
Journal of

Clinical Medicine

Review

Hodgkin Lymphoma: A Special Microenvironment

Giuseppina Opinto 1, Claudio Agostinelli 2,3, Sabino Ciavarella 1, Attilio Guarini 1, Eugenio Maiorano 4

and Giuseppe Ingravallo 4,*

����������
�������

Citation: Opinto, G.; Agostinelli, C.;

Ciavarella, S.; Guarini, A.; Maiorano,

E.; Ingravallo, G. Hodgkin

Lymphoma: A Special

Microenvironment. J. Clin. Med. 2021,

10, 4665. https://doi.org/10.3390/

jcm10204665

Academic Editors: Tadeusz Robak

and Andrea Gallamini

Received: 2 September 2021

Accepted: 28 September 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy;
g.opinto@oncologico.bari.it (G.O.); s.ciavarella@oncologico.bari.it (S.C.);
attilio.guarini@oncologico.bari.it (A.G.)

2 Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
claudio.agostinelli@unibo.it

3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna,
40138 Bologna, Italy

4 Section of Pathology, Department of Emergency and Organ Transplantation (DETO),
University of Bari Aldo Moro, 70124 Bari, Italy; eugenio.maiorano@uniba.it

* Correspondence: giuseppe.ingravallo@uniba.it

Abstract: Classical Hodgkin’s lymphoma (cHL) is one of the most particular lymphomas for the
few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and
Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the
microenvironment. The cells of microenvironment are essential for growth and survival of the RS/H
cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances
in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL.
We also describe the main therapies that target not only the neoplastic cells but also the cellular
components of the background.
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1. Classical Hodgkin’s Lymphoma

Classical Hodgkn’s lymphoma (cHL) accounts for about 10% of all annual lymphoma
diagnosis worldwide. cHL is one of the most singular lymphomas for the presence of
large multi-and mononucleated cells named Reed-Sternberg (RS) and Hodgkin (H) cells
respectively, admixed with an inflammatory background. Four histological subtypes of cHL
are recognized: nodular sclerosis (60–70%), mixed cellularity (20–25%), lymphocyte rich
(5%) and lymphocyte-depleted (<5%) subtypes [1]. RS and H detection in an appropriate
microenvironment (ME) is the key of cHL diagnosis [2].

Rengstl et. al. [3], by filming Hodgkin cell lines in real-time by long-term time-lapse
microscopy, suggested that RS cells generates from mitosis and incomplete cytokinesis of
H cells followed by subsequent re-fusion of identical mononuclear daughter cells [3].

Microdissection experiments have revealed that RS and H cells carry clonal Ig re-
arrangements and Ig genes somatic hyper mutations [4], suggesting their origin from a
pre-apoptotic germinal center (GC) B cell [5,6]. The expression of the tumor necrosis factor
receptor family (TNFR) CD30 is a typical feature of cHL tumoral cells [7]. However, RS cells
have an unusual immunophenotype characterized by absence of B cell markers, associated
to possible coexpression of molecules of various hematopoietic lineage. [7]

The early event that produces this reprogramming is unknown; several studies re-
ported the hypermethylation of the promoter regions of the transcription factors PU.1,
BOB.1/OBF.1, that led to their down regulation [8]. Oct-2, BOB.1/OBF.1 and PU.1 regulate
the expression of several genes like CD20 [9], BCL-2 [10], CD19 [11] and CD79A, [12] and
furthermore they activate Ig genes transcription. This latter function explains the low level
of Ig transcripts in cHL neoplastic cells [13]. Other characteristic B cell transcriptional

J. Clin. Med. 2021, 10, 4665. https://doi.org/10.3390/jcm10204665 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-0472-5338
https://orcid.org/0000-0002-4792-3545
https://doi.org/10.3390/jcm10204665
https://doi.org/10.3390/jcm10204665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10204665
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10204665?type=check_update&version=2


J. Clin. Med. 2021, 10, 4665 2 of 16

factors are expressed at low levels (EBF) or inactivated (E2A) by the aberrant expression of
competitive inhibitors as Notch-1, Id2 and ABF1 [14,15]. An essential mark of the B cell
differentiation of the tumoral clone is the expression of the transcription factor PAX5,
although many of its target genes are downregulated [16].

RS and H cells are also characterized by the constitutive activation of both the canonical
and non-canonical NF-κB signaling pathways [17]. This permanent stimulation is due to
the complex network of paracrine and direct interactions between neoplastic cells and
microenvironment, mediated by CD30, CD40, BCMA and other surface receptors [18–21],
to recurrent somatic genetic lesions inactivating mutations of negative regulators of NF-κB
like TNFAIP3 and NFKBIA in about 40% and 20% respectively [22–24], or to copy number
gains of genes encoding positive regulators like REL and MAP3K14 in about 40% and
30% of cHL [25,26]. Finally, the latent membrane protein 1 encoded by Epstein-Barr virus,
present in RS and H cells of 40% of cHL cases in western country, causes NF-κB activation
by mimicking an active CD40 [17].

cHL is also characterized by Jak/Stat pathway activation, principally caused by
autocrine and/or paracrine signaling events via interleukin receptors and receptor tyrosine
kinases [27–30], PI3K-AKT and MAPK/ERK pathways [31–34].

2. The Main Component of Tumor Microenvironment (TME)

RS and H cells represent just 1% to 10% of total tumor mass; the remaining 99–90% of
the cellular infiltrate is formed by a TME consisting of non-malignant T and B lymphocytes,
plasma cells, histiocytes/macrophages, granulocytes, eosinophils, mast cells, mesenchymal
stromal cells (MSCs) and endothelial cells [35] (Figure 1).
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Figure 1. (A) Representative figure of Hodgkin Lymphoma (40X, Hematoxylin Eosin). (B) Car-
toon of Hodgkin Lymphoma, few RS and H cells (1–10%) immerse in a special microenvironment.
The 90% of the tumor mass is composed by CD4+ Th cells, CD4+ Tregs, CD8 T cells, B lympho-
cytes, plasma cells, histiocytes/macrophages, granulocytes, eosinophils, mast cells, MSCs and
endothelial cells.

TME is essential for growth and survival of neoplastic cells and when they metastasize
into non-lymphoid organs, they reproduce their cellular background [36]. The TME
construction depends on the effect of cytokines/chemokines, including IL-5, IL-7, IL-8,
CCL5 (RANTES), CCL17 (TARC), CCL20 and CCL28 produced by RS, H cells and the
recruited immune cells [37]. In detail, IL-5, CCL5, CCL28 and the granulocyte-macrophage
colony-stimulating factor (GM-CSF) attract the eosinophils [36,38,39], IL-8 is chemotactic
for neutrophils [36]; IL-7 increases the proliferation of regulatory T cells [40], CCL5 recruits
T-cells, eosinophils and mast cells [18,41], whereas CCL17 and CCL20 attract the T helper
(Th) 2 cells and the regulatory T cells [36,42]. Other cytokines and in particular IL-3,
IL-4, IL-6, IL-13, IL-15, TGFβ, BAFF, APRIL, RANKL influence the survival of the same
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tumor cells [36,43]. The dynamics of the TME are also conditioned by cytokines produced
by the immune infiltrates at the tumoral site: T cells secrete IL-3, IL-10 and RANKL.
IL-3 influences the formation of the inflammatory infiltrate and support the neoplastic
cell growth [44], IL-10 promotes strong anti-inflammatory properties [45] and RANKL
contributes to activation and survival of dendritic cells [46]. Stromal cells may secrete
CCL11 that attracts eosinophils and Th2 cells, IL-7 and CCL5 involved in the growth or
survival of RS cells, while dendritic cells may liberate TARCs involved in the recruitment
of Th2 cells and regulatory T cells [37]. Macrophages have been shown to secrete cytokines
involved in tumor progression such as macrophage migration inhibitory factor (MIF), IL-8
and TNFα. MIF may contribute to the proliferation of RS cells in TME [47,48] and IL-8 may
increase neutrophilic infiltration [49,50]. Moreover, mast cell may increase survival signals
of tumor cells through CD30L [51].

2.1. T Cell Subsets

T cells are the main component of the cHL tumor TME. Several subsets were rec-
ognized: CD4+ Th cells, CD4+ T-regulatory (Tregs) and CD8 cytotoxic T lymphocyte
(CTL) [52]. CD4+ T cells sometimes are in close contact with RS cells as they can form
rosettes around the neoplastic blasts [53,54]. A recent study has been described rosette
formation and T cell activation in cHL, using coculture model. In the immune synapse
model between RS cells and CD4+ T cells, the two interactions TCR-MHCII and CD2-CD58
were needed for T cell activations, while CD2-C58 axis was associated with cell adhesion
and rosette formation [55].

Previous studies have suggested that the prevalent Th phenotype present in cHL
TME is the Th2 [56,57]. This T cell subset is physiologically involved in the eradication
of extracellular parasites, but in a tumoral background seems to contribute to the tumor
growth [58]. The Th1 subpopulation, is indeed important in host defense against intra-
cellular pathogens and is an effective mediator of anti-tumor immunity [58], seem to be
reduced in HL TME. However, a recent study found predominance of an activated, pro-
liferative, and pro-inflammatory cytokine-secretory phenotype, typically of Th1 cells [59].
Normally, CD4+ Th cells do not directly demolish malignant tumor cells, but they support
the development of tumor immunity by recognizing tumor antigen peptides presented by
MHC class II molecules and amplifying the activation and clonal expansion of CTL [60]. In
general, CD8+ CTL or Natural Killer cells (NK) are the most important effectors of antitu-
mor immunity. The CD8+ T cells are a proportion of T-cell infiltrate of Hodgkin lymphoma
and are not in close contact with the tumor cells [61]. However paradoxically, an increased
numbers of cytotoxic T cells positive for cytotoxic granule-associated RNA-binding protein
(TIA1) in the TME correlated with poor outcomes [62,63].

In the TME there is also an accumulation of Treg [60], expressing factor forkhead box
P3 (FOXP3) [64]. Treg cells play important roles in limiting immune response and their
dysfunction was reported in autoimmune disease [65]. They act their immunomodulatory
function through several mechanisms, including overexpression of CTLA4, consumption
of IL-2, secretion of IL-10, TGF-β, IL-35 and galectin-1 [66–68]. Moreover, Treg cells
may facilitate tumor spread, probably inhibiting the antitumor immunity [65]. In several
localized or metastatic human carcinomas high infiltration of Treg cells FOXP3+ was
associated with an unfavorable outcome [69–74]. However, in cHL patients, higher number
of intra-tumoral FOXP3+ Treg cells was, associated with longer DFS and OS, even in
multivariate analyses [60].

2.2. B Lymphocytes

Large quantities of non-malignant B cells are present in the microenvironment of HL
but their role in TME is still not well established [75]. Dates of gene profiling provide the
association of high intratumoral B-cell counts with better outcome in patients with cHL [76].
Some authors reported that antitumor immunity is highly reduced in the presence of B cells
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due to down-regulation of both innate and adaptive immunity, in cases where CD40L is
expressed by tumor cells. [77].

2.3. Macrophages

In many cancers, macrophages of the tumoral TME (Tumor Associated Macrophages:
TAM) seems to support tumor progression. Steidl et. al. [78] found a macrophage gene
signature correlated with the failure of primary treatment and then in an independent
cohort of patients they demonstrated by immunohistochemistry (IHC), that higher number
of CD68+ TAM was associated with shortened survival and with the outcome of sec-
ondary treatments such as autologous stem-cell transplantation [78]. Later many, but not
all [79–81] IHC studies, conducted by Tan et. al., Greaves et. al., Tzankov A et. al., Gotti et.
al., [82–85] confirmed the relationship among TAM and inferior outcomes after upfront
treatment [82–85]. Moreover, the molecular characterization of HR cells reported in the
neoplastic clone the over-expression of CSF1R (colony stimulating factor 1 receptor), a
gene of the macrophage signature and the latter gene resulted associated with primary
treatment failure [86]. Macrophages are versatile cells that can have an immune-stimulatory
or an immune suppressive function [87]. Mantovani et. al. [87], to stigmatize the plasticity
of macrophages, proposed their distinction in two functional sub-type: the M1 and the
M2. The M1, or classically activated macrophages, includes mononuclear phagocytes acti-
vated by bacterial moieties and Th1 cytokines. The M2-type macrophages, or alternatively
activated macrophages, express several proteins like CD206 (mannose receptor), CD204
(scavenger receptor A), IL-1, IL-10, CC ligand 22 (CCL22), and CD163 [87–89]. They sup-
press immune response, promote angiogenesis and tumor progression and metastasis. The
M1 and M2 are present in the TME of cHL. Zaki et. al. [90] observed a correlation among
number of M1 cells and favorable prognosis in mixed cellularity subtype of cHL [90].

In a recent study was described the cellular components of microenvironment un-
derling topographical aspects of the immune-niche surround RS cells. According to this
model, in TME was observed abundant PD-L1+TAMs and PD-1+ CD4 T cells, that were in
contact with PD-L1+ tumor cells. These observations supported a possible role also of the
macrophages in the mechanism of action of checkpoint inhibitor therapy [91].

2.4. Mast Cells

Inflammatory infiltrate of cHL contains also mast cells. These cells are positive for CD30L
and tend to activate the RS cells through the interaction between CD30-CD30L [92,93]. More-
over, mast cells can promote tumor development thanks to the release of pro-angiogenic
factor that increased the vasculature [94], the release of protease that enhance fibroblast pro-
liferation and the secretion of tumor-promoting cytokines that induce an immunotolerant
status of the TME [95].

The association between the number of mast cells and survival of patients with cHL
is controversial. Molin et. al. [92] found a correlation between higher number of mast
cells and poor prognosis [92], whereas retrospective study of 104 patients did not find any
association between the degree of mast cells infiltration and outcome [96]. However, in
further study Andersen et. al. [97] showed a significant association between high mast
cells counts and poorer EFS as well as OS in mixed cellularity but not in nodular sclerosis
histological subtype [97].

3. cHL and Immunoescape

RS cells have developed different mechanisms to escape from antitumoral immune
response. Several studies reported the down regulation of molecules involved in antigen
presentation to cytotoxic cells including HLA-I and HLA-II. The down regulation of
HLA-I in Epstein-Barr virus (EBV)-cases or the presence of a polymorphism in HLA-I
in EBV+ cases represent mechanisms that allow RS cells to escape from CD8-mediated
cytotoxicity [98]. Furthermore, an association between the expression of HLA-G by RS
cells, EBV negative status and absence of MHC-I was found. HLA-G is a ligand for
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inhibitory receptor presents on NK cells and other immune cells, may contribute to escape
from immunosurveillance [99].

Moreover, alterations of gene CD58 contribute to immune evasion of RS cells. CD58
is relevant for the activation and adhesion of CTL and NK cells through the interaction
between the protein and the receptor CD2 [100,101]. Numerous studies reported mutations
of the CD58-gene in HL, with concurrent loss of expression of the protein [102–105]. CD58
mutations are observed in three Hodgkin’s lymphoma cell lines by whole-exome sequenc-
ing [104]. Probably the absence of CD58 allow RS cells evasion from immune recognition,
particularly during advanced disease when the tumor cells become less dependent on the
immune infiltrate and more immunogenic [102].

APC cells use the CD137 receptor/ligand system to costimulate activated T cells and
the ectopic expression and release of CD137 by RS impaired T cells activation [106]. Many
other molecules secreted by H/RS such as PGE2, LGALS1 and TGFβ are immunosup-
pressive factors [57,107,108]. The immunosuppressive activity is also mediated by the
low levels of natural killer group 2D (NKG2D) expressed by RS [109]. The bond between
NKG2DL and his receptor modulates lymphocyte activation and promotes immunity [109].

Another important mechanism by which RS cells evade host immuneresponse is by
the expression of FASL, which induce apoptosis of activated CD8+ and Th1 cells [98]. RS
also express FAS, but the tumor cells, thanks to mutations of the FAS gene, are resistant to
the induction of apoptosis mediated by FAS-FASL complex. [110–112].

Moreover, in HL there is an overexpression of programmed cell death ligand 1 (PD-L1)
and ligand 2 (PD-L2) [113,114]. RS cells present membranous expression of PD-L1 and the
amplification of a region 9p24.1 that includes PD-L1 and PD-L2 explains the overexpres-
sion of PD-Ls in more than 85% of cHL patients [113]. For Roemer et al. PD-L1/PD-L2
alterations are a defining feature of cHL, 97% of the patients had concordant alterations
of the PD-L1 and PD-L2 loci (including polysomy, copy gain and amplification) and this
amplification was connected to a short PFS and a more advanced stage of disease [115]. In
addition, alternative mechanisms promoting overexpression of PD-L1 and PD-L2 by RS
include amplification of gene JAK2, leading to JAK2 protein overexpression and subse-
quent transcriptional activation of PD-L1, Epstein-Barr virus infection and activation of
AP-1 [113,116]. Moreover Steidl et al. found a highly expressed chromosomal fusion gene
involving CIITA, that caused the downregulation of MHCII expression and overexpression
of PD-L1 and PD-L2 [117].

The binding of PD-1 ligands to PD-1, present on T cells, has been shown to contribute
to the inhibition of the antitumoral function [114]. This phenomenon is called T cell
“exhaustion” and is associated with an altered metabolism and singular transcriptional
program compared with memory and effector T cells. A main characteristic of T cell
exhaustion is the elevated expression of multiple inhibitory co-receptors, including PD-1,
cytotoxic T lymphocyte antigen-4 (CTLA-4), lymphocyte-activation gene 3 (Lag-3) T cells
immunoglobulin and mucin domain 3 (Tim-3) [118]. These group of proteins called
“immune checkpoints”, in physiologic conditions limit aberrant immune cell activities
following chronic activation or preventing autoimmune responses, but in the setting of
cancer TME they diminish immune responses against malignant cells, allowing to the latter
the escape from immune surveillance [119].

4. GEP Signature and TME

Previous immunohistochemistry (IHC) studies, have described the morphology and
immunophenotype of TME. However, IHC results published generally are based on the
use of single IHC biomarker that does not show simultaneously the predictive role of
multiple cellular elements in the TME. Moreover, IHC technique presented interpretation
bias and limitations.

Several groups have tried to define the molecular characteristics of the TME through
high throughput technologies. Gene expression-profiling (GEP) results could be used to
simultaneously measure the expression levels of thousands of gene. In many cases, the GEP
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results provided quantity genes level to building a gene expression signature suggesting
how the cellular components of TME influenced the state of disease. Furthermore, expres-
sion array represented an opportunity to discover gene expression signatures associated
with treatment outcomes (Figure 2).

A first group profiled the total tissue of 21 cases of cHL. In this study, they observed
different transcriptional patterns with distinct response to therapy and clinical outcome.
They noted how genes involved to fibroblast activation or function, but also to angiogenesis
extracellular matrix remodeling and cell proliferation were overspread in sample with bad
outcome. In the same group most genes related to tumor suppressor were underexpressed.
While patient with a good prognosis were characterized by the up regulation of genes
involved in apoptosis activation and cell signaling [120].

Sanchez et al. [121] identified specific gene signatures associated with outcome. Gene
expressed by a group of T cells, macrophages and plasmacytoid dendritic cells were
overexpressed in group of patients with unfavorable outcome. In the same unfavorable
outcome groups, other genes related to apoptosis, signal transduction and cell growth were
overspread. Using immunohistochemical analysis, representative markers of the immune
response signatures and cell-cycle signatures were validated in an independent cohort.
In agreement with the data of the gene expression, the results demonstrated a relation
between increased number of macrophages markers (ALDH1, LYZ), T cells (SH2D1A) and
inferior disease specific survival (DSS) [121].

Later, Chetaille et al. [76] identified new prognostic factors in cases of cHL with EBV
infection. Gene profiling data showed in EBV+ cHL, Th1 activity and overexpression of
macrophage genes. They also searched an association between outcome and specific gene
expression signatures. In the group of patients with favorable outcome, they noted an
overexpression of genes for B cells and genes involved in apoptotic pathway. To validate
the signatures, they performed IHC analysis in an independent series of 146 cHL samples.
High percentage of either TIA-1 reactive cells or topo-II positive cells had an adverse
influence on OS. Whereas high count of BCL11A+, CD20+, FOXP3+ reactive cells showed a
favorable influence [76].

Another study was designed to find a prognostic model from 130 frozen samples
obtained from patients with cHL. Although, the results of unsupervisied hierarchical
clustering analysis did not identify an association with the effect of treatment, the study of
Steidl et al. provided a relation between a microenvironment gene signature and outcome.
In the treatment-failure group, they observed an overexpression of gene signatures of TAMs,
monocytes, adipocytes and for angiogenic cells. Using immunoistochemical analysis, they
tried to confirm the findings of the gene expression analysis, the results showed an increased
number of CD68+ cells associated with an adverse outcome [78]. Later, the same authors,
investigated the gene expression profiles of microdissected H/RS cells and identified a link
between the transcriptional program of the tumor cells and microenvironment. A signature
of macrophage function in H/RS cells was correlated with first-line treatment failure. They
focused their attention to CSF1R, a representative gene of macrophages signature. In an
independent patient cohort, CSF1R ISH expressed by H/RS was correlated with inferior
PFS, OS and the abundance of macrophages in microenvironment [86].

A new probe-based technology, the NanoString nCounter platform allow gene ex-
pression quantification using also low amounts of highly fragmented RNA isolated from
routinely formalin-fixed paraffin embedded biopsies FFPE. NanoString method is based on
direct measurement of gene expression level, eliminating enzymatic reactions and amplifi-
cation bias. NanoString’s nCounter chemistry utilizes target-specific probes, collectively
referred to as a CodeSet, that directly hybridize to a target of interest.

Scott et. al. [122] developed a predictive model of OS associated with outcomes in
advanced stage cHL, the levels of gene expression were determined with NanoString
Platform. 259 genes were selected from data of literature previously reported to be asso-
ciated with outcome in cHL. Among these genes, a model with 23 genes was generated,
involving components of the microenvironment and tumor. The study was conducted in
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290 patients with advanced stage enrolled onto the E2496 intergroup trial company ABVD
and Stanford regimes. The model and the threshold were tested in a validation cohort of
patients with advanced stage cHL. Gene associated with macrophages program, activation
of Th1 response, cytotoxic T cells/NK were overexpressed in patients with an increased
risk of death [122].

In a recent study, the same group, applied the previously published 23-gene in a
distinct cohort of 401 patients with advanced-stage cHL, treated with BEACOPP based
regimens. The 23-gene predictor was not prognostic for PFS and OS in the context of
BEACOPP-treated advanced stage cHL.

However, they identified that three individual genes PDGFRA, TNFRSF8 and CCL17
after multiple testing, were correlated with PFS in patients treated with BEACOPP
based regimens.

This result highlighted how different therapeutic approaches may require the necessity
to develop different predictors for risk assessment [123].

Another gene expression analysis explored the TME composition of 245 FFPE samples
with cHL, including 71 paired primary and relapse specimens, to investigate temporal gene
expression difference and association with post autologous stem cell transplant (ASCT)
outcomes. Chan et al. observed a TME dynamism between primary and relapse specimens,
moreover they showed that the biology at relapse, compared with primary diagnosis,
contained more prognostic information for predicting treatment outcomes after ASCT.
The authors developed a new prognostic model, RHL30 based on the expression of gene
associated with tumor cells and immune cells type of TME (macrophage, neutrophil and
natural killer). A high RHL30 score identified patients with unfavorable outcomes (worse
FFS and OS) after ASCT [124].

Later, the same authors validated the RHL30 assay, in an additional independent
cohort of 41 patients with relapsed cHL. In part, the latest results were different from those
presented in the first work. The RHL30 risk score was associated with FFS post-ASCT, but
the same cohort of patients didn’t present an association with OS [125].

The Interim PET (iPET), after 2 cycles of Chemotherapy is a good predictor of outcome
in cHL.

Luminari et. al. [126], identified the biological features of patients iPET+ developing
13-gene signature. They evaluated the expression profile by NanoString using a commercial
panel of 770 genes, filtered the 241 genes differentially expressed and developed a stringent
gene signature. The authors found a predictive score associated with iPET status composed
of genes (ITGA5, SAA1, CXCL2, SPP1, and TREM1) and Lymphocytes T-monocytes ratio
(LMR) with the aim to define the right treatment strategy upfront without waiting two
months from treatment start [126].

In a retrospective study was studied the association of 25-hidroxy vitamin D (VitD)
blood level with data of gene expression also in cHL. VitD deficiency reactivated genes
that mediate tumor cell survival and resistance to stress, contributing to promote cHL
aggressiveness [127].
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5. New TME Based Therapeutic Strategy

Approximately 80% of patients are cured with standard first line chemotherapy [128].
In patients with early-stage, the first line therapy made up of cycles of Adriamycin,
Bleomycin, Vinblastine Sulfate, Dacarbazine (ABVD) chemotherapy, followed by radiother-
apy in some cases. While Patients with advanced-stage disease usually receive a prolonged
or more intense chemotherapy consisting of either ABVD or a regimen of bleomycin,
etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone
(BEACOPP), with the possible inclusion of radiation treatment [129].

However 15% of patients with early stage disease and 30% with advanced stage
disease relapse or have primary refractory disease after initial treatment [128,130].

Patients with relapsed or refractory are treated with salvage chemotherapy followed
by ASCT [131].

Brentuximab-vedotin (BV) a monoclonal antibody directed against the CD30 expressed
by HRS cells, is another therapeutic opportunity for the treatment of cHL [132]. Originally
BV has been used as second line therapy or a consolidation of the ASCT in high risk
patient [133] recently BV was proposed into frontline treatment [134].

In this scenario, the growing interest in tumor TME has contributed to the development
of exciting novel therapy that target not only the neoplastic cells but also the cellular
components of the background. There are antibodies direct against PD-1 or PD-L1 and
CTLA-4, which reverse the down regulation of T cell function induced by tumor condition
and allow T cells activation in the TME.

Nivolumab is a fully immunoglobulin IgG4 anti-PD-1antibody and blocks the bind-
ing between PD-1 and PD-L1/PD-L2. Nivolumab has been studied in 23 patients with
Hodgkin’s lymphoma, 78% were enrolled in the study after a relapse following autologous
stem-cell transplantation and 78% after a relapse following the receipt of BV (CheckMate-
039). The monoclonal antibody had an ORR of 87%, a CR rate of 17%, a partial response
(PR) of 70% and PFS of 86% at 24 weeks [135]. Given these encouraging preliminary results,
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a subsequent phase II study (CheckMate-205) was conducted on 80 patients, who had
received prior ASCT and BV. Nivolumab was administered at the dose of 3 mg/kg every
2 weeks and demonstrated a therapeutic activity with ORR of 66% at a median follow-up
of 8,9 months [136]. Based on these results, FDA approved nivolumab for the treatment of
patients with cHL for whom ASCT and BV failed.

Pembrolizumab is another IgG4 monoclonal antibody to PD-1. In a phase 1b multi-
center study (KEYNOTE-013), pembrolizumab was administered at the dose of 10 mg/kg
every 2 weeks for up to 2 years, to 31 patients with cHL unresponsive to treatment with BV
(100%) and with relapsed after ASCT (71%). The ORR was of 65%, the CR rate was of 16%
and PR rate was of 48%. The PFS was 69% at 24 weeks and 46% at 52 weeks. The treatment
with pembrolizumab was well tolerated [137].

A study in phase II (KEYNOTE-087) was designed to evaluate the clinical activity
of pembrolizumab in 3 cohorts of patients with relapsed/refractory cHL. In all cohorts
were observed substantial clinical activity and a high ORR. Pembrolizumab received FDA
approval for the treatment of adult and pediatric patients with refractory cHL, or those
who have relapsed after three or more prior lines of therapy [138,139].

Results of long term follow up analysis of KEYNOTE-013 [140] nd KEYNOTE-087 [141]
showed durable antitumor anticity of Pembrolizumab in phase 1 and phase 2 studies.

In solid tumors, antibodies anti-CTLA-4 were the first immune checkpoint inhibitors
to receive FDA approval for the treatment of melanoma. In addition, also antibodies against
PD-1 have been approved for the treatment of melanoma and non-small-cell-lung can-
cer [142]. CTLA-4 is a negative regulator of T cell activation and a CD28 homologue [143].
CTLA-4 interacts with CD80 and CD86 with a higher affinity than CD28, leading to im-
paired T cell costimulation and functional inactivation [144]. CTLA-4 is expressed by T
cells, B cells, fibroblasts, but is unclear the role of CTLA-4 for non-T cells [145]. Ipilimumab
is an antibody anti-CTLA-4 and it was the first checkpoint inhibitor examined in patients
with HL. In a phase I study of 29 patients with hematologic malignancies, that also includ-
ing 14 patients with relapsed/refractory HL after allogenic stem cell transplantation were
treated with anti-CTLA-4. Ipilimumab was well tolerated, case of relevant graft-versus-
host disease was absent and 2 patients showed a complete remission (CR) [146]. CTLA4
antibodies have been surpassed by antibodies direct against PD-1 and PD-L1, but they
have been affective in combination therapies with other agents [147].

Other innovative therapeutic strategies have been developed targeting TAM and
NK [148]. In a phase 1/2 trial was evaluated the effect of JNJ-40346527, an inhibitor of
CSF1R expressed by RS cells and correlated to an increased number of TAM [86,149]. CSF1R
inhibitor presented limited activity when used in the relapsed/refractory setting [150].

AFM13 is a bispecific antibodies against CD30 and CD16A, that recruits NK cells via
binding to CD16A [151]. A phase I study (AFM13-101) was conducted in patients with
cHL who relapsed or were refractory after standard therapies [152].

Although the AFM13 represents a new target therapy, the study demonstrated limited
efficacy (ORR 12% to 23%, no CR) [152].

Even in patients with relapsed cHL, chimeric antigen receptor T cells (CAR T) repre-
sent a potential treatment. CAR T therapy against CD30 has not produced encouraging
results [153]. While anti-CD123 CAR T cells for the treatment of cHL represents a more
promising CAR T cell approach [154]. CD123 is expressed on RS cells, macrophages, plas-
macytoid dendritic cells, eosinophils, basophils, and mast cells [155]. In cHL CD123 CAR T
were capable of targeting malignant cells and TAMs eliminating a crucial immunosuppres-
sive component of TME [154].
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