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Partial Least Squares Estimation of Crop Moisture
and Density by Near-Infrared Spectroscopy

Davide Cassanelli, Nicola Lenzini, Luca Ferrari and Luigi Rovati, Member, IEEE,

Abstract—Optical methods can provide measurements without
coming into contact with the sample. In the agrifood sector,
this feature can be exploited to measure physical properties
of crops. In particular, we focused our research on moisture
content and density estimation. These two physical quantities
of the crop are extremely important not only to determine
future treatments to be performed, e.g. drying methods and
processes but, also for estimating the value of the product. In
this article, we propose a new model for simultaneous estimation
of crop moisture content and density, using Fourier transform
near-infrared spectroscopy combined with partial least square
multivariate methods. The model has been developed considering
140 fresh Medicago sativa samples properly harvested. Moisture
content ranged from 9.4% to 83.9% whereas density from 46
kg/m® to 236 kg/m>. Reference MC was computed according to
the American Society of Agricultural and Biological Engineers
standard whereas reference density was determined estimating
the volume of a sample of known mass. The obtained results
indicated that crop moisture content and density information
can be recovered from the near-infrared absorption spectrum of
the sample with coefficients of determination R? = 0.925 and R?
= 0.681 for the moisture content and density, respectively. Mean
root mean square relative errors of the estimation were 13.8%
and 14.4% for the moisture content and density, respectively.

Index Terms—Near Infrared Spectroscopy, Precision agricul-
ture, Crop moisture content measurement, Crop density measure-
ment, Partial Least Squares estimation, Multivariate statistics.

I. INTRODUCTION

ODERN agriculture is continuing to develop and search

new analytical techniques and methodologies to eval-
vate the physical properties of foods and crops [1], [2],
[3]. Research is looking at fast, nondestructive techniques,
among which, Near Infrared Spectroscopy (NIRS) is one of
the most interesting option [4], [5]. NIRS is a well known
optical technique that can provide the physical properties of a
sample without contact. In particular, organic samples can be
investigated exploiting absorption peaks included in the near-
infrared spectral region [6] [7].
An interesting application of NIRS is the determination of
the water content in the crop, also known as moisture content
(MC) [8]. Crop sample is heterogeneous being composed by
stems, leaves and air interstices. Therefore, the information
of interest is the total moisture that includes both the water
content in the solid part of the sample and the moisture
deposited on it.
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Another important physical quantity that characterizes this
heterogeneous sample is its density. During the harvesting
and processing of the crop, different compressions exerted
can reduce or increase the volume occupied by the air thus
changing the ratio between solid and gaseous part (without
any economic value) of the sample.

Moisture and density are crucial for the correct procedure to
perform on the alfalfa to make the bale useful for agriculture.
Moreover these properties influences the cost of the crop. The
ultimate goal is to determine MC and density directly during
the harvest by equipping the harvesting machine with a NIRS
probe. Unfortunately, the influence quantities that affect the
relationship between MC and NIR spectrum are numerous and
conditions in which the measurement should be performed
during the harvest require the development of an optical
system compact, robust and capable of operating in extreme
environmental conditions.A particularly important influence
quantity is the density of the crop [9]. This quantity heavily
affects the propagation of photons within the sample going
to directly influence the scattering coefficient [10]. Another
critical aspect for the NIRS measurement is the variability
of the sample. Different harvesting points offer crops with
different characteristics, e.g. in terms of leaf-to-stem ratio, due
to different soil compositions or sun exposures. Therefore, a
model for the MC and density estimation must necessarily start
from statistical analysis on numerous samples. As proposed by
other researchers [11][12], multivariate statistics is a suitable
tool to perform such analysis [13].

Among different multivariate techniques, Partial Least Squares
(PLS) regression represents a promising approach to analyze
the acquired NIR spectra. PLS finds the best correlation of
two matrices, i.e. response variables and predictors, even if the
predictors are noisy or collinear [14]. Nevertheless, to increase
the signal-to-noise ratio and enhance the correlation between
the spectral data and the characteristic of interest, the acquired
spectra need to be pre-processed before the regression [15].
Processing proposed for this aim is scaling, first derivative,
second derivative, and filtering such as the Savitzky-Golay
filter [16]. To improve the prediction capability of the PLS
model, only specific bands of the spectrum are selected. This
selection determines the quality of the fitting procedure and
is usually based on the knowledge of the sample optical
properties and analysis of the correlation between the reference
and predictor variables [16].

In this paper, using Fourier Transform Near-Infrared Spec-
troscopy (FT-NIRS) combined with partial least square (PLS)
multivariate methods, a new model for simultaneous estima-
tion of crop MC and density is proposed. The model has been



developed considering fresh alfalfa (Medicago sativa L.)—grass
samples harvested with a conventional harvesting machine.
In the following, section II presents the materials and methods
used to develop the proposed model. Measuring principle,
experimental setup, sample collection, reference methods,
measurement procedure and data analysis are described in this
section. The obtained results are reported in section III and
conclusions are drawn in section IV.

II. MATERIALS AND METHODS
A. Measurement principle

NIR spectral absorption and scattering at specific wave-
lengths are exploited to estimate the crop moisture and density.
Since the propagation of photons within the sample under
test (SUT) is governed by these two phenomena, the modified
Lambert Beer’s law quantifies the loss of radiation intensity
for beam travelling through the SUT.

In the near infrared spectral range, many SUT constituents
contribute to the acquired spectrum by absorbing and scat-
tering photons. Nevertheless, during the crop harvesting and
processing, the concentration of these constituents can be
assumed to be constant, with the exception of the water content
and the density. Therefore, it is reasonable to assume that the
changes observed in the acquired spectrum can be attributed to
variations in moisture and density. The measurement of these
physical quantities could thus be recovered from the spectrum
after an accurate calibration. This approach is well known in
the literature for example for the estimation of MC considering
the water absorption peaks [17]. As an example, Fig.1 shows
the spectra acquired on the same crop sample at two different
moisture contents. Note the large variation in absorbance at
the water absorption peaks, i.e. 1450 nm and 1940 nm.
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Fig. 1. Absorption spectra acquired from the same crop sample at two
different moisture contents: MC=43.6% (o) and MC= 83.9% (e). Note the
large variation in absorbance at the water absorption peaks, i.e. 1450 nm and
1940 nm.

Lambert Beer’s law states that the outcoming light intensity
from SUT is:

I = IO . e—(cw~e-L-DPF+G)7 (l)

where Ij is the incident beam intensity, cy, the water molar
concentration, ¢ the water molar extinction coefficient [18], L
the geometrical pathlength of photons within the SUT, DPF
the Differential Pathlength Factor accounting for the increasing
photon pathlength due to scattering, and G takes into account
the losses due to scattering. Since our setup includes an

integrating sphere (see next section) the last term can be
neglected assuming an efficient collection of the scattered
light. Therefore, the light attenuation, also called absorbance,
is given by:

1 1 I 1
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From this simple equation, we can deduce how the water
content in the SUT, i.e. cyy, can be derived by the absorbance
measurement. Maximum sensitivity can be obtained by ana-
lyzing the absorbance in the spectral regions where the water
molar extinction coefficient € is maximum. On the other hand,
since the scattering effect is described by DPF, we can suppose
that higher density samples exhibit a greater scattering thus
a larger DPF. However, DPF also depends on the photon
absorption in the SUT and this makes estimating moisture and
density from (2) non-trivial.

Note as the Lambert-Beer’s law is fundamentally defined
for a single absorbing material uniformly concentrated. Even
if the modified law takes into account the phenomena of
scattering, (1) assumes a gross simplification of the radiometric
process underlying the spectral measurement. Nevertheless,
this simplification is well known and have been employed with
success over the last three decades to probe equally complex
and heterogeneous samples such as highly scattering biological
tissues, e.g. human brain, muscle and breast [19], [20], [21].
The basis of the modified Lambert-beer’s law paradigm is that
it is possible to derive changes in sample optical properties
based on diffuse optical intensity measurements. The approach
relates differential light diffusion changes (regardless of the
considered geometry) to differential changes in tissue absorp-
tion [22].

In this paper, in the attempt to unravel the variables of
interest and apply a linear regression model, we analyze the
logarithmic transformation of the absorbance spectra:

LA—lnA—ln[ -cw-e]Jrln[L-DPF]. 3)

2.303
The first addend in (3) is closely dependant to the SUT MC
while the second to its density. To separate the contributions,
we analyze the absorbance in two different spectral bands B1
and B2:

(B1) the spectral regions where the water molar extinction
coefficient is maximum; this to maximize the contribution of
the first term and neglecting the second addend in 3, thus
deriving MC form the following approximation:

2.303

(B2) is the spectral regions where the water molar extinction
coefficient is minimum, this to maximize the contribution of
the second term neglecting the first addend in (3), thus deriving
the density form the following approximation:

LAp> =~ In|[L- DPF]. 5)

LABl ~In |:—1 Cw €:| . (4)

We also assume that, in the spectral regions B2, the effect of
the water content on the DPF is minimal, i.e. the propagation
of photons is mainly governed by scattering. In bands B1 and



B2, this approximations allow us to separate the contribution
of absorption, thus deriving MC, from that of scattering,thus
deriving the density.

The approximations described in 4 and 5 are as valid as
the SUT shows substantial absorption differences in B1 and
B2 as the MC varies. In the case of the considered crop,
as described in III, B1 can be chosen for example around
one of water absorption peaks, e.g. A = 1450 nm, while
B2 near the minimum wavelengths analyzed, e.g. A = 900
nm. Considering the absorption spectra shown in Fig. 1, a
variation in MC of about 40% induces an absorbance variation
at A = 1450 nm of 0.2 units; this means that the attenuation of
the light intensity goes from % = (6.3-107°) at MC = 43.6%
to 1~ = (2.5-1077) at MC = 83.9%. At the wavelength of 900
nm, the sensitivity of the absorbance to MC variations is much
lower; indeed the attenuation varies by only 0.05 units, which
corresponds to a variation of the ILO ratio from (6.3 - 10~%)
to (2.5-10%). As it seems reasonable to assume, MC affects
photon propagation at wavelengths close to the water absorp-
tion peak A = 1450 nm while minimally perturbing photons
at short wavelengths. These considerations lead us to assume
that the approximations in 4 and 5 are reasonable even if the
marginal correlation between MC and density will contribute
to increasing the uncertainty on their estimations. The use of
the logarithmic transformation of absorbance offers another
advantage. Linear regression models try to keep constant the
absolute fitting error over the considered range. However, as
discussed in the introduction, MC and density are useful to
determine the real economical value of the crop. It is clear
that, for this purpose, having a constant absolute estimation
error would lead to unacceptable errors in the price for small
quantities of the product. The logarithmic transformation of
both the predictors and outcomes can be interpreted as a
shift from absolute differences to relative differences, thus,
the estimation relative error of the linear regression models
is kept constant. A constant relative error estimation therefore
guarantees a fair economic value even for a small quantity of
product.

B. Experimental setup

The measurement information relates to the diffused light
from the SUT. To acquire the greatest amount of information,
the total back-scattered light intensity was measured. For
this purpose, the illumination of SUT and collection of the
diffused light were performed using an integrating sphere
(ARCSphere-50-HAL, ARCoptix S.A., Switzerland). This in-
tegrating sphere has an internal diameter of 50 mm and a
sample port of 10 mm with a sapphire window. Additional
SMA fiber port allowed us to connect an FT-NIR spectrometer
(FT-NIR Rocket, ARCoptix S.A., Switzerland) to acquire the
diffused light spectrum. SUT was held on the sample port by
a specimen holder that allowed changing its density keeping
the moisture constant. Fig. 2 shows the scheme of the optical
setup, whereas a picture of the whole system including the
sample holder is shown in Fig. 3.

PRESS PISTON DENSITY
VARIATOR —'

SAMPLE
HOLDER
~—

INTEGRATNG
SPHERE
ARCSphere-50-

SPECTROMETER
FT-NIR Rocket

INTEGRATED HALOGEN LAMP

Fig. 2. Block diagram of the experimental setup used to perform the NIRS
measurements.

HALOGEN LAMP

(OPTICAL FIBER TO
SPECTROMETER

Fig. 3. Picture of the experimental setup. The sample holder allows us to
adjust the volume and thus the density of SUT.

C. Sample collection

Alfalfa grass samples, sown among June, September and
October, were obtained from farmland in Modena (Italy).
Samples were cut at a length of 2 cm. They were harvested in
the days following the cut: the first set of samples was imme-
diately collected, while the other were collected subsequently.
The time interval between different samples harvesting was a
function of the weather and farmland conditions. This proce-
dure allowed obtaining naturally different MCs ranging from
(9.4 + 0.4)% to (83.9 & 0.4)%. The MC content uncertainty
computation will be discussed in the next section. Moreover,
the samples were collected from two different fields into the
farmland to increase the MC variability. After harvesting, the
alfalfa samples were held in a hermetically sealed plastic bag,
to preserve MC during the transport to the laboratory. The
single SUT was obtained weighting 4.00 g of alfalfa.

D. Reference methods

Reference gravimetric water content MC was computed
according to the American Society of Agricultural and Bi-
ological Engineers standard [8]. The initial weight of the SUT
mgyr was measured with an electronic weighing balance



(PCB 3500-2 Kern, Balingen, Germany) with resolution r =
0.01 g. Afterwards, SUT was dried at 103 °C for 24 hours
and then weighed again to obtain the SUT dried weight m.
The entire procedure was performed in a chemistry laboratory
whose ambient humidity and temperature are kept controlled.
After sample drying, rehydration of the sample (in particular
on the surface of the solid part of the sample) can be neglected
having performed the second weighing immediately after the
drying operation.

Thus, the gravimetric water content MC was computed as[23]:

mw

MC = ; (6)
msur

where m,, = mgyr — my is the mass of water in the SUT.
The value of MC is given with its relative uncertainty of 0.4%,
which is derived from the weight scale accuracy.
The SUT is heterogeneous being composed by stems, leaves
and air interstices. This is the normal condition of samples
during harvesting. For this heterogeneous sample the density
can vary due to the manufacturing processes which differently
comprises the crop, reducing or increasing the volume occu-
pied by the air, thus changing the ratio between solid and
gaseous part (without any economic value) of the sample.
Therefore, reference SUT density was determine estimating
the volume of a sample of known mass. The sample was
inserted in a varying volume holder; this holder allowed us
to adjust the volume occupied by the SUT through a press.
The press piston, moved by a screw spindle with indicating
gage, was able to reduce the height of the sample room at
a defined value h. The procedure was performed considering
total volume of the holder including air and solid part of the
SUT.
Thus, the SUT density was computed as [24]:
msuT

P= Abase : h7 (7)
where Apgse is the area of the sample holder base. Using
this sample holder, the density of the samples was adjusted
from 46 kg/m? to 236 kg/m? to simulate the range of density
values performed by the forage harvesting machines (personal
communication from CNH Industrial).

E. Measurement procedure

After the spectrometer warm-up, the dark spectrum was
acquired. Afterwards, the halogen lamp was turned on and a
99% NIST Standard Diffuser (Labsphere) was positioned on
the sample port. After the lamp warm-up time, the reference
spectrum was acquired. Finally, each SUT was placed into the
sample holder, its volume was adjusted, and the absorbance
spectrum acquired.

The logarithmic transformation of the absorbance spectrum
was calculated for each SUT as:

Isur(Ai) — Ip(\i)
A Ai = —lo y
) 810 Trer(0)/0.99 — Ip(A;)
LA(N;)) = InA(N), (®)
where Isyr(A;), Ip(A;) and Iges(A;) refer respectively to
the scattered spectrum by the SUT, dark spectrum acquired

with the halogen lamp turned off and spectrum acquired from
99% NIST Standard Diffuser. A; ranges between 0.9 ym and
2.5 um with i€(l,..., 1024). Spectral resolution is 8 cm™ in
term of wavenumber thus ranges from about 1 nm at 1 um to
about 5 nm at 2.5 pm.

1500
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Fig. 4. Reference spectrum acquired from 99% NIST Standard Diffuser (a)
and typical SUT spectrum (b). The corresponding absorbance spectrum and
its logarithmic transformation are shown in (c) and (d), respectively.

F. Data analysis

Data handling and PLS analysis of the acquired spectra
were performed using MATLAB (MathWorks, Sherborn, MA,
USA). Acquired spectra were first pre-processed to improve
the prediction capability of the regression model.

For the moisture predictor, baseline effects were cancelled cal-
culating the first derivative of the logarithmic transformation



of the absorbance [15][16]:

_dLA(\)  dlnA()
TN dx

Derivative increased largely the high frequency noise, thus,
the Savitzky-Golay (SG) spectral smoothing filter of the
second degree was the then applied to maintain the signal-
to-noise ratio to a reasonable value. This filtering function
was practically performed through the MATLAB command
smooth(FDLA,’sgolay’,2), where FDLA is the first derived
spectrum, ’sgolay’ is the Savitzky-Golay method and 2 is
the degree of the filter. The resulting spectrum was then
normalized to its maximum.

For the density predictor, after several tests, we observed that
the first derivative did not improve the quality of the PLS
results, and for that reason, we decided to apply the SG filter
and the normalization directly to LA.

As an example of data pre-processing, Fig. 5 (a) and (b) show
a typical logarithm transformation of the SUT absorbance and
the corresponding predictor calculated by SG filtering. The
spectral band B2 of this predictor was used to estimate SUT
density. Typical FDLA and the corresponding predictor are
shown in Fig. 5 (c) and (d), respectively. The spectral bands
B1 of this predictor were used to estimate SUT MC.

As described in section II-A, bands B1 and B2 were selected,
among the whole spectrum, taking into account the water
molar extinction coefficient spectrum [18]. The band Bl
considers the two main water absorption peaks in the measured
spectral region, 1.38 um and 1.88 pm, whereas B2 refers to
the region with minimum absorption (0.9 — 1.1)um.

PLS regression analyses in the spectral band B1 and B2 were
performed to estimate SUT MC and density p, respectively.
Within spectral bands B1 and B2, the wavelengths of interest
were selected analyzing the correlation coefficients between
reference and predictor variables calculated as:

' i : Zk: (Yi —w) (Xi(kj) —MX@]-)) |

=\ oy TX()
(10)

where 1y and pix(y;) are the mean, calculated over the k
response variables considered, of the response and predictor
variable, respectively, whereas oy and TXx () are the cor-
responding standard deviations. The correlation coefficients
computation was performed through the MATLAB command
corrcoef(M), where M is a matrix composed by the reference
values array, MC or p, in the first column and the spectral
values, LA, at each wavelength in the other columns.

The linear regression model used, i.e. Partial Least Square
model, is described by the following matrix equation:

FDLA(X) : )

C(Aj) =

Y Xl()\l) Xl()\Q) Xl()\n) B1 €1

Y, Xo(A1) Xa(A2) Xo(An)| | B2 €2
= + ,

_Yk_ _Xk()\l) Xi(A2) Xk()\n)_ _5n_ B
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Fig. 5. Example of data pre-processing: logarithm transformation of the
SUT absorbance and the corresponding predictor calculated by filtering, (a)
and (b), respectively; first derivative of the logarithm transformation of the
SUT absorbance and the corresponding predictor calculated by normalization
and filtering, (c) and (d), respectively.

where Y, i.e. response variable, is the ith logarithmic trans-
formation of the reference value of MC or p determined
according the procedure described in Section II-D. Predictor
variable X;(}\;) is the i'" pre-treated FDLA in the case of
MC estimation or simply the i*" pre-treated LA in the case
of p estimation; in both the cases, the predictor variable is
considered at the selected wavelength A; at which there is a
good correlation between predictor and response variables. /3;
is the estimated weighted regression coefficient whereas the
elements represent the residuals, i.e. the difference between the
reference and predicted response. To avoid model over-fitting,
regression of (11) is performed on a set of uncorrelated latent



variables obtained finding combinations of original variables
that have a large covariance with the response values. This
operation is performed thanks to the MATLAB PLS regres-
sion algorithm called through the command plsregress(x,y,n),
where x is the predictor variable, y is the response variable
and n the number of PLS components, i.e. the number of latent
variables.

The fittings are evaluated taking into account the statistics:
(i) calibration and validation root mean square error (C-
RMSE and V-RMSE, respectively), and (ii) the coefficient of
determination, R? (C-R? and V-R?, respectively).

RMSE is calculated as follows:

1en | &
RMSE:EZ Z

where q is the number of predictors associated to the i-th
reference value and €7 |; is the error between the i-th reference
value and the j-th response.
R? is calculated as follows:

S g (Vi |y —Yref,)?
Zf:l(y —Yref;)?

where Yref, is the reference value associated to the response
Y; |; and Y is the average of the g x k reference values.

After the application of the models, the logarithmic estimations

are converted into linear MC and density, and the root mean

square relative error between estimated and reference values
is calculated for each reference value:

(12)

RZ=1

; (13)

1 |~ [ MC.y | Mcmf>2
er(MCY% = = ( J x 100,
(MC)% . ; MG,
1| <& ([ Pest lj —pres\’
er(p)% = - § (”—f> x 100,  (14)
q = Pref

where est and ref indicate the estimated and reference values,
respectively.

ITII. RESULTS

A total of 40 cuttings at different MCs were collected
according to the procedure reported in section II-C.From these
40 alfalfa cuttings we extracted 160 different SUTs, which will
be compressed differently with the sample holder to obtain,
during the measurements, 160 nonidentical and practically
independent due to the poor uniformity of the harvested
samples.

In the spectral measurement range of the spectrometer, bands
B1 was selected including the two main water absorption
peaks: (1.3-1.6) ym and (1.8-2.1) um, whereas, for B2, we
considered the lowest wavelengths, i.e. (0.9-1.1) yum, avoiding
the first peak of water absorption (1.2 pm); in this spectral
band, water absorption is minimum. The wavelengths of
interest were selected analyzing the correlation coefficients
shown in Fig. 6.

The number of latent variables, n, chosen for the regression is
initially set to 10. The definitive number is defined after several
simulation, optimizing the RMSE and the R? statistics. This
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Fig. 6. Correlation coefficients between reference and predictor variables.
SUT Moisture content (a) and density (b). Green regions represent the spectral
bands Bl (a) and B2 (b). The red lines represent the correlation thresholds
used to select the wavelengths. Only the wavelengths in B1 and B2 for which
the correlation coefficient is greater than these thresholds are considered in
the PLS analysis.

process is performed to increase the model accuracy, avoiding
the over-fitting. The final number of latent variables is set to
12.

Within the bands B1 and B2, we considered the wavelengths
for which the correlation coefficients is grater then 85% of its
maximum value, which means 0.65 for MC and 0.4 for density.
As expected, in absolute terms, the correction with MC is
definitely higher, thanks to the huge absorption contribution
due to water. On the other hand, it is known that the density
estimation is more critical as it is correlated to the mean
scattering coefficient in a highly heterogeneous medium. The
low value of the correction coefficient reflects this critical
aspect.

Afterwards, a final wavelengths refinement was performed by
adding or removing some wavelengths to reduce the prediction
errors.

As shown in Fig. 6, some wavelengths outside B1 and B2
could be considered acceptable according to our criterion,
i.e. correlation coefficients greater than 85% of its maximum
value. These values were not taken into consideration since the
correlation is not supported by physical reasons; behaviors of
this type are usually not very repeatable and closely linked to
the selected set of samples.

Final selected wavelengths for the PLS analysis were;

Bl:)\, €
B2:)\, €

(1.37 — 1.53) U (1.87 — 2.02)pm. i = 1...152
(0.90 — 1.16)um i = 1...310 (15)

A. Crop moisture estimation

MC reference values range from 9.4% to 83.9%. For each of
the k = 40 samples collected, q = 4 spectra at different densities



were acquired, from differently compressed SUTs. Therefore,
MC estimation was performed analysing 160 independent
predictor variables.

Calibration data set consisted in 128 predictor variables ran-
domly selected. Fig. 7 shows the PLS response variables
obtained from calibration as a function of the MC reference
values. Validation data set consisted in the remaining 32
predictor variables. Fig. 8 shows the PLS response variables
obtained from validation as a function of the MC reference
values. Statistics of the developed PLS model are reported in
Table I whereas Fig. 9 shows the relative error &,.(MC)%,
calculated according to Eq.14, between the estimated and
reference of MC.

PARAMETER | FDLA

C-RMSE 0.1230

C-R? 0.9581

V-RMSE 0.1599

V-R? 0.9249
TABLE I

STATISTICS RELATED TO THE MOISTURE ESTIMATION MODEL PERFORMED
USING THE FDLA SIGNALS. C-RMSE AND C-R2 REFER TO THE
CALIBRATION MODEL, WHILE V-RMSE AND V-R2 REFER TO THE
VALIDATION MODEL.
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Fig. 7. Moisture content PLS model: calibration response variables as a
function of the reference values (a). Predicted vs reference moisture content
for the calibration data set (b).

B. Crop density estimation

Starting from the same 40 samples collected according
the procedure reported in section II-C, a new data set was
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Fig. 8. Moisture content PLS model: validation response variables as a
function of the reference values (a). Predicted vs reference moisture content
for the validation data set (b).
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Fig. 9. Root mean square relative error between the estimated and reference
values of moisture content. Results obtained for the calibration (a) and
validation (b) SUTs.



generated. This set was composed by samples with k = 15
different densities with q moisture contents. q was a variable
number depending on the density value, i.e. q = 6,10,15,30.
The resulting number of predictor variables was 160. The
density values ranged from 46 kg/m? to 236 kg/m>. Calibration
data set was composed by 128 predictor variables randomly
selected. PLS response variables obtained from calibration
as a function of the density reference values are shown in
Fig. 10. As for moisture, the remaining 32 predictor variables
composed the validation data set. Fig. 11 shows the PLS
response variables obtained from validation as a function of
the density reference values.

In Table II, the statistics for density estimation are presented
whereas Fig. 12 shows the relative error €,(p)%, calculated
according to Eq.14, between the estimated and reference
values of density.

o

©

Predicted In(p) (In kg/m®)

3 35 4 45 5 55 6
In(p) (In kg/m®)
(a)

PARAMETER LA
C-RMSE 0.1240
C — R? 0.9008
V-RMSE 0.1791
V — R? 0.6806

TABLE II

STATISTICS RELATED TO THE DENSITY ESTIMATION MODEL PERFORMED
USING THE LA SIGNALS. C-RMSE AND C-R? REFER TO THE
CALIBRATION MODEL, WHILE V-RMSE AND V-R? REFERS TO
VALIDATION.
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Fig. 10. Density PLS model: calibration response variables as a function
of the reference values (a). Predicted vs reference density for the calibration
data set (b).
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Fig. 11. Density PLS model: validation response variables as a function of
the reference values (a). Predicted vs reference density for the validation data
set (b).
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Fig. 12. Root mean square relative error between the estimated and reference
values of density. Results obtained for the calibration (a) and validation (b)
SUTs.



IV. DISCUSSION AND CONCLUSIONS

Determination of the moisture content and density of crop
directly during the harvesting remains an ambitious goal in
modern agriculture. Numerous critical aspects of the mea-
surement make this objective non-trivial. Contactless NIRS
measurements appear to be the most promising approach.
However, this measurement technique suffers from numerous
influence quantities, among which, the most important is the
dependence of the MC information on the density of the
sample. The crop density alters directly the photon propagation
into the sample and, thus, the acquired spectrum.

The findings presented in this paper demonstrate the feasibility
of a PLS multivariate method for simultaneous estimation
of crop MC and density. As reported in Table I and II,
results obtained on a fresh alfalfa grass samples show a good
correlation between estimated and reference quantities, i.e.
moisture content and density.

In this paper we introduce, for the first time in this applica-
tion to our knowledge, the logarithmic transformation of the
original variables to separate the spectral contributions due
to MC and density. The use of the log transformation of the
absorbance offers a second advantage: it makes the estimation
relative error quite constant over the fitting range. As discussed
in the introduction, moisture and density information are often
used to estimate the economic value of the crop. It is clear
that, for this purpose, having a constant absolute estimation
error would lead to unacceptable errors in the price for
small quantities of the product. Our approach overcome this
limitation. In fact, as clearly visible for example in Fig. 7, the
estimation of MC and density entails a greater spreading of
the data at the upper end of the reference quantities range. As
shown in Figs. 9 and 12, the PLS root mean square relative
errors are practically independent of the reference value and
have average values of 13.82% and 14.44% for the estimated
MC and density, respectively.

As shown by the experimental results, the model offers better
performance in estimating MC. This feature could basically be
due to three aspects: (i) lack of homogeneity of the samples
that lead to scattering phenomena very dependent on the
measurement position, (ii) absorption in B2 dependent not only
on density but also on other constituents of the crop [25], (iii)
higher uncertainty of the method used to measure the reference
density. Note that these results were obtained for a specific
type of crop. Considering the simplifications introduced by the
modified Lambert Beer’s paradigm, the operations described
in II-F must be repeated if other crops are considered. In
particular, the calibration operations must be performed on
a sufficient number of known and independent new samples.
Our ongoing activities are aimed at improving these four
aspects. In particular, we are: (i) extending the measurement
area to be less sensitive to non-uniformity of the sample,
(ii) integrating the B2 band with other spectral bands and
(iii) improving the density measurement methods and (iv)
increasing the number of samples and density values in order
to realize a model able to improve the MC and density
estimations by solving the interdependence between these two
physical quantities.

Much more work will be needed to refine this model but these
first results confirm that NIRS is an excellent candidate for
the ambitious goal of realizing a measurement system able of
determining crop MC directly during the harvesting.
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