
17 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Loreti D., Artioli M., Ciampolini A. (2020). Solving Linear Systems on High Performance Hardware with
Resilience to Multiple Hard Faults. New York : IEEE Computer Society [10.1109/SRDS51746.2020.00034].

Published Version:

Solving Linear Systems on High Performance Hardware with Resilience to Multiple Hard Faults

Published:
DOI: http://doi.org/10.1109/SRDS51746.2020.00034

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/792330 since: 2021-01-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/SRDS51746.2020.00034
https://hdl.handle.net/11585/792330

Solving Linear Systems on High Performance
Hardware with Resilience to Multiple Hard Faults

Daniela Loreti
DISI

University of Bologna
Bologna, Italy

daniela.loreti@unibo.it

Marcello Artioli
Bologna research center

ENEA
Bologna, Italy

marcello.artioli@enea.it

Anna Ciampolini
DISI

University of Bologna
Bologna, Italy

anna.ciampolini@unibo.it

Abstract—As large-scale linear equation systems are pervasive
in many scientific fields, great efforts have been done over
the last decade in realizing efficient techniques to solve such
systems, possibly relying on High Performance Computing (HPC)
infrastructures to boost the performance. In this framework, the
ever-growing scale of supercomputers inevitably increases the
frequency of faults, making it a crucial issue of HPC application
development.

A previous study [1] investigated the possibility to enhance
the Inhibition Method (IMe) – a linear systems solver for dense
unstructured matrices – with fault tolerance to single hard errors,
i.e. failures causing one computing processor to stop.

This article extends [1] by proposing an efficient technique to
obtain fault tolerance to multiple hard errors, which may occur
concurrently on different processors belonging to the same or
different machines. An improved parallel implementation is also
proposed, which is particularly suitable for HPC environments
and moves towards the direction of a complete decentralization.
The theoretical analysis suggests that the technique (which does
not require checkpointing, nor rollback) is able to provide fault
tolerance to multiple faults at the price of a small overhead and
a limited number of additional processors to store the check-
sums. Experimental results on a HPC architecture validate the
theoretical study, showing promising performance improvements
w.r.t. a popular fault-tolerant solving technique.

Index Terms—Fault tolerance, multiple hard faults, High Per-
formance Computing, linear equation systems solver, Inhibition
Method

I. INTRODUCTION

Solving linear equation systems is a crucial task for several
real world applications, spanning from the field of engineering
to that of medicine. As these disciplines often deal with large-
scale algebraic systems, characterized by a remarkable number
– order of thousands – of linear equations, over the last
decade a great deal of effort has been invested on efficient
techniques to solve linear systems, possibly resorting to par-
allelization, so that the solver’s algorithm could be executed
on a High Performance Computing (HPC) system to improve
performance. Circuit simulation, computed tomography and
medical image processing in general, aerodynamic design, and
electric power network analysis are just few examples of well-
known applications that already benefit from efficient, parallel
implementations of linear solvers.

The existing variety of methods for linear system resolution
can be classified into two main categories: direct solvers,

able to identify the exact solution; and iterative solvers,
performing incremental enhancements of the solution until
the desired accuracy is reached. Albeit iterative solvers are
generally preferable for better performance, they are some-
times subjected to the issue of convergence, so that the desired
approximation might be unreachable. In this case, the devel-
oper can use direct methods, such as Gaussian Elimination,
QR, LU [54], or – when the system matrix has particular
properties – Cholesky decomposition [43]. Furthermore, when
the significant size of the problem forces the employment
of a HPC system, iterative methods might require additional
effort to cope with some classical issues connected to parallel
implementations. For example, deterministic iterative methods
impose many synchronization points because each iteration
intrinsically depends on the result of the previous one, whereas
stochastic iterative approaches require pseudo-random number
generation, which is a challenging task in a decentralized
system.

A HPC system may include thousands of computational
nodes, either traditional CPUs, or GPU cores. In this frame-
work, although the Mean Time Between Failures (MTBF) of a
single node has increased over the years, the huge number of
hardware components makes failures still extremely frequent
for HPC systems [2]. It is therefore crucial to identify and
handle malfunctions during the computation, possibly avoiding
to restart it from the beginning. Most of the modern HPC
systems provide solutions for the promptly isolation of hard
errors (which cause the machine to stop), but their following
management (i.e. the sequence of recovery operations to be
carried out once the malfunction has been detected) must be
specific of the executed algorithm in order to obtain the most
efficient resource usage. Besides hard errors, soft errors or
Silent Data Corruption (SDC) [3] might also occur: these are
malfunctions (like thermal drift or radiation) that do not cause
the machine to stop, but may induce errors in the result. To
cope with this kind of malfunctions Algorithm Based Fault
Tolerance (ABFT) frameworks have been proposed [4]–[6].

Hard errors are far easier than soft errors to be identified.
On the other hand, their management is – in a sense –
more problematic w.r.t. soft errors due to the catastrophic
nature of their effects (e.g., aborted calculations). Currently, a
popular approach to tolerate hard errors in large HPC clusters

is Checkpoint/Restart (C/R) at application level: a periodic
dump of the calculation state is saved somewhere under the
control of the application. In case of error, once the faulty
unit has been replaced and the state restored, the application
can continue (instead of being started over if no checkpoint is
available). This approach comes in two main variants: (i) disk
checkpointing i.e., saving the state to mass storage, which
leads to a big overhead during normal operations and thus,
is almost impractical for large clusters data structures; and
(ii) diskless checkpointing i.e., saving the checksummed state
to the internal memory of redundant nodes, which entails
smaller but not negligible overhead (checksumming and stor-
ing to RAM is faster but interrupts the calculation flow).

In this work, we employ ABFT to address the need for an
efficient, hard error-resilient algorithm to solve linear equation
systems characterized by dense unstructured matrices. The
technique is grounded on an existing direct solver, namely
Inhibition Method (IMe), which was initially conceived to
analyse complex electric circuits [7], [8] and later generalized
to cope with linear systems [9], [10]. IMe has already proven
successful in providing efficient single-fault resilience to the
linear system resolution process [1]. Nonetheless in large HPC
environment, each machine usually has numerous cores and
the case of a failure stopping a single core while all the others
continue to work, is rather rare. More frequently, a hard failure
contemporary involves many – if not all – the computing
processor on the same machine. Furthermore, the presence
of a single point of failure in the Master/Slave algorithm
presented in [1] intrinsically exposes the system to higher
risks of aborted calculations. Therefore, this paper focuses on
enhancing the previous study [1], with resilience to multiple
hard faults while allowing a simpler parallelization of the
solving process where no central coordinator is needed. Fault
tolerance is not obtained through periodical checkpointing on
synchronization points, but rather by encoding the data in
a checksum only once at the beginning of the computation.
The algorithm can later operate in the same way on both
the input and the encoded data. Whereas for other existing
methods, changes in the calculation state normally trigger a
new checksum for a checkpoint to be valid, in the proposed
approach, checksumming is implicit and transparent, with
virtually no overhead for the application. Besides a brief
introduction to IMe’s working principles (Section II), the main
contributions of this work are:

• a decentralized IMe-based parallel linear systems solver
and a study of its complexity in terms of floting point op-
erations (flops), memory occupation, number and volume
of exchanged messages (Section III);

• a description (supported by proof) of how the algorithm
can be extended to tackle multiple hard errors, and a
further analysis of the complexity introduced by such
enhancement (Section IV);

• an empirical performance comparison of the proposed
approach with a traditional diskless C/R method to ensure
fault tolerance in solving linear systems (Section V).

Related work (Section VI) and conclusion (Section VII) fol-
low.

II. BACKGROUND ON THE INHIBITION METHOD

Initially conceived in 1963 [7] to analyse physical linear
systems and in particular linear electric circuits, IMe is an
exact method based on the Effects Superposition Theorem,
which was later applied to the resolution linear equation
systems [8] and square matrix inversion [11].

The method considers the linear system Ax = b, where
A is the n ⇥ n matrix of coefficients, b is the vector of
constant terms and x is the vector of the unknowns. From this
specification, the first step is to build a matrix T (n), namely
inhibition table computed as follows:

T (n)=

2

66666664

1
a1,1

0 0 1 a2,1

a1,1
.

an,1

a1,1

0 1
a2,2

. 0 a1,2

a2,2
1

an,2

a2,2

...
...

. . .
...

...
...

...
. . .

...
...

0
1

an�1,n�1
0

...
... . . . 1 an,n�1

an�1,n�1

0 0 1
an,n

a1,n

an,n
.

an�1,n

an,n
1

3

77777775

where ai,j are the elements of A. The matrix T (n) can be
seen as a decomposition of the original problem into n sub-
problems (one for each row).

IMe applies a fundamental formula to iteratively reduce by
one the number of rows and columns in T (n), so that at each
step (usually called level) l (with l = n . . . 1), T (l) represents
the original problem decomposed into l sub-problems:

t
(l�1)
i,j = (t(l)i,j � t

(l)
l,j · t

(l)
i,n+l) · h

(l)
i ,

l = n . . . 1, i = 1 . . . l � 1, j = 1 . . . n+ l � 1
(1)

where h(l)
i is the ith element of the auxiliary vector h(l), which

must be recomputed at each level as well:

h
(l)
i = 1

1�t(l)l,n+i·t
(l)
i,n+l

, l = n . . . 2, i = 1 . . . l � 1.

Note that this entails (as shown in Fig. 1) having, at each
level, any element (t(l�1)

i,j) of the inhibition table recomputed
employing only its previous value (t(l)i,j), the elements on the
last row (t(l)l,j) and column (t(l)i,n+l) of the previous inhibition
table, and the corresponding auxiliary quantity (h(l)

i). Again,
for the computation of h(l), only the elements in the last row
(t(l)l,n+i) and column (t(l)i,n+l) of the inhibition table are needed.

In order to actually compute the system’s solution, the
vector of constant terms b and the solution vector x are
initialized and updated at each level as shown in Table I. We
underline that – as prescribed by the values assumed by the
index i – at each level l, only the first l � 1 elements of b
and last l � n of x are modified. At the end of all iterations
– i.e., at level l = 1, when T (1) matrix has only one row and
n columns – the vector x(1) hosts the solution of the linear
system.

A more detailed description of the method’s motivations and
proof can be found in [8], whereas [1] clarifies IMe working
principles through the pseudocode of a serial implementation.

Figure 1: Graphical visualization of the fundamental formula
and the computation of the auxiliary quantities.

III. HIGH PERFORMANCE IMPLEMENTATION

In the following, we focus on the execution of IMe on
a network of N computing nodes relying on the message
passing model. Obviously, we must split the computation
while minimizing the amount of data exchanged to limit the
communication overheads. The structure of IMe is relatively
easy to parallelize: given the fundamental formula in Equation
(1), if the last row t(l)l,⇤ and column t(l)⇤,n+l of T (l) are made
available to all nodes, the computation of each element of
T (l�1) can be conducted independently. This observation
enables various parallelization schemas for IMe: the elements
of T (l) can be distributed row-wise, column-wise or block-
wise. Nonetheless, for the purposes of this work we focus on
column-wise parallelization because – as will be clear in the
following – it is the best solution to allow the fault tolerant
enhancement.

The work [1] presents a master/slave algorithm which intrin-
sically suffers from many synchronization points. In the fol-
lowing, we propose an enhanced column-wise implementation
of IMe, depicted in Algorithm 1, where all nodes perform the
same operations on different data and no central coordination
is present.

After an initialization step, where the inhibition table is
computed from the matrix A and scattered (line 2), all proces-
sors iterate over the levels, exchanging the last column and row
with each other. As we chose a column-wise parallelization,
the last column is available on a single computing node and
can be broadcasted to all the others (line 8), whereas the last

Table I: IMe prescribed steps to compute the system’s solution

Initialization Update

b b
(n)
i =

(
bn, i = n

bi � t
(n)
n,n+ibn, o/w

b
(l�1)
i = b

(l)
i � t

(l�1)
l�1,n+ib

(l)
l ,

i = 1 . . . l � 2

x x
(n)
i =

(
t
(n)
n,i · bn, i = n

0, o/w
x
(l�1)
i = x

(l)
i + t

(l�1)
l�1,i b

(l)
l ,

i = l � 1 . . . n

Algorithm 1 Parallel IMe factorization with fault resilience.
Input: A, matrix of coefficients; b vector of constant terms.
Output: x solution vector.

1: procedure IMEHP(A, b)
2: T ,x, b INITIME(A)
3: . Each processor gets a subset T 0 of columns in T :
4: T 0 SCATTERCOLUMNS(T , root = 0)
5: for l n . . . 2 do
6: q

0 processor holding last column of T
7: . processors exchange last column and row of T :
8: t⇤,n+l BROADCAST(t⇤,n+l,root=q0)
9: tl,⇤ ALLGATHER(tl,⇤)

10: . only one processor computes the solution:
11: if rank == 0 then
12: for i l . . . n do
13: xi xi + tl,ibl

14: end for
15: end if
16: for i 1 . . . l � 1 do
17: if rank == 0 then
18: bi bi � tl,n+ibl

19: end if
20: hi = 1/(1� ti,n+l ⇤ tl,n+i)
21: for each t⇤,j 2 T 0 do
22: if j == i or (j � l and j 6= n+ i) then
23: . apply the fundamental formula:
24: ti,j (ti,j � tl,j · ti,n+l) · hi

25: end if
26: end for
27: end for
28: end for
29: return x
30: end procedure

row is scattered across all processes, thus requiring a more
complex communication schema (ALLGATHER function in
line 9).

After this communication, the last row and column are
sufficient to allow each processor to independently compute
the auxiliary vector (line 20) and apply the fundamental
formula to its portion T 0 of columns of T (line 22).

The computation of the auxiliary vector is actually the exact
same operation repeated on all nodes. With respect to an more
centralized implementation, where the master is in charge
of h(l) computation and distribution [1], this redundancy
inevitably increases the number of total flops. Nonetheless, it
reduces the number of messages and frees all processors from
the burden of synchronizing with a central coordinator at each
level. It also reduces the risks connected to the presence of a
single coordinator, which represents a single point of failure
during the computation.

Algorithm 1 makes only one exception to an
embarrassingly-parallel computation: a single node is
actually responsible for the computation of the solution by

iteratively updating vectors b and x (lines 18 and 13).
This choice, compliant with what is done by other linear

algebra libraries [12], comes from the usual need to finally
collect the solution into a single node to use it. To improve
fault resilience, other implementations are possible, where
the computation of b and x (which is rather small in terms
of flops) is performed by different nodes at the same time.
Nonetheless, as we will explain in the following, even in the
case of a fault involving the node which is computing the
solution, it is possible to restore its state at the cost of a
minimal overhead.

A. Algorithm complexity
We consider the theoretical complexity of the proposed

approach in terms of flops, memory occupation mo, number
M and volume V of exchanged messages.

As regards the flops, we can observe that, during initial-
ization, although T has 2n2 elements, only half of them is
computed from the elements of A. The others are initially
set to 1 or 0. Thus, the initialization of IMe only requires
flopsIMe init = n

2. Then, the total number of flops to compute
the solution are due to the four contributes of b, x, h and
T for each level. In particular, the contributes of b and x
(lines 18 and 13) can be computed together because in each
level, the two flops of bi are executed only for i = 1 . . . l� 1,
whereas those of xi only for i = l . . . n. This is equivalent to
a two-flops operation executed n times in each level. As we
have n levels, we can conclude flopsb + flopsx = 2n2. The
computation of h (line 20) is given by three flops repeated
l � 1 times for each of the n levels, and this operation is
repeated on all the N computing processors involved i.e.,
flopsh = 3N

Pn
l=1(l � 1). Finally (as in [1]) we perform

the three flops of the fundamental formula only for the l ⇥ n

elements that can actually result modified in each of the n�1
levels following the initialization. Thus, flopsT = 3n

Pn�1
l=1 l.

The total flops are therefore: flopsIMe =
3
2n

3+ 3
2n

2(N+1)+
3
2Nn. This value is comparable to that of popular algorithms
for linear system resolution such as Gaussian elimination and
LU decomposition i.e., 2

3n
3 +O(n2).

The memory utilization is limited to moIMe = 2n2+3Nn+
2n i.e., the dimension of T , plus that of h, t⇤,n+l and tl,⇤
(which must be stored on all N computing nodes), plus the
dimension of b and x.

As regards the messages exchanged, during the initial phase
the coordinator scatters the meaningful elements of T , gen-
erating (N � 1) messages and a volume of n

2 floating point
values. Then, at each level, the algorithm states that:

• the node that is in charge of the last column t⇤,n+l

broadcasts it to all the other nodes (line 8), which implies
Mt⇤,n+l = (N � 1)n messages generating a volume of
Vt⇤,n+l = (N � 1)

Pn
l=1 l;

• all the nodes exchange their portion of the last row (line
9) entailing Mtl,⇤ = nN(N � 1) and Vtl,⇤ = n

2.
The latter operation (ALLGATHER in line 9) is rather time-
consuming in general because it requires each node to synchro-
nize with all the others. Nonetheless, several more performing

strategies than a set of nN(N � 1) point-to point commu-
nications are possible. All modern MPI libraries adopt more
performing implementations: depending on various parameters
like the message size and the number of involved processors,
the library may choose different algorithms at runtime, such
as binomial dissemination, recursive-doubling exchange, or
ring all-to-all broadcast [13]. All these strategies significantly
reduce the messages exchanged in practice. However, disre-
garding MPI library optimizations, the theoretical total number
and volume of messages exchanged is:

MIMe = nN
2 +N � n� 1

VIMe = n2

2 (N + 3) + n
2 (1�N)

(2)

When compared to the complexity of the previous parallel
implementation [1], this solution shows a slight increase of
flops and mo due to the computation and storing of the
auxiliary vector h on all N nodes. Nonetheless, as h is very
small and requires very little computation w.r.t. the T , such
increase does not significantly affect the performance. On the
other hand, besides the great advantage of eliminating the
single point of failure, this version overcomes some of the
shortcomings of [1] by limiting the sychronization points: the
total number of messages is no longer of the order O(n2) as
it was in [1].

IV. ENHANCING THE HPC INHIBITION METHOD WITH
TOLERANCE TO MULTIPLE FAULTS

Our hard error resilient enhancement of the parallel IMe
– denoted with IMeMFT in the following – is based on a
checksum technique to encode the state of the inhibition table
and store it in the memory of additional processors [14]. Let us
consider a column-wise parallelization where each processor
receives just one column for the moment. Taking inspiration
from Reed-Solomon coding in the field of RAID-like systems
[15], if any m columns of T (l) are involved in a fail-stop (and
therefore no longer accessible), their values can be recomputed
if m checksum columns have been conveniently defined. We
therefore extend the inhibition table with the checksum matrix
S(l) as follows:

�(l) = [S(l)|T (l)] =

2

64
s1,1 . . . s1,m t1,1 . . . t1,n+l

...
. . .

...
...

. . .
...

sn,1. . . sn,m tn,1. . . tn,n+l

3

75

According to [16], if the checksum matrix is computed as

S(l) = T (l) ·⇤(l)
, (3)

where ⇤(l) is a (n + l) ⇥ m matrix suitably conceived for
the purpose (such that any square sub-matrix of ⇤(l) is non-
singular), then in case of a fail-stop involving any m columns
of �(l), their values can be recomputed by solving a linear
system for each of its l rows as follows.

8
>>>>><

>>>>>:

s
(l)
i,1 =

n+lP
k=1

�k,1t
(l)
i,k

...
... 8i = 1 . . . l

s
(l)
i,m =

n+lP
k=1

�k,mt
(l)
i,k

Every such system has m equations and m unknowns (corre-
sponding to the elements of the failed columns).

The application of this checksum technique to IMe comes
with a notable advantage:

Lemma IV.1. Given S(l) checksum matrix of the inhibition
table T at level l, the application of the fundamental formula
(Eq. 1) to S(l) produces a matrix S(l�1), which is the
checksum matrix of T (l�1).

In order to prove the correctness of this lemma, we have to
demonstrate that each element of S(l�1), checksum matrix of
T (l�1), can be computed with the fundamental formula from
the elements of �(l) i.e.,

s
(l�1)
i,j =

n+l�1P
k=1

�k,jt
(l�1)
i,k

?
= (s(l)i,j � s

(l)
l,j · t

(l)
i,n+l) · h

(l)
i ,

l = n . . . 1, i = 1 . . . l � 1, j = 1 . . .m.

Proof.

n+l�1P
k=1

�k,jt
(l�1)
i,k =

n+l�1P
k=1

�k,jh
(l)
i (t(l)i,j � t

(l)
l,jt

(l)
i,n+l) =

= h
(l)
i

n+l�1P
k=1

(�k,jt
(l)
i,j) � h

(l)
i t

(l)
i,n+l

n+l�1P
k=1

(�k,jt
(l)
l,j) =

= h
(l)
i (s(l)i,j⇠⇠⇠⇠⇠⇠

��n+l,jt
(l)
i,n+l � t

(l)
i,n+ls

(l)
l,j⇠⇠⇠⇠⇠⇠

+t
(l)
i,n+l�n+l,j⇢

⇢⇢>
1

t
(l)
l,n+l)

We can observe that, since t
(l)
l,n+l is the last entry of the last

column of T (l), its value is always 1 as a consequence of how
T (n) was initially built. This entails that, the second and last
contributions of the sum eliminates each other, and we can
conclude that Lemma IV.1 is demonstrated.

Lemma IV.1 is crucial for fault tolerance because it allows
to calculate the checksums through Eq. (3) only once at the
beginning of the computation (i.e., only for T (n)) and then
the computing nodes hosting the columns of S(l) can operate
on them using the fundamental formula (just as all the others
do on the elements of T). The columns computed in this way
will continue to hold the checksums of T (l) for any following
level. The property stated by Lemma IV.1 is also the reason for
our choice of a column-wise partitioning. In case of row-wise
parallelization indeed, Lemma IV.1 no longer holds.

Furthermore, so far we considered the case of each pro-
cessor hosting a single column, but as already explained in
[1], a convenient checksum computation and assignment can
protect from faults even when multiple columns are hosted
on each node. In general – assuming that all nodes can host
up to the same number of columns – the employment of C

additional nodes to maintain the checksums can guarantee
from up to C simultaneous hard faults located on any of the
N + C processors. In order to clarify the approach, consider
the system:

8
>><

>>:

x1+ x2� x3+ 2x4 = 25
�x1+ x2+ x3+ x4 = 4
2x1+ 2x2� x3� x4 = �7
2x1+ 3x2+ 2x3� 2x4 = �1

(4)

Figure 2: IMe applied to example in (4) with fault resilience
to up to two faults.

Fig. 2 highlights the subsequent steps of IMe as well as the
values assumed by vectors b and x at each level. Imagine to
partition the work such that each processor receives exactly
one column. To guarantee resilience to up to m = 2 faults,
the checksum matrix S(n) is computed with Eq. 3 only once
at the beginning of the execution. Then, at each iteration, S(l)

is computed through the fundamental formula. Now, consider
the case of a fail-stop that causes the loss of columns 4 and 5
of T (3) as highlighted in Fig. 2. Their values can be recovered
by simply solving the three linear systems (one for each row
of T (3)):(

2 = 1
3 + t1,4 + t1,5 +

1
3

9 = 1
3 + 4t1,4 + 5t1,5 + 7 · 1

3(
19
5 = 2

5 + t2,4 + t2,5 + 1 + 1
5

93
5 = 2 · 2

5 + 4t2,4 + 5t2,5 + 6 + 7 · 1
5(

� 3
2 = � 1

2 + t3,4 + t3,5 � 1 + 1

�5 = �3 · 1
2 + 4t3,4 + 5t3,5 � 6 + 7

This example underlines the advantages of IMe when solv-
ing linear systems on hardware subject to frequent hard errors.
Traditional C/R mechanisms save the state of the computation
at specific predefined intervals. When a fail occur, the recovery
system is in charge of performing a rollback, so that the
computation can restart from the latest saved checkpoint. Our
approach comes with the great advantage of being able to
efficiently maintain a continuous checksum of each step of
the computation. The encoded version of the state is not com-
puted at specific predefined intervals, but rather continuously
updated at runtime without any additional communication or
synchronization points between the computing nodes. Hence,
in case of failure no rollback is needed.

A. Complexity of Multiple Faults Tolerant IMe

The proposed approach states that an additional l ⇥ m

matrix, S(l), must be maintained at each level in order to
guarantee the recovery from failures involving at most m

columns.

The initialization of S(n) must be performed through Eq. (3)
(with l = n). Each of the n⇥m elements of S(n) requires the
computation of 2n multiplications and 2n�1 sums. Therefore,
in order to initialize the fault tolerant version of IMe nm(4n�
1) additional flops are required. Then, the fundamental formula
is applied to compute the elements of S(l) for all the remaining
levels, generating 3m

Pn
l=1(l�1) additional flops. Therefore,

adding fault tolerance does not affect the order of magnitude
of the algorithm’s complexity:

flopsIMeMFT=
3
2n

3 + n2

2 (3N + 5m+ 3)� n
2 (m+ 3N)

Similarly, fault tolerance makes the memory occupation in-
crease by just the dimension of S:

moIMeMFT = moIMe +mn = 2n2 + 3nN + 2n+mn

As regards the number and volume of messages, they are
influenced by the fact that there are C additional nodes to
maintain the m additional columns. Depending on the specific
implementation, the parameters m and C might be related to
each other. For example, if we adopt a balanced distribution
of the columns of T along the nodes, we will end up with a
2n/N columns on each node. Any of the C additional nodes
will be able to host the same number of checksum columns.
Therefore in that case, the number m of columns that can be
recovered from failure is m = C ⇥ 2n/N . Nonetheless, in
order to provide a more general, implementation-independent
study of complexity we hereby consider the two parameters
m and C as not related.

Considering that any communication of IMeMFT involves
Q = N +C instead of just N nodes, the number and volume
of exchanged messages can be calculated as follows.

MIMeMFT = (QN +Q� 2)n+Q� 1

VIMeMFT = n2

2 (Q+ 3) + n
2 (1�Q) +mn

where the only significant difference w.r.t. Eq. (2) is in the
volume of messages. Indeed, during initialization, the columns
to be scattered are m more than IMe (thus mn additional
floating point values are sent).

V. EVALUATION

In order to test the proposed approach, we employ
CRESCO5 [17] and Marconi-A2 [18], two HPC systems
funded by ENEA and Cineca consortium, respectively.
CRESCO5 is composed of 640 2.40GHz Intel Xeon cores.
Each node is equipped with 16 cores (2 sockets with 8 cores
each), 64GB RAM and a 40Gb/s InfiniBand QDR interface.
The employed A2 partition of Marconi is composed of 3,600
computing nodes, each of which has a 68-cores Intel Xeon
Phi7250 (KnightLandings) processor at 1.4 GHz (244,800
cores in total), 16 GB MCDRAM and 96 GB DDR4. The
internal Network is a 100Gb/s Intel OmniPath.

One of the most important characteristics of a HPC appli-
cation is its scalability. Nonetheless, when evaluating a fault
tolerant mechanism, another crucial element is the overhead
introduced by such feature as a consequence of, for example,
the extra flops to compute checksums or maintain checkpoints.

We compare IMe with a popular direct method for solving
linear systems: Gauss-Jordan Elimination (GJE). Analogously
to our approach, GJE iteratively operates over the matrix
of coefficients until the exact solution is determined. We
implemented both the methods with the Intel MPI library [19].
We consider input linear systems characterized by artificially
generated matrices of coefficients, and restrict our attention to
dense unstructured invertible matrices of real numbers.

A. Evaluation approach
We separately evaluate the features of our approach by

means of three different kinds of tests.
Strong scalability. We evaluate the performance (in terms

of clock ticks to compute the solution) of IMe and GJE when
solving a linear system of fixed dimension on an increasing
number of computing processor. In order to better understand
the advantages and weaknesses of our approach, we first
compare the performance when no fault tolerant method is
implemented, and then we introduce resilience to an increasing
number of faults.

Overhead evaluation. We compare the computing overhead
introduced by the two fault tolerant methods w.r.t. their non-
resilient implementations when the linear system is solved
on different numbers of computing nodes with resilience to
increasing faults.

Resilience scalability. Since the rate of tolerance to faults
is not fixed for IMeMFT but can be adjusted according to
necessity, it is important to understand the relation between
such rate of resilience and performance. To this end, we
evaluate the computation times to solve the same linear system
on the same number of processors, when we increase the
number of tolerable faults. This allows to understand how the
implementation of different levels of resilience affects the time
to compute the solution.

B. Results
As regards the Strong scalability test, Fig. 3 compares the

performance of the parallel implementations of IMe and GJE
without any checksumming or checkpointing mechanism to
ensure fault tolerance. The evaluation of Fig. 3a refers to
CRESCO5, whereas that of Fig. 3b required an higher number
of computing cores, and was therefore conducted on Marconi-
A2. For both the considered matrix dimensions IMe cannot
outperform GJE. This is indeed expected, as the latter directly
operates on the matrix A of coefficients, whereas IMe works
on the inhibition table T (which is initially twice the size of
the A) and an additional vector h.

The advantages of IMe become visible when a fault tolerant
mechanism is implemented. In this regard, we enhance GJE
with a diskless C/R mechanism: a checksum is computed at
each iteration step and stored in the memory of additional
processors to provide resilience to multiple fail-stops. Fig. 4a
highlights the strong scalability of IMeMFT i.e., the perfor-
mance trend of the same solving task (n = 11520) executed
on an increasing number of computing processors compared
to that of GJE with C/R (“GJE-FT” series in the plot). The

(a) (b)

Figure 3: Performance comparison between IMe and GJE solving a system with n = {11520, 40960} equations when no fault
tolerant method is implemented. y-axes in logarithmic scale.

(a) (b) (c)

Figure 4: Comparison of fault tolerant GJE and IMe on strong scalability (Fig. 4a) and overhead introduced (Fig. 4b) conducted
on CRESCO5. Fig. 4c reports the performance of IMeMFT for increasing resilience to faults. y-axes in logarithmic scale.

graph clearly shows a desirable decrease of the computing time
when the work is subdivided into more nodes . The different
series show the clock ticks required to provide resilience to
different number of hard errors, e.g. series “IMeMFT-1” refers
to single-fault tolerance, “IMeMFT-4” refers to resilience to
up to four faults, etc. In this regard, it is also worth noting that
– has expected – providing resilience to a higher number of
faults inevitably increases the computation time. Nonetheless,
the time to compute the solution with IMeMFT is always
significantly lower than that of GJE-FT.

Concerning the Overhead evaluation, Fig. 4b shows the
increment of computation time introduced by the two fault
tolerant mechanisms w.r.t. their non-fault tolerant implemen-
tations. When solving a system of n = 11520 equations on
an increasing number of processors, GJE with C/R requires
an additional number of clock ticks of almost two orders
of magnitude more then IMeMFT. For the sake of fairness,
we must underline that our implementation of GJE with C/R
is able to recover from a maximum number of fail-stops
equal to the number of processors, whereas IMeMFT-4, for
example, guarantees from a maximum of 4 anywhere-located
hard faults. Nonetheless, the case of 32 computing processors
in Fig. 4b shows how an implementation of IMeMFT able to
recover from a maximum number of fail-stops equal to the
number of processors (the “IMeMFT-32” series) is still able

to keep lower overheads w.r.t. GJE-FT.
Finally, regarding the Resilience scalability, Fig. 4c high-

lights how clock ticks of IMeMFT increase when we augment
the number of tolerable faults. As GJE-FT always guarantees
from the maximum possible number of failures, it is not
considered in this test. The relation between performance and
resilience shows a desirable linear trend. The graph reports
the clock ticks required to solve the same linear system
(n = 11520) when we increase resilience from 0 (no fault-
tolerance) to 32 (i.e., up to 32 fail-stops involving any of
the computing processors). Different series show the trends
for different number of processors employed to compute the
solution. Since for IMeMFT providing resilience to an addi-
tional anywhere-located hard error only requires an additional
processor (which works on the checksum independently from
all the other nodes), the computation time is only slightly
affected by the increasing resilience, thus realizing the graceful
linear trends in figure.

VI. RELATED WORK

Since the linear systems that solve scientific problems
are large-scale, HPC parallelization is often an inevitable
choice. In this regard many solutions have been proposed
to improve the performance of existing approaches [20]–
[22]. In particular, Habgood et al. [21] presented an efficient

framework for solving large-scale linear systems by means
of a combination of Cramer’s rule and Chio’s condensation,
which was later parallelized in [23]. Agullo et al. [22] combine
direct and iterative methods to solve linear systems with sparse
matrices on a parallel computing platform. All these works
focus on the performance enhancements that linear algebra can
obtain through parallelization disregarding the topic of fault
tolerance. Whenever extreme-scale systems are employed, the
large number of hardware components involved causes the
overall system’s MTBF to decrease to just few hours, thus
making the implementation of resilient applications a crucial
task in this framework [24].

C/R has been one of the most popular approaches to fault
tolerance for many years [25]. Some works applied C/R at
system level i.e., through message passing middlewares that
automatically handle the fault without the intervention of the
application [26]–[28]; whereas others intervene at application
level i.e., providing the developer with functions to period-
ically dump the relevant state to stable storage [29]–[32].
Lately, Gholami et al. [33] proposed an interesting strategy to
combine system- and user-level checkpointing, which exploits
the advantages and avoid the shortcoming of both.

Aiming to overcome the C/R bottleneck caused by multiple
accesses to disk, Plank et al. [14] developed the diskless
checkpointing technique, which suggests to store the check-
points in the memory of dedicated processors after an encoding
operation, such as one-dimensional parity, evenodd or Reed-
Solomon coding [15]. Although not able to survive failures
involving the whole systems, diskless checkpointing provides
significant enhancements in several contexts, especially when
paired with techniques to improve its scalability [16], [34].
As also underlined in [35], it might anyway exhibit relevant
overheads for applications modifying large memory regions
between two checkpoints (as for example, when matrix factor-
ization is used to solve linear systems). Taking inspiration from
Plank et al.’s work [14], our approach uses Reed-Solomon
codes to enable the recovery from multiple faults. Nonetheless,
differently from [14], we relay on ABFT [4] to improve
scalability.

Thanks to its capability to avoid periodic checkpointing
and onerous rollbacks, ABFT is one of the most explored
techniques to enhance the performance of fault resilient HPC
applications for linear algebra [24]. In particular, it has been
successfully applied to matrix-matrix multiplication [36], [37],
and eigenvalues computation [38], [39]. Tao et al. [40] and
Langou et al. [41] apply ABFT to linear system solvers in
case of iterative approximated methods, whereas the works
[42], [43] use it to reliably compute the solution through
direct methods when the matrix of coefficients has particular
properties. The “interpolation-restart” approach by Agullo
et al. [44], [45] exploits the properties of the hybrid (i.e.
direct/iterative) sparse solver described in [22] to design two
resilient solutions based on neighbourhood redundancy: one
to recover from single faults and another to survive faults
on neighbour processes. The same fault-tolerant approach has
been later applied to eigensolvers [46]. Differently from these

works, we use ABFT to provide resilience to faults while
we iteratively compute the exact solution of linear systems
through a direct method, without any restriction on the matrix
characteristics.

Several works [5], [47]–[49] adopt ABFT frameworks to
provide resilience to soft errors (otherwise called fail-continue
or SDC [3]), i.e. failures inducing incorrect results without
causing the computation to abort. Indeed, in the context of
linear algebra even a small miscalculation involving a single
coefficient can heavily affect the correctness of the final
result. A seminal work coping with soft errors in large scale
systems is that of Jou et al. [50] which propose a matrix
encoding scheme to correct errors in matrix operations. ABFT
is exploited in FT-ScaLAPACK [49]: a fault tolerant version
of Scalable LAPACK (ScaLAPACK) [12] able to locate and
correct miscalculations in Cholesky, QR, and LU factorizations
in an on-line fashion (i.e., during the computation, thus to
avoid the error accumulation and propagation). In the field
of widely used Krylov subspace iterative methods, Chen [51]
proposes an efficient online technique to detect soft errors,
whereas Jaulmes et al [52] specifically address Detected and
Uncorrected Errors (DUE) by means of very simple algebraic
relations. Another important work in this framework is that of
Du et al. [5], which propose an ABFT technique to handle
single soft errors while solving linear systems with dense
matrix of coefficients. This work has been later improved to
provide resilience to multiple soft errors [6].

Differently from these works, our approach deals with fail-
ures causing the processor to stop: a situation often addressed
as hard error or fail-stop. In this regard, ABFT has been
applied to High Performance Linpack (HPL) [53], Cholesky
[43], QR and LU factorizations [54]. These contributions
address the case of a single hard error causing one processor to
abort its computation, whereas the technique proposed here is
an extension of [1] that is able to deal with multiple errors. The
aforementioned “interpolation-restart” method by Agullo et al.
was also applied to multiple hard errors in the framework of
iterative methods for the solution of sparse linear systems [55].
More related to our work is that by Bouteillers et al. [35] (an
evolution of [54]), which handles multiple fail-stops in matrix
factorization with a hybrid approach: ABFT is used to continu-
ously maintain a checksum during the computation of the right
factor, whereas a novel checkpointing scheme protects the left
factor. Compared to that, our approach requires an inferior
number of additional processors dedicated to resilience and
shows a less complicated checksumming mechanism, which
is completely checkpoint-free.

VII. CONCLUSION AND FUTURE WORK

Over the last decade, fault tolerant HPC has been deeply
explored to boost the performance of large-scale linear algebra
applications and provide resilience to hard and soft errors.

In this work, we show how an existing technique for
solving linear systems, namely IMe, can be parallelized by
means of a message passing framework, and then enhanced

with a simple, yet effective strategy to provide checkpoint-
free ABFT to multiple fail-stops. A theoretical study of
complexity (in terms of flops, memory occupation, number and
volume of exchanged messages) of the proposed approach is
presented. The preliminary performance evaluation conducted
on a medium-scale HPC system shows a graceful scalable
behaviour. Although IMe cannot outperform GJE when no
fault tolerant method is implemented, the tests highlight that
the overhead introduced by error resilience is significantly
reduced in case of IMe. Furthermore, the computation time
increases linearly with the number of faults from which we
provide protection.

For the future, we plan to improve the performance of the
proposed decentralized approach by combining the message
passing with a shared memory model, thus to better exploit
the enhancements offered by modern supercomputers. Then,
an evaluation of IMe performance w.r.t. the de facto standard
ScaLAPACK routines [12], the approach of Du et al. [54] (as
regards single faults), and that of Boutiellers et al. [35] (on
multiple faults) would be interesting.

Furthermore, in this work, we try to reduce the overhead
of maintaining an encoded copy of the computation status.
So, we can say that we mostly focus on the performance of
a fault-free execution. Another interesting study regards what
happens after the failure. In case of IMe, different parallel
implementations of the recovery strategy are possible. In near
future, we will investigate the performance of these solutions
in order to determine which is the best approach to minimize
the overhead of recovery.

In this regard, albeit preliminary empirical studies showed
promising results, also the practical numerical issues involved
in recovering multiple simultaneous fail-stops have to be in-
vestigated. For example, the possibility of overflow, underflow
and cancellation due to round-off errors, need to be studied to
understand to which extent they affect the computed solution
and the reconstruction error. The approaches presented in [56]
and [57] can be partially exploited for the purpose.

As some studies [58], [59] showed the prevalence of soft
errors w.r.t. fail-stops on some architectures, the application
of IMeMFT to provide robustness to such silent corruptions
of the output is another interesting matter of future work.

Ultimately, we will also study the applicability of IMe to
other linear algebra problems such as matrix inversion or,
more ambitiously, eigenvalues computation and singular value
decomposition.

ACKNOWLEDGMENT

The computing resources and the related technical
support used for this work have been provided by
CRESCO/ENEAGRID High Performance Computing infras-
tructure and its staff. CRESCO/ENEAGRID HPC infrastruc-
ture is funded by ENEA, and by Italian and European research
programmes. The authors want to acknowledge also the Cineca
Consortium for the availability of the HPC resources of
Marconi and the technical support.

REFERENCES

[1] M. Artioli, D. Loreti, and A. Ciampolini, “Fault tolerant high perfor-
mance solver for linear equation systems,” in 2019 38th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2019, pp. 113–122.

[2] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–350, Oct 2010.

[3] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt, “The soft error
problem: An architectural perspective,” in 11th International Conference
on High-Performance Computer Architecture. IEEE Computer Society,
2005, pp. 243–247.

[4] K. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Computers, vol. 33, no. 6, pp. 518–
528, 1984.

[5] P. Du, P. Luszczek, and J. J. Dongarra, “High performance dense
linear system solver with soft error resilience,” in 2011 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), Austin, TX, USA,
September 26-30, 2011. IEEE Computer Society, 2011, pp. 272–280.

[6] P. Du, P. Luszczek, and J. Dongarra, “High performance dense linear
system solver with resilience to multiple soft errors,” Procedia Computer
Science, vol. 9, pp. 216 – 225, 2012, proceedings of the International
Conference on Computational Science, ICCS 2012.

[7] F. Ciampolini, “Un metodo di soluzione dei circuiti lineari,”
L’Elettrotecnica, vol. L, no. 10, 1963.

[8] F. Filippetti and M. Artioli, “IMe: 4-term formula method for the
symbolic analysis of linear circuits,” IEEE Trans. on Circuits and
Systems, vol. 51-I, no. 3, pp. 526–538, 2004.

[9] M. Artioli and F. Filippetti, “IME: A General Method To Analyse Linear
Systems And Electric Circuits,” in Software for Electrical Engineering
Analysis and Design V, ser. WIT Transactions on Engineering Sciences.
WIT Press, 2001, vol. 31, pp. 147–162.

[10] ——, “IME: implementations for linear system and electric circuit
analysis,” in Software for Electrical Engineering Analysis and Design
V, ser. WIT Transactions on Engineering Sciences, U. K. Wessex
Institute of Technology, Ed. WIT Press, 2001, vol. 31, pp. 163–172.

[11] M. Artioli, “Symbolic techniques addressed to electric circuit analysis
and diagnosis,” Ph.D. dissertation, Università di Bologna, March 2001.

[12] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1997.

[13] H. Zhou, V. Marjanovic, C. Niethammer, and J. Gracia, “A bandwidth-
saving optimization for MPI broadcast collective operation,” in ICPP
Workshops. IEEE Computer Society, 2015, pp. 111–118.

[14] J. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 10, pp. 972–986, 1998.

[15] J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-Like Systems,” Softw., Pract. Exper., vol. 27, no. 9, pp. 995–1012,
1997.

[16] Z. Chen, “Scalable techniques for fault tolerant high performance com-
puting,” Ph.D. dissertation, Knoxville, TN, USA, 2006, aAI3214395.

[17] (2019, Apr.) CRESCO: Centro computazionale di RicErca sui Sistemi
COmplessi. [Online]. Available: http://www.cresco.enea.it

[18] (2019, Apr.) Marconi, Cineca HPC system. [Online]. Available:
http://www.hpc.cineca.it/hardware/marconi

[19] (2019, Apr.) Intel MPI library. [Online]. Available:
https://software.intel.com/en-us/mpi-library

[20] S. Donfack, J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek,
and I. Yamazaki, “A survey of recent developments in parallel imple-
mentations of gaussian elimination,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 5, pp. 1292–1309, 2015.

[21] K. Habgood and I. Arel, “A condensation-based application of cramers
rule for solving large-scale linear systems,” Journal of Discrete Algo-
rithms, vol. 10, pp. 98 – 109, 2012.

[22] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, “Parallel hi-
erarchical hybrid linear solvers for emerging computing platforms,”
Comptes Rendus Mécanique, vol. 339, no. 2, pp. 96 – 103, 2011, high
Performance Computing.

[23] R. Armistead and F. Li, “Parallel computing of sparse linear systems
using matrix condensation algorithm,” in 2011 IEEE Trondheim Pow-
erTech, June 2011, pp. 1–6.

[24] T. Herault and Y. Robert, Fault-Tolerance Techniques for High-
Performance Computing, 1st ed. Springer Publishing Company, In-
corporated, 2015.

[25] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, 2013.

[26] G. Burns, R. Daoud, and J. Vaigl, “Lam: An open cluster environment
for mpi,” in Proceedings of supercomputing symposium, vol. 94, 1994,
pp. 379–386.

[27] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “A job pause
service under LAM/MPI+BLCR for transparent fault tolerance,” in 2007
IEEE International Parallel and Distributed Processing Symposium,
March 2007, pp. 1–10.

[28] P. V. Cardoso and P. P. Barcelos, “Definition of an architecture for
dynamic and automatic checkpoints on apache spark,” in 37th IEEE
Symposium on Reliable Distributed Systems, SRDS, 2018, pp. 271–272.

[29] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated
application-level checkpointing of mpi programs,” Proceedings of the
ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming - PPoPP ’03, 2003.

[30] G. Bronevetsky, D. J. Marques, K. K. Pingali, R. Rugina, and S. A.
McKee, “Compiler-enhanced incremental checkpointing for openmp
applications,” Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming - PPoPP ’08, 2008.

[31] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “Mpich-v: Toward a scalable fault tolerant mpi for volatile
nodes,” in SC ’02: Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, Nov 2002, pp. 29–29.

[32] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, Sep 2002.

[33] M. Gholami, F. Schintke, and T. Schütt, “Checkpoint scheduling for
shared usage of burst-buffers in supercomputers,” Proceedings of the
47th International Conference on Parallel Processing Companion -
ICPP ’18, 2018.

[34] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and
J. Dongarra, “Fault tolerant high performance computing by a coding
approach,” in Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’05. New
York, NY, USA: ACM, 2005, pp. 213–223.

[35] A. Bouteiller, T. Hérault, G. Bosilca, P. Du, and J. J. Dongarra,
“Algorithm-based fault tolerance for dense matrix factorizations, multi-
ple failures and accuracy,” TOPC, vol. 1, no. 2, pp. 10:1–10:28, 2015.

[36] Z. Chen and J. J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 12, pp.
1628–1641, 2008.

[37] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, and Z. Chen,
“Fault tolerant matrix-matrix multiplication: correcting soft errors on-
line,” in Proceedings of the second workshop on Scalable algorithms
for large-scale systems, ScalA@SC 2011, Seattle, WA, USA, November
14, 2011, V. N. Alexandrov, A. Geist, and J. J. Dongarra, Eds. ACM,
2011, pp. 25–28.

[38] Y. Jia, P. Luszczek, and J. J. Dongarra, “Hessenberg reduction with
transient error resilience on gpu-based hybrid architectures,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May 23-27,
2016. IEEE Computer Society, 2016, pp. 653–662.

[39] A. Schöll, C. Braun, M. A. Kochte, and H. Wunderlich, “Efficient
algorithm-based fault tolerance for sparse matrix operations,” in 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2016, Toulouse, France, June 28 - July 1, 2016. IEEE
Computer Society, 2016, pp. 251–262.

[40] D. Tao, “Fault tolerance for iterative methods in high-performance
computing,” Ph.D. dissertation, UC Riverside, 2018.

[41] J. Langou, Z. Chen, G. Bosilca, and J. J. Dongarra, “Recovery patterns
for iterative methods in a parallel unstable environment,” SIAM J.
Scientific Computing, vol. 30, no. 1, pp. 102–116, 2007.

[42] J. Chen, X. Liang, and Z. Chen, “Online algorithm-based fault tolerance
for cholesky decomposition on heterogeneous systems with gpus,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016. IEEE
Computer Society, 2016, pp. 993–1002.

[43] D. Hakkarinen, P. Wu, and Z. Chen, “Fail-stop failure algorithm-
based fault tolerance for cholesky decomposition,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 5, pp. 1323–1335, 2015.

[44] E. Agullo, L. Giraud, and M. Zounon, “On the resilience of parallel
sparse hybrid solvers,” in 22nd IEEE International Conference on High
Performance Computing, HiPC 2015, Bengaluru, India, December 16-
19, 2015. IEEE Computer Society, 2015, pp. 75–84.

[45] M. Zounon, “On numerical resilience in linear algebra. (conception
d’algorithmes numériques pour la résilience en algèbre linéaire),” Ph.D.
dissertation, University of Bordeaux, France, 2015.

[46] E. Agullo, L. Giraud, P. Salas, and M. Zounon, “Interpolation-restart
strategies for resilient eigensolvers,” SIAM J. Scientific Computing,
vol. 38, no. 5, 2016.

[47] P. Wu, N. DeBardeleben, Q. Guan, S. Blanchard, J. Chen, D. Tao,
X. Liang, K. Ouyang, and Z. Chen, “Silent data corruption resilient two-
sided matrix factorizations,” Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming -
PPoPP ’17, 2017.

[48] E. Coleman, M. Sosonkina, and E. Chow, “Fault tolerant variants of
the fine-grained parallel incomplete lu factorization,” in Proceedings of
the 25th High Performance Computing Symposium, ser. HPC ’17. San
Diego, CA, USA: Society for Computer Simulation International, 2017,
pp. 15:1–15:12.

[49] P. Wu and Z. Chen, “Ft-scalapack: Correcting soft errors on-line for
scalapack cholesky, qr, and lu factorization routines,” in Proceedings of
the 23rd International Symposium on High-performance Parallel and
Distributed Computing, ser. HPDC ’14. New York, NY, USA: ACM,
2014, pp. 49–60.

[50] Jing-Yang Jou and J. A. Abraham, “Fault-tolerant matrix arithmetic and
signal processing on highly concurrent computing structures,” Proceed-
ings of the IEEE, vol. 74, no. 5, pp. 732–741, May 1986.

[51] Z. Chen, “Online-abft: an online algorithm based fault tolerance scheme
for soft error detection in iterative methods,” in ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
’13, Shenzhen, China, February 23-27, 2013, A. Nicolau, X. Shen, S. P.
Amarasinghe, and R. W. Vuduc, Eds. ACM, 2013, pp. 167–176.

[52] L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero,
“Exploiting asynchrony from exact forward recovery for DUE in itera-
tive solvers,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2015,
Austin, TX, USA, November 15-20, 2015, J. Kern and J. S. Vetter, Eds.
ACM, 2015, pp. 53:1–53:12.

[53] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High per-
formance linpack benchmark: A fault tolerant implementation without
checkpointing,” in Proceedings of the International Conference on
Supercomputing, ser. ICS ’11. New York, NY, USA: ACM, 2011,
pp. 162–171.

[54] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-
based fault tolerance for dense matrix factorizations,” in Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’12. New York, NY, USA: ACM,
2012, pp. 225–234.

[55] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon, “Nu-
merical recovery strategies for parallel resilient krylov linear solvers,”
Numerical Lin. Alg. with Applic., vol. 23, no. 5, pp. 888–905, 2016.

[56] Z. Chen and J. J. Dongarra, “Numerically stable real number codes
based on random matrices,” in Computational Science - ICCS 2005,
5th International Conference, Atlanta, GA, USA, May 22-25, 2005,
Proceedings, Part I, ser. Lecture Notes in Computer Science, V. S.
Sunderam, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra, Eds.,
vol. 3514. Springer, 2005, pp. 115–122.

[57] ——, “Condition numbers of gaussian random matrices,” CoRR, vol.
abs/0810.0800, 2008. [Online]. Available: http://arxiv.org/abs/0810.0800

[58] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. Rogers, “A large-scale
study of soft-errors on GPUs in the field,” in 2016 IEEE International
Symposium on High Performance Computer Architecture,HPCA. IEEE
Computer Society, 2016, pp. 519–530.

[59] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for practical
reliability analysis of GPGPU applications,” in 51st Annual IEEE/ACM
International Symposium on Microarchitecture,MICRO. IEEE Com-
puter Society, 2018, pp. 749–761.

