzolar-S-Methyl–(BTH), chitosan], botanical extracts (seaweed extract,
alfalfa hydrolysate) and essential oils (thyme and juniper), and grey mold incidence on flowers was
evaluated (Experiment 1). Furthermore, a second group of plants was treated before (Experiment
2) and after (Experiment 3) controlled inoculation with P. aphanis. The results indicated that the
incidence of flower infected by B. cinerea was reduced by approximately 50% with thyme and juniper
essential oils’ applications compared to the untreated control, with no significant difference observed
compared to the commercial fungicide penconazole (positive control). As a consequence, the final
yield of essential-oil-treated plants was +27% higher than that of non-treated plants. No significant
differences emerged for other tested products against grey mold. However, gene expression analysis
showed an up-regulation (>2 ÷ 5 folds as compared to control 4 days after application) of FaEDS1,
FaLOX and PR gene expression (FaPR1, FaPR5, FaPR10) in leaves treated with BTH. The other
natural substances tested also induced defense-related genes, albeit at a lower level than BTH. In
Experiment 2, all treatments applied prior to inoculation significantly reduced the incidence and
severity of powdery mildew as compared to control. At 28 days after inoculation, chitosan and
thyme essential oil applications performed similarly to their positive controls (BTH and penconazole,
respectively), showing a significant reduction in disease incidence (by −84 and −92%) as compared
to control. Post-inoculum application of essential oils (Experiment 3) showed an efficacy similar to
that of penconazole against powdery mildew. These results indicated that the tested substances could
be used as alternatives to fungicides for the control of grey mold and powdery mildew in strawberry,
therefore representing a valuable tool for the control of these fungal diseases under the framework of
sustainable agriculture.

Keywords: Botrytis cinerea; Podosphaera aphanis; resistance inducers; defense-related genes; chitosan;
seaweed extracts

1. Introduction

Strawberry is the most important berry fruit crop produced globally with an increase of
39.4% between 2008 and 2021 [1]. In the EU, Spain (360 kiloton), Poland (162 kt), Germany
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(130 kt) and Italy (117 kt) are the leading producing countries. Europe produces nearly
1.7 Kt of strawberries (21% of the world’s quantity). From 2007 to 2021, the EU strawberry
market increased yearly by +2.1%, reaching in 2020 ~EUR 3282 billion [2]. This growth
responds to the increasing demand for red fruits, and consumers’ awareness about their
nutritional value and antioxidant benefits [3]. However, strawberry cultivation relies on an
average of 36 sprays per year with a pesticide application of 18 kg ha−1. Indeed, strawberry
recurrently ranks at the top of the ‘dirty dozen’ (a list of 12 top pesticide-contaminated
fruit/vegetables), supporting the need to develop zero-residue production methods [2,4].
Powdery mildew, caused by the obligate pathogenic fungus Podosphaera aphanis (Wallr.),
and grey mold, the etiological agent of which is Botrytis cinerea Pers., are among the diseases
of strawberry requiring the highest pesticide applications. Their control requires periodic
application of fungicides such as penconazole, quinoxyfen, and trifloxystrobin [5–7].

Strawberry production is increasingly shifting from open fields into protected envi-
ronments [8]. Unfortunately, phytosanitary problems related mainly to grey mold and
powdery mildew are increasing inside the new growing environment since these dis-
eases find conditions such as a lack of precipitation (for powdery mildew), reduced light
intensities, high humidity and longer periods of temperature above 20 ◦C optimal [9,10].

Xenobiotic pesticides are still massively used for crop protection, with fungicides being
the most widely applied chemical [11]. Indeed, despite integrated pest management being
a key European cornerstone for crop production, between 2011 and 2020, pesticide sales
in the EU were almost stable, around 350,000 t year−1 [12]. Pesticides use poses serious
environmental, health and social risks [13]. For example, EFSA reports that, in 2019, approx.
4% of fruits and vegetables exceeded residue limits [14]. Moreover, pesticide use may
lead to a rise in pathogen resistance and contribute to the environmental resistome [6,7,15].
In Europe, the awareness of the risks of pesticides led to the development of policies for
their sustainable use (Directive 2009/128/EC) and actions, such as the Farm2Fork Strategy,
aiming at a reduction of 50% in pesticide use by 2030 [16].

The use of botanical extracts, essential oils and natural elicitors represents a promising
and safe alternative to the use of fungicides [17–19]. Resistance inducers are considered
a reliable and sustainable method for crop protection since they promote natural plant
defenses against pathogens [20]. These compounds may act on systemic acquired resistance
(SAR) or induced systemic resistance (ISR). Among the signaling molecules regulating
plant defenses, salicylic acid (SA), jasmonic acid (JA) and ethylene play a crucial role [21].
SAR acts mainly against biotrophic pathogens such as powdery mildew and depends on
SA signaling, leading to systemic expression of pathogenesis-related (PR) genes [22–24]. SA
biosynthesis is activated by PAD4 (Phytoalexin Deficient 4) and EDS1 proteins (Enhanced
Disease Susceptibility 1) [25,26]. Several PR proteins were identified, such as PR-1 (antifun-
gal), PR-5 (thaumatin-like protein), and PR-10 (ribonuclease-like protein) [27,28]. JA is an
important regulator involved in the ISR signaling pathway, with lipoxygenase (LOX) being
a key enzyme for its biosynthesis [29–31]. JA activates the expression of genes encoding
antifungal compounds such as LOX-derived oxylipins, which are synthetized in response
to biotic stress [32,33]. Furthermore, plants can activate defenses with the biosynthesis
of particular defensive substances (secondary metabolites) such as phenylpropanoids,
isoprenoids and alkaloids [34–38].

In the absence of any biotic stress, plant defense mechanisms might be trigged through
exogenous chemical elicitors (or resistance inducers), which do not directly kill the harmful
organism but promote plant defense [39,40].

In the present study, we investigated different resistance inducers (acibenzolar-S-
methyl, chitosan), botanicals extracts (seaweed extract, alfalfa protein hydrolysate) and
essential oils (thyme and juniper). Chitosan is the deacetylated form of biopolymer chitin,
which is a component of crustacean and insect exoskeletons and fungal cell walls. Chitosan
was found to be able to activate L-phenylalanine ammonia-lyase (PAL) biosynthesis in
different crop species, leading to a higher final accumulation of phenolic compounds with
antipathogenic activity in tomato [41], papaya [42] and grape [43]. For this reason, chitosan
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is often used as a plant elicitor rather than a product with a direct antimicrobial activity [44].
Seaweed extracts are a complex mixture of components such as mineral elements, amino
acids, vitamins, phytohormones, betaines, sterols and polysaccharides (e.g., ulvans, agarans,
carrageenans, alginates, fucans and laminarins) [45–48]. Studies have attributed to seaweed
polysaccharides the role of effective elicitors of plant defense against biotic stresses [48–51].
Protein hydrolysates are defined as “mixtures of polypeptides, oligopeptides and amino
acids that are manufactured from protein sources, using partial hydrolysis” [52]. They
exert a biostimulating activity due to their content in plant hormones, peptides and amino
acids [53–55]. Although biostimulant properties of legume-derived protein hydrolysates
are well studied, few indications are present in the scientific literature regarding their
eliciting action against pathogens. Essential oils have received great interest in recent years
due to their antimicrobial, antiviral, biodegradable and eco-friendly properties [56–58].
Essential oils have a complex composition containing monoterpenes, sesquiterpenes and
phenylpropanoids. As a consequence, resistance against them is rarely developed by
pathogens [59]. In particular, Thymus essential oil has been demonstrated to have pro-
nounced direct antimicrobial properties and in vitro experiments showed that this activity
is mediated by two phenolic components, thymol and carvacrol [56,60,61]. The antimicro-
bial activity of Juniper essential oil, linked to some of its components such as limonene and
terpinen-4-ol, has been demonstrated on fungal pathogens (e.g., B. cinerea) [62]. In addition
to its direct antifungal activity, essential oils can have an elicitor activity against pathogens
(e.g., downy mildew) on grapevine plants [63].

The aim of this work was to evaluate the efficacy of selected commercial products
(elicitors and essential oils) to control grey mold and powdery mildew in strawberry plants
cultivated under plastic tunnel conditions. Moreover, the impact of the tested products on
the plant defense mechanism was investigated.

2. Materials and Methods
2.1. Plant Material, Growth Conditions and Tested Products

These experiments were conducted under soilless conditions within a plastic tunnel
at the Laimburg Research Centre, in the municipality of Ora/Auer (46◦22′ N; 11◦17′ E;
237 m a.s.l.) in Alto-Adige/South Tyrol, Italy. The temperatures in the greenhouse ranged
between 20–25 ◦C (day) and 10–15 ◦C (night), and relative humidity (RH) was kept at high
values (Figure 1) owing to a fog system placed under the soilless structure.
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Cold-stored strawberry tray plants (TP) ‘Elsanta’ were transplanted into individual
pots (16 cm diameter) containing a mixture of natural clay, white peat, perlite and mineral
fertilizer (pH 5.8, EC 0.40 dSm−1, total porosity 90%, bulk density 130 kg m−3; Profi
Substrat, SP VM, Einheits Erde, Sinntal-Altengronau, Germany). All plants were watered
daily by drip irrigation and fertilized weekly alternating between a granulated long-term
NPK fertilizer (10 g per pot; Berry Fertilizer 15-8-12, Hack, Langerwehe, Germany) and a
water-soluble fertilizer containing macro- and microelements (200 mL per pot at a dosage
of 200 g h L−1; Floral 20-20-20, Cifo, Bologna, Italy). No fungicidal applications were
carried out during this experiment, whereas the acaricide (Vertimec® EC, Syngenta, Basel,
Switzerland) was sprayed twice before flowering at a concentration of 0.5 mL L−1.

Details on the names, abbreviations and application doses of the tested products
are reported in Table 1. The fungicide Topas® and the plant defense elicitors Bion® and
ChitoPlant Solution® were commercial products used as positive controls at the concen-
tration suggested in their labels. The botanical extracts from seaweed and alfalfa were
experimental products (prototypes) and were applied at concentrations previously tested
for strawberry plants [64]. The essential oils from thyme and juniper were commercial
products that were applied at concentrations previously found effective after in vitro spore
germination essays conducted on B. cinerea and described in Soppelsa et al. [58]. Water
was used as the negative control and in all cases, and Adesil A surfactant (Serpan, Vicenza,
Italy) was added as wetting agent (0.03%) to improve the leaf coverage uniformity and
solubility of different products. The products were applied as a fine mist on the upper
surface of the leaves until the runoff point (50 mL per plant) using a hand sprayer before
(Experiment 1) or after flowering (Experiment 2 and 3).

Table 1. Product characteristics and mode of application.

Treatment Name Active Ingredient Concentration Commercial Name

CON Untreated water - -

FUN Fungicide penconazole 0.25 mL L−1 Topas® 200 EW, Syngenta Crop
protection, Basel, Switzerland

BTH Benzothiadiazole acibenzolar-S-methyl 0.4 g L−1 Bion® 50 WG, Syngenta Crop
protection, Basel, Switzerland

CHI Chitosan solution chitosan 10 mL L−1 ChitoPlant Solution®,
Agritalia, Italy

SEA Seaweed extract
(Ascophyllum nodosum) mix of components 4 g L−1 Experimental product, ILSA

S.p.a., Arzignano, Italy

APH Alfalfa protein
hydrolysate mix of components 4 g L−1 Experimental product, ILSA

S.p.a., Arzignano, Italy

THY Thyme essential oil
(Thymus vulgaris) thymol 1 mL L−1 Essential oil, Vitalis Dr. Joseph,

Brunico, Italy

JUN Juniper essential oil
(Juniperus communis) α-pinene 1 mL L−1 Essential oil, Vitalis Dr. Joseph,

Brunico, Italy

2.2. Experimental Design

The research activity was subdivided into three experiments:
Experiment 1: Pre-flowering treatment
To assess the efficacy of commercial products in preventing floral infection by B. cinerea,

a group of 66 strawberry plants was sprayed before flowering (BBCH 56—Inflorescence
elongating) with a single application of the products listed in Table 1. The same plants
were also sampled for gene expression analysis to investigate the molecular basis of the
products’ efficacy. The experimental setup was organized as a completely randomized
block design with four replicates of two plants each per treatment. In addition to gene
expression analysis (see Section 2.5), some parameters such as yield and fruit qualitative
traits were evaluated (see Section 2.4), as well as the incidence of flowers infected by B.
cinerea (see Section 2.3).

Experiment 2: Post-flowering treatment at pre-inoculation
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A second group of 84 strawberry plants was sprayed post-flowering (BBCH
71—Receptacle protruding from sepal whorl). The plants were treated with a single
application of FUN, BTH, APH and THY (Table 1). SEA was applied 2 times (second
application after 3 days), while all other products were only applied one time. Seven
days after treatment, the plants were artificially inoculated with Podosphaera aphanis (see
Section 2.3). Powdery mildew assessment (Section 2.3) was conducted considering each
strawberry plant as a single replication (8 plants per treatment).

Experiment 3: Post-flowering treatment at post-inoculation
This experiment aimed at investigating the potential curative effect of essential oils

(THY and JUN) against P. aphanis. For this aim, 34 strawberry plants were sprayed with
THY and JUN 24 h after inoculation. Penconazole and water were used as positive and
negative control, respectively.

2.3. Disease Assessment and Inoculation Procedure of Podosphaera aphanis

Grey mold incidence was assessed in the condition of natural infection. Incidence was
calculated taking into account the percentage of symptomatic flowers in each plant [65].
Powdery mildew incidence and severity were assessed after the experimental inoculation
of the plants. The conidia of P. aphanis were collected from naturally infected, symptomatic
strawberry plants ‘Elsanta’ obtained from a local farm. One hour before inoculation, a P. aphanis
conidia suspension was produced by harvesting conidia by washing symptomatic strawberry
leaves into a flask of 0.03% Adesil A (Serpan, Vicenza, Italy) in distilled water. Conidia
concentration was quantified with a hemocytometer and adjusted to 105 conidia mL−1,
as previously reported [66] with some modifications. P. aphanis conidia suspension was
sprayed onto the upper surface of the leaves (100 mL per plant). Approximately every
2 weeks after inoculation, powdery mildew incidence and severity were assessed. The
percentage of infected leaves per plant was calculated by counting the number of healthy
and infected leaves (presenting at least one powdery mildew patch per leaf) [8]. Disease
severity was determined considering 12 leaves per plant (8 plants per treatment) and was
evaluated with a plant image analyzer (BioLeaf—Foliar Analysis™, Federal University of
Mato Grosso do Sul, Campo Grande, Brazil) and expressed as percentage of the infected
area compared to the total leaf area.

2.4. Yield and Fruit Quality

Ripe strawberries (full red color) were harvested every three days, starting at 50 days
after transplanting. Data from each fruit picking were used to calculate the final cumulative
yield per plant (as grams plant−1). Fruit quality was determined on four mature and
homogeneous fruits per plant. The firmness (FF as kg cm−2), the total soluble solids (TSS as
◦Brix) and the titratable acidity (TA as g L−1 of citric acid) were evaluated, respectively, with
a penetrometer (6 mm in diameter), a portable refractometer (PAL-1, ATAGO, Tokyo, Japan)
and with a titrator (TitroLine easy, SCHOTT, Mainz, Germany) by titrating strawberry pulp
to pH 8.2 using 0.1 M NaOH. Extraction and quantification of phenolic compounds were
carried out using a method described by Meyers et al. [67] and Wolfe et al. [68]. Briefly,
phenolics were extracted from lyophilized leaves/fruits using 80% methanol acidified
with H3PO4 and NaF. The total phenolic content was determined with the Folin–Ciocalteu
colorimetric method and expressed as milligrams of gallic acid equivalents (GAE) per 100 g
of dry weight (mg GAE 100 g−1 DW).

2.5. Gene Expression Analysis

The gene expression analysis was conducted as part of the Experiment 1 activities
only (see Section 2.2) on plants treated with BTH, CHI, SEA and THY. Leaf samples were
collected at 0, 48, 72, 96 and 168 h after treatment, taking two young single leaves per plant.
The leaves were immersed in liquid nitrogen and stored at −80 ◦C. At every sampling time,
two plants per treatment were considered. Each plant was sampled only once to avoid
a wounding effect. Changes in expression of genes related to downstream components
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of the SAR pathway (Table 2) were determined by a reverse transcription-quantitative
real-time polymerase chain reaction (RT-qPCR), as described by Cellini et al. [69]. Briefly,
total RNA was extracted from strawberry leaves following the manufacturer’s instructions
in Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, St. Luis, MI, USA). RNA was used
for cDNA synthesis with reverse-transcription PCR. Specific primers were designed using
Primer3Web software 4.1.0 and previously tested for specificity (Table 2). The expression
of genes was measured using a StepOne Plus Real-Time PCR instrument (Thermo Fisher
Scientific, Waltham, MA, USA) with a SYBR Green-based assay. Strawberry leaves pre-
treated with different resistance inducers were examined for FaPR1, FaPR5, FaPR10, FaEDS1
and FaLOX genes.

Table 2. List of primers used for RT-qPCR analysis.

Gene Name Gene Description Forward Primer Sequence
[5′-3′]

Reverse Primer Sequence
[5′-3′]

FaPR1 Pathogenesis-related
protein 1 TGCTAATTCACATTATGGCG GTTAGAGTTGTAATTATAGTAGG

FaPR5 Pathogenesis-related
protein 5

CGATGCCCCTGCTTACA
GTTACCCTAAGGATG

CCTCGTAATTGCTTCAA
GGGCAGAACACAACC

FaPR10 Pathogenesis-related
protein 10 CGAGGAATACAACTAAACCTTGCCGTCT TACAATTTGCCACACATACACCGAAGTG

FaEDS1 Enhanced disease
susceptibility 1 AAAAGAGAGACTTCAATGCCAATGTG CTTCGTTCTTTGCGTGTCTGTAGTAGTT

FaLOX Lipoxygenase CGACGACGACTGGATACACCGCAGGG GAGGTTGGCCGCTGTTTCTTGCACCGTA
FaGAPDH2 (housekeeping) CCCAAGTAAGGATGCCCCCATGTTCG TTGGCAAGGGGAGCAAGACAGTTGGTAG

All quantifications were normalized by the threshold cycle value (CT) compared to
the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (FaGPDH2). Gene
expression analysis was expressed using the 2(−∆∆C

T
) fold change method, in which ‘0’

fold change corresponds to ‘no change’. Untreated control at the corresponding time point
was used to calculate the fold changes.

2.6. Statistical Analysis

One-way analysis of variance (ANOVA) was performed to determine the significance
of differences among treatments after validating the data for normal distribution (Shapiro–
Wilk normality test, p > 0.05) and equality of variances (Bartlett’s test, p > 0.05). For
non-normal data, the Kruskal–Wallis test was applied. Data expressed in percentage
were arcsin-transformed prior to the analysis of variance. In case of significance, mean
separation was carried out with the least significant difference (LSD) test. All analyses were
carried out in R v. 3.3.1. (R Development Core Team 2016). The results were expressed as
mean ± standard error (SE).

3. Results
3.1. Efficacy against Natural Infection by Botrytis Cinerea (Experiment 1)

Natural disease incidence in untreated plants was around 50%, whereas treatment
with fungicide was able to halve the percentage of infected flowers per plant compared
to the control (Figure 2). An effect similar to that of the fungicide was observed in plants
treated with THY and JUN (40–50% less infections in comparison to control). No significant
differences were detected among other treatments (33–44% of infected flowers per plant) in
comparison to untreated plants.
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3.2. Preventive Effects against Powdery Mildew Incidence and Severity on Leaves (Experiment 2)

Symptoms of powdery mildew on strawberry leaves started to be visible about 14 days
after inoculation. Considering preventive application, the results indicated that all tested
products controlled powdery mildew development on strawberry leaves (Figure 3A,B). In
further detail, at 28 days after inoculation, CHI and THY applications performed a similar
action to their positive controls (BTH and FUN, respectively), showing a significant inci-
dence reduction (by −84 and −92%) as compared to control. SEA and APH treatments were
shown to significantly reduce powdery mildew incidence (−42 and −58%, respectively, as
compared to the control). The statistical differences among the treatments remained similar
at 42 days (Figure 3A). Powdery mildew was well established in untreated plants at almost
2 months after inoculation, when 65% more of the leaves presented at least one infection site
(Figure 3A). At that time, all treatments maintained an inhibitory action towards powdery
mildew. In further detail, the fungal incidence in CHI-, SEA- and APH-treated plants was
similar to that observed on BTH-treated plants, whereas the THY effect was analogue to
that of FUN. The assessment of disease severity showed that all treatments suppressed the
development of powdery mildew. Despite disease severity remaining low, with symptoms
developing on less than 5% of leaf area, differences among the treatments were detected
(Figure 3B). In particular, as observed for disease incidence, the application of FUN, CHI
and THY was demonstrated to significantly reduce the extension of red blotches (up to 94%
reduction as compared to untreated).

3.3. Curative Effects against Powdery Mildew Incidence and Severity on Leaves (Experiment 3)

Post-inoculum application of products showed the effective action of essential oils in
reducing disease incidence and severity (Figure 4A,B). Although both essential oils (THY
and JUN) were shown to inhibit powdery mildew development with an action similar to
that of the positive control (FUN), THY seemed to have the highest inhibitory action against
the pathogen, as the disease severity at 56 days was the lowest among the treatments.

3.4. Fruit Production and Quality

Plants treated with essential oils (THY and JUN) were shown to increase the final
yield per plant. In the case of JUN-treated plants, the yield result was comparable to that
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obtained with the fungicide treatment (around 0.160 kg plant−1) (Table 3). The enhanced
yield in THY- and JUN-treated plants (+23 and +31% as compared to control, respectively)
was a direct consequence of the reduction in fruit losses due to infection (about 15% more
than untreated fruits) (Table 3).

Treatments such as CHI and SEA were also demonstrated to significantly increase the
yield (0.135 kg compared to 0.120 kg plant−1 in control plants). BTH- and APH-treated
plants yielded the same amount as control plants. Regarding fruit weight, no significant
differences were observed among the treatments (around 10–12 g fruit−1) (Table 3).

A higher sugar and acidity content was observed in untreated fruits, though differ-
ences between the treated fruits were not significant (Table 3). As regards phenolic content
in strawberry fruits, no significant differences were detected. FUN-treated fruits showed a
tendency to increase this parameter (+24% as compared to control fruits).
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Table 3. Yield parameters (total yield per plant, number of fruits per plant and mean fruit weight)
and fruits’ quality attributes as affected by tested products.

Treatment Total Yield
(kg plant−1)

Number Fruits
Plant−1

(N◦)

Mean Fruit
Weight

(g)

Total Soluble
Solids
(◦Brix)

Titratable
Acidity

(g citric acid
L−1)

Total Phenol
Content

(mg GAE
100 g−1 DW)

CON 0.120 ± 0.002 e 11.63 ± 0.71 de 10.62 ± 0.57 13.13 ± 0.27 4.29 ± 0.49 2139.09 ± 63.54
FUN 0.161 ± 0.004 a 14.00 ± 0.46 ab 11.57 ± 0.38 11.43 ± 0.52 3.75 ± 0.61 2602.84 ± 303.15
BTH 0.121 ± 0.003 de 12.00 ± 0.60 cde 10.21 ± 0.29 12.73 ± 1.06 3.48 ± 0.17 2250.58 ± 145.74
CHI 0.135 ± 0.007 c 12.38 ± 0.80 bcde 11.10 ± 0.48 11.23 ± 1.62 2.95 ± 0.33 2286.84 ± 125.48
SEA 0.133 ± 0.003 cd 13.13 ± 0.90 abcd 10.44 ± 0.72 10.68 ± 0.72 3.11 ± 0.17 2204.47 ± 92.48
APH 0.127 ± 0.005 cde 11.25 ± 0.67 e 11.54 ± 0.54 12.53 ± 0.17 3.24 ± 0.14 2431.74 ± 57.76
THY 0.148 ± 0.003 b 13.50 ± 0.63 abc 11.17 ± 0.55 11.60 ± 0.69 3.12 ± 0.24 2499.77 ± 256.05
JUN 0.157 ± 0.005 ab 14.38 ± 0.32 a 10.98 ± 0.26 11.38 ± 0.36 2.91 ± 0.14 2235.11 ± 114.87

Means ± SE within the same column followed by the same letter, do not significantly differ according to LSD test
at p < 0.05 (n = 4).
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3.5. Gene Expression Analysis

An up-regulation of the PR gene’s expression (FaPR1, FaPR5, FaPR10) was observed
in leaves treated with BTH (Figure 5A–C). In further detail, gene expression was highest
4 days after BTH treatment. BTH application induced a long-lasting (up to 7 days) increase
in the FaEDS1 and FaLOX genes’ expression. The expression levels of the target genes
appeared weaker in plants treated with the natural elicitors (SEA and CHI) and THY than
in the positive control (BTH). As shown in Figure 5, FaPR1, FaPR5, FaPR10 and FaLOX
exhibited a peak of expression at 2 and 3 days after SEA application (fold change < 2). These
effects completely disappeared at 4 (for FaPR5, FaPR10 and FaLOX) and 7 days (for FaPR1).
FaEDS1 was not expressed after treatment. Contrary to what was observed in SEA, starting
at 2 days after CHI treatment, FaPR1, FaPR5, FaEDS1 and FaLOX were induced and their
expression levels continued to be stable even at 7 days (except for FaLOX). Thyme essential
oil application was demonstrated to have a low effect on the activation of defense-related
genes (fold-change < 1). SEA, CHI and THY proved to enhance defense-related gene
expression, even though at a lower level as compared to BTH (fold change expression < 2).
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Figure 5. Expression of defense-related genes (FaPR1 (A), FaPR5 (B), FaPR10 (C), FaEDS1 (D) and
FaLOX (E)) in strawberry leaves treated with benzothiadiazole, seaweed extracts, chitosan and thyme
essential oil. RT-qPCR was performed using FaGPDH2 as housekeeping gene. For gene expression,
we adopted the 2(−DDCT) method, in which a ‘0’ fold change corresponds to ‘no change’. Values were
normalized to the control at each time point. Data are expressed as mean ± SE.
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4. Discussion

Pre-flowering applications of essential oils were the only treatments that significantly
reduced the incidence of B. cinerea in flowers and their protective effect was comparable
to that of commercial fungicide. This effect is related to the direct inhibition pathogen
growth being essential oils well known for their antifungal activity [58,70,71]. In further
detail, essential oils can directly inhibit the biosynthesis of chitin, β-glucans and ergosterol,
alter fungal mitochondrial electron transport chain and cell division, and interfere with
RNA/DNA and protein synthesis [72–77].

On the other hand, commercial products acting as resistance inducers, such as BTH,
failed in protecting flowers from infection. BTH-induced resistance against diseases was
observed on several plants such as tomato, Arabidopsis, peach, apple, strawberry and
papaya [78–83]. Although our results confirmed the induction of defense responses in
BTH-treated strawberry leaves (the highest level of gene expression in comparison to
all tested products), the incidence of infected flowers, as well as the final yield, was not
significantly different to that of the control treatment.

The lack of efficacy of BTH could be related to the timing of resistance induction.
Several studies showed that the rise in plant defenses needs a minimum of 3–4 days,
reaches a peak in two–three weeks and decreases to a normal level in approximately
4 weeks [84]. Indeed, in our study, a rise in defense-related genes was observed 4 days after
the treatment. This indicates that in our experimental conditions, it can be assumed a timing
of plant resistance similar to that found in other studies [85]. However, B. cinerea incidence
was assessed only more than 60 days after treatment, when the BTH effect was probably
already fading. Furthermore, under natural disease pressure, B. cinerea inoculum can build
up rapidly under favorable conditions, making results less predictable. In this view, a
product like essential oils, which have a dual mode of action—direct antifungal effects
and induction of resistance—may result in a more consistent protective effect throughout
the season.

Essential oils may also induce defense mechanisms in plant tissues, including the
activation of antioxidant and defense-related enzymes and the accumulation of phenolic
compounds [57,86]. A positive effect of thyme essential oil against grey mold and Fusarium
wilt in tomato plants was observed by Ben-Jabeur et al. [60]. The authors attributed the
protective action of thyme extract to a combination of a direct antifungal activity and the
induction of defenses in plants.

However, in our experimental conditions, the protective effect of essential oils relies
primarily on their fungicidal effects, which was also confirmed in curative treatments
(Experiment 3). Indeed, application of THY did not significantly induce any defense-
related gene expression in plant tissues, nor did it alter the total phenolic content (Figure 5;
Table 3). The results may be related to the time required for strawberries to enhance their
plant defenses or to the activation of defense mechanisms that are not associated with SAR.
Concerning the induction of phenolic compounds, we measured it only on fruit that were
not directly exposed to an essential oil. Furthermore, differences in phenolic compounds
may be related to the induction of specific compounds rather than a generalized induction
of this chemical class [87]. The reduction in flower losses by B. cinerea in plants treated
with essential oils and fungicide could explain the increased final yield measured in those
treated plants.

When considering the experiments in controlled inoculation with P. aphanis, the pos-
itive action of post-flowering application of elicitors and essential oils against powdery
mildew infections was shown. Considering both preventive (Experiment 2) and curative
actions (Experiment 3), the thyme essential oil had a protective effect against powdery
mildew similar to that of the fungicide. In this experiment, thyme essential oil application
resulted in a lower disease severity than in the preventive application (Experiment 2)
despite the differences not being statistically significant. This finding is in agreement with
studies conducted by Sturchio et al. [88] and Mostafa et al. [89], where clove, lemongrass,
peppermint, rosemary, tea tree and thyme essential oils were demonstrated to be valid
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fungicidal alternatives to control powdery mildew infections on Cucurbitaceae crops. In our
experiment, chitosan, seaweed extract and alfalfa hydrolysate showed an action similar to
BTH treatment against powdery mildew infection (Figure 3). The induction of resistance by
chitosan application is also a well-studied topic. Being a polysaccharide, chitosan could act
in the same way as described for algal polysaccharides. The accumulation of PR proteins,
phytoalexins, lignin biosynthesis and callose formation was among some of the defense
mechanisms induced by chitosan in treated plants [44]. As an example, grapes treated with
chitosan were shown to be less susceptible to powdery mildew and to enhance phenolic
concentration in berry peel [90]. Similar results were also obtained by Faoro et al. [91] with
powdery mildew infection on barley.

Carrot leaves treated with seaweed extract (Ascophyllum nodosum) were shown to be
less infected by Alternaria and Botrytis due to the activation of defense genes (e.g., PR1,
PR5 and PAL), as well as to an increased activity of defense enzymes and accumulation
of phenols and phytoalexins [92]. Polysaccharides in seaweed extracts could be consid-
ered signaling molecules because they activate salicylic acid (SA) and the jasmonic acid
(JA) signaling pathway, promoting the systemic acquired (SAR) and the induced systemic
resistance (ISR) in treated plants [48]. Marine polysaccharides such as alginates, fucans
and laminarin, which are components of the brown seaweed extract utilized, could have
contributed to enhance plant defenses. The mechanism of action of alfalfa protein hy-
drolysate against diseases probably involves the complex biochemical composition of the
hydrolysate. In further detail, two main categories of APH components such as peptides
and amino acids are to be considered signaling molecules [93–95]. Cappelletti et al. [96]
observed a reduced infection by powdery mildew in zucchini plants treated with different
protein hydrolysates. The authors explained this result with the involvement of amino
acids and peptides in the regulation of innate immune response in plants.

5. Conclusions

The effectiveness of natural products in the control of grey mold and powdery mildew
was evaluated in this experiment. Essential oils showed an effect similar to that of synthetic
fungicide both against B. cinerea and P. aphanis, significantly reducing the incidence and
severity of infections. The highest defense-related gene expression level was induced by
BTH application, even though only the incidence of powdery mildew was reduced in those
treated plants. As for the other foliar applications (seaweed extract, alfalfa protein hy-
drolysate and chitosan), they were also demonstrated to be valid alternatives to fungicides
against powdery mildew. In our experimental conditions, the effect of essential oils was
primarily due to their fungicidal activity. However, in comparison to synthetic fungicides,
essential oils may pose a minor risk of resistance development in the pathogen popula-
tion. In fact, differently from chemical fungicides, essential oils exert several synergic
antimicrobial actions [97].

Appropriate application methods (dosages, type of formulation, time and number
of application) seem to be of great relevance to improve the efficiency of this group of
products. Therefore, further investigations should be carried out in this direction.
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