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Abstract: Forecasts of a drastic increase in temperatures in the coming decades are driving the adop-
tion of design strategies and solutions to improve the livability of urban environments. Increasing
attention is being paid to the thermal comfort of open spaces by both designers and researchers.
Nature-based solutions and man-made devices to improve the comfort of outdoor spaces during
summer are spreading, but effective, easy simulation and design support tools for this purpose are
still lacking, as most of the available software such as ENVI-met or RayMan cannot model such
devices. As Physiological Equivalent Temperature (PET) is one of the most relevant and comprehen-
sive indicators of Outdoor Thermal Comfort (OTC), this study aims to investigate PET variations
of different artificial shading systems and propose a simplified methodology for assessing them
through analytical simulations with RayMan software. When modeling the shading elements, the
trick adopted for this purpose is to associate different cloud densities with the shading provided by
the screens, thus overcoming a gap that affects the software. The procedure is digitally tested in a
covered courtyard case study in Bologna (Italy). Diverse options proposed by the designers for textile
screening materials have been compared, showing that these reduce by at least 1 ◦C the PET-gauged
thermal stress. Beyond specific results, the main outcome of this study is the procedure developed
to simulate sun-shading sail effects on OTC by means of RayMan, which can support designers in
planning effective solutions for open space livability in summertime.

Keywords: heat stress; PET; RayMan; courtyard; sun-shading sail

1. Introduction

Due to climate change effects, scientists forecast an increase in global temperature of at
least +1.5 ◦C by 2050 in the lowest emission scenario [1]. In Europe (EU), this will result in
at least a +1.6 ◦C Annual Mean Temperature and +1.9 ◦C Max Temperature of the warmest
month in 2050, with respect to the reference period 1985–2014 [2]. Under all future climate
change scenarios for EU, the number of hot days, as well as the intensity (i.e., duration +63%)
and frequency of heatwaves (+19%), are expected to increase. Consequently, rising mean
temperatures will intensify heat stress in cities, particularly in the Mediterranean region
and Eastern Europe. Outdoor thermal comfort in urban environments will be increasingly
affected with significant implications on livability in cities and citizens’ wellbeing [3].
Therefore, the protection of urban areas from global warming will be one of the key
challenges of the next decades that policy makers and designers should address as soon
and effectively as possible [4,5].

In this regard, a consistent and growing body of literature is focusing on the evaluation
of Outdoor Thermal Comfort (OTC) in diverse outdoor spaces, from public pathways and
squares [6–9], to parks [10] and building courtyards [11–15]. These are all, in fact, collective
or public spaces intended for relations among citizens, where good OTC levels are essential
to encourage or even allow people to use outdoor facilities [16].
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Many authors are thence addressing the OTC of open spaces within the built envi-
ronment [17], either discussing assessment methods and tools [16,18,19] or suggesting
guidelines for improvement [20,21]. To this end, several strategies and design solutions
to mitigate or adapt to the effects of climate change in cities are emerging. Among those
specifically aimed at coping with heatwaves and hygro-thermal discomfort in cities are
cool roofs; cool pavements and road surfaces; green roofs and walls; nature-based solu-
tions (trees and urban vegetation; cooling water-based methods); and alternative shading
devices [22–24].

Accordingly, several tools and software have spread to assess the level of OTC in open
spaces both before and after design, especially focusing on those areas where people are
expected to stay longer, such as squares and building courtyards. Among the most used
tools for this purpose there are RayMan, ENVI-met, Project Vasari, IES.VE, TRNSYS, and
NicheMap [25–29].

1.1. Evaluation of Thermal Comfort in Courtyards

Thermal comfort in courtyards has been extensively addressed in the literature, either
by field monitoring, analytic simulations, or their combination, as reviewed by [30].

Many researchers have tried to investigate the shading effect due to courtyards’ shape,
orientation, and boundary surfaces (e.g., building walls) in improving OTC. Safarzadeh
and Bahadori have evaluated the shade effects of building walls and trees on courtyards in
Teheran, finding that these features alone are not enough to ensure adequate OTC during
peak heat hours [15]. Some scholars have tried to identify which are the best shape and
orientation of courtyards to improve the OTC in hot climates, through the mutual shading
of the walls such as in the hot-arid Iran [31] or hot-humid Malaysia [32,33]. Martinelli and
Matzarakis performed a systematic analysis of courtyard typologies in six Italian cities from
North to South and found that a higher height/width ratio has a stabilizing effect on OTC
in both summer and winter [14]. Forouzandeh reports several studies demonstrating that
vegetation, constructions materials, as well as the land treatment and use also influence
OTC, in addition to the courtyard geometry and orientation [34,35].

The literature on the subject reveals that ENVI-met is one of the most widely used
software for forecasting microclimatic conditions in courtyards, as it returns through maps
both data on air, soil and building surfaces, as well as the thermal comfort expressed
through the Physiological Equivalent Temperature Index (PET), the Universal Thermal
Climatic Index (UTCI), and the Predicted Mean Vote (PVM) with relation to OTC [36].

ENVI-met enables the modeling of the environment to be simulated by means of
an orthogonal Arakawa C-grid, which allows obtaining useful maps for each variable
as an output of the process [36–38]. However, when testing the software to measure
courtyard microclimate, some authors point out its inaccuracy if specific values for single
points or narrow areas are required. Forouzandeh highlights significant errors in the
estimation of large sunny areas too [34]. Furthermore, López-Cabeza et al. argue that
there is a significant deviation from the simulated to the experimental data recorded on
site, implying that the ENVI-met outputs are not accurate enough to estimate the OTC in
nZEB buildings, where even minor variations are relevant [13]. Nevertheless, the software
is generally credited with having acceptable accuracy in simulating the microclimate in
medium-sized courtyards.

Having made a comparison among three different tools (CMRT, ENVI-met, and
Ladybug) used to simulate the OTC of a Chinese courtyard [39], Wu et al. argue that the
first is faster and more reliable in calculating the mean radiant temperature of surfaces, but
no other features are compared.

Beyond possible flaws in the software, all these studies refer to applications on uncov-
ered open spaces. Very few studies address instead the effect of covered courtyards on OTC
levels, although these are increasingly adopted in the design practice as climate change
mitigation devices. Shading is indeed one of the most effective strategies to improve OTC
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in courtyards [11], either due to shadows cast by walls on narrow–medium sized open
spaces, or that provided by artificial covers of the larger ones (e.g., sun-sail shading).

1.2. Covered Open Spaces and Courtyards in the Literature

Technical solutions to screen squares, urban pathways, and courtyards with textiles
providing shading are indeed rapidly diffusing in the design practice. Their expected direct
effects are the reduction in solar irradiance and thus the temperature of urban surfaces.
Vernacular architecture provides several examples to this end, among which veils used in
Seville (Spain) to shade urban streets during summer (known as toldos) are one of the most
famous. However, although the benefits of these solutions on OTC are foreseeable, there
is a paucity of literature about quantifying the effects of textiles screens on urban open
surfaces [36], and especially regarding courtyards.

Garcia-Nevado et al. investigate the cooling potential of textiles (specifically sun-
shading sails) on urban surfaces [36]. By means of on-site measurements taken in a
number of streets in Cordoba (Spain), they show that sun sails can effectively mitigate heat
while requiring low levels of intervention. Similarly do Elnabawi and Hamza for Egypt,
correlating on-site field measurements with the results of a structured questionnaire on
thermal sensation votes [16]. The same has been observed by Cantini et al., who compared
the shading of open spaces provided by different lightweight structures through on-site
measurements using sensors, the solar absorption coefficient of the material, the solar
transmissivity coefficient, and the reflection of solar radiation [38]. Similarly, Medina
et al. tried to analytically evaluate the effect of textile cover of the Expo amphitheater of
Seville, still based on input derived from on-site sensors [40]. Meanwhile, Lee et al. have
measured the effect on the OTC of transparent ETFE cushions screening a courtyard in
Central Europe [41]. The shading effect of adaptive artificial trees on urban surfaces was
also evaluated by Rocio et al., who performed both in situ measurements and ENVI-met
computational fluid dynamics simulations but fail to mention what material the observed
shade screens are composed of [38].

What emerges from this literature is that most of the available studies are based on
on-site measurement or tools that do not allow the modeling of textile materials, while a
simple tool capable of simulating the effects of different artificial shading types on open
spaces will be highly valuable to support designers in the early stages. Indeed, a simple
procedure or tool that is user-friendly and does not require a long calculation time would
allow designers to understand the effects of diverse solutions on OTC, in order to consider
them as viable options to submit to further validation with more precise simulation tools.

This represents a major research gap that deserves further investigation and studies
to help the real-world improvement of OTC in open spaces. Technical solutions such as
canopies and covered courtyards still lack an analytical basis of prediction and calcula-
tion which could instead guide the design towards the best shading solution, including
considerations on the covers’ shape and the properties of the materials used. Unlike what
happens for open courtyards, here, ENVI-met cannot be used for simulation as it does not
allow the modeling of textile shading screens but only of “rigid panels”, such as those used
in the study by Elgheznawy and Eltarabily [42].

2. Research Goals

Trying to fill the lack in design-support tools for simulating the features of screened
courtyards, this paper investigates variations in thermal comfort due to different artificial
shading options (e.g., sun shading sail) and suggests some tricks to assess their effect
through numerical simulations provided by computational software. The overarching
scope is to offer an easier to understand and limited time-consuming methodology to draw
designers closer to this issue and allow them to handle it during the early stages of the
process. A simplified approach to OTC scenarios comparison is thus proposed, whose ease
of implementation can justify the lower accuracy of results compared to more sophisticated
approaches, as other authors did in similar fields [43,44] and beyond.
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In our research, we define a “sun shading sail” as a layer composed of synthetic
membrane, or composite, or textile material, which is used to cover an open space and
to screen it from direct solar radiation with the goal of shadowing the space below. This
definition partially matches that provided for “tarp” by the Oxford English Dictionary, which
however stresses on the waterproof features of the layer as “a sheet used to cover things
with and to keep rain off” that is not relevant to the study (Figure 1). The specific goal of
this article is to understand the potentialities and evaluate the computation methods of the
software suitable for simulating the effects of shading screens deployed over courtyards or
other unbuilt urban spaces, in terms of PET variations they can contribute to attain.
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Figure 1. Example of sun-shading sails to cover part of a courtyard (Credits: G. Mengucci and G. Abbrucciati).

In fact, the commonly adopted software for assessing thermal comfort in those spaces
do not allow modeling tarp or floppy material layers acting as screens. For example, the
numerical discretization scheme used by ENVI-met does not allow the effect of a tarp to be
simulated if not considering it as a solid ceiling.

On this premise and aiming at developing and testing a method to fill that gap,
we opted for RayMan and associated different cloudy sky indexes to various screening
options, according to the transparency of the sail material, as described in the following
paragraphs. Looking beyond these first results, we aimed to stimulate further research and
advancements into the software for modeling this type of shading systems.

A main assumption of this study is to focus on PET as a crucial indicator of OTC. This
is indeed defined by Hoppe [45] as the physiological equivalent temperature at any given
place (outdoors or indoors) and is equivalent to the air temperature at which, in a typical
indoor setting, the heat balance of the human body (work metabolism 80 W of light activity,
added to basic metabolism; heat resistance of clothing 0.9 clo) is maintained with core and
skin temperatures equal to those under the conditions being assessed. In brief, six variables
which characterize the outdoor open space affect the energy balance equation expressed by
the PET index. Two main variables are related with the human body, namely 1. metabolism,
measured in met, and 2. clothes, measured in clo. Four additional variables are related with
the outdoor environment: 3. air temperature, and 4. mean radiant temperature affected by
sun, sky, and floor; 5. relative humidity induced by evapotranspiration, and 6. air velocity.
As for these latest, we decided to focus on mean radiant temperature (Tmr) by acting on
the sky and sun features (shading and cloudiness) as concurrent affecting factors.
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3. Methodology

The methodology, which is supposed to be replicable in other case studies, adopted
the following steps:

1. Modeling the context and case study’s physical features [46,47], implementing the
geometry of the courtyard into the RayMan software.

2. Defining the courtyard floor surface temperature, considering 37 ◦C and 39 ◦C as
two cases useful in assessing the relevance of this variable. These 2 floor surface
temperatures were selected as being representative of common flooring materials in
sunny days, respectively, of grass or pavement with a medium reflectance surface
(average 37 ◦C) and asphalt or other similar pavements with low reflectance (average
39 ◦C). Further details and reasoning behind this can be found in previous studies
such as [48,49].

3. Defining alternative scenarios by associating the shade/cover material features and
RayMan cloudy indexes.

4. Generating the output to verify correlations between cloudy coverage levels, mean radiant
temperature, and PET, as observed on the hottest day of the previous year [45,50].

A possible next step (n. 5) should be a comparison of simulated data with on-site
measurements. Even though, at present, the sun-shading sail of the case study has not been
realized, the methodology aims at evaluating possible variations of PET and Tmrt due to
diverse shading materials through the cloudy index correlation in RayMan. Therefore, on-
site measurement is a further step to verify the accuracy level of the simulation. However,
it does not prevent this procedure from being proven as effective.

Following the methodology that has been devised, Figure 2 shows the flowchart of
the procedure that a potential design team or consultant can implement, while Figure 3
describes graphically the cloudy sky trick. It is assumed that the designer/design team
is responsible for the selection of a set of sun-sail shading materials to be simulated, and
that a final decision about the best material can take advantage of the results from this
procedure, albeit not being limited to these.
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The first step of our methodology consists in modeling the case study with RayMan,
in order to both obtain the sky view factor allowed by physics obstacles and simulate
the possible variations in the sky insulation index. RayMan software is a user-friendly
tool used to evaluate the outdoor microclimate, which is suitable in several applications,
including urban meteorology, the evaluation of health and wellbeing conditions of spaces,
or their adequacy for recreation and tourism purposes. Moreover, it allows the full human
energy balance (e.g., PET) to be output, while requiring a quite simple user interface.
Moreover, we preferred adopting RayMan instead of other software because it allows the
choice of a large range of different sky and cloud indexes. In short, RayMan allows easy
calculation of the influence of the mean radiant temperature (Tmrt) on indices that measure
thermophilicity, such as PET: «The model RayMan (. . .) is well-suited for the calculation of
the radiation fluxes especially within urban structures, because it takes into consideration
various complex horizons» [51].

To calculate Tmrt, RayMan considers the properties and dimensions of the radiating
surface and the sky view factor in a specific point. Thus, it allows a comparison of a day
where measurements have been taken with the calculated results with RayMan, which can
be set by assigning different sky radiation indexes based on the amount of cloud cover. This
feature is crucial for the simulation effectiveness, as «. . . in the field of urban climatology
and human-biometeorology the most important question is, if the object of interest is in
shadow or not».

Since RayMan calculates Tmrt point by point, as mentioned in point 2 of the method-
ology, we decided to simulate two floor surface temperatures, namely 37 ◦C and 39 ◦C,
with the goal of discovering which role the floor Tmrt plays. An assumption was made
that these were enough to show a correlation between surface temperature and the output.
The case study results proved this to be correct.

Regarding point 3, RayMan allows the site location, building geometry, surface tem-
perature, and sky view factor to be set, but it does not include options regarding possible
shading devices. Given that the shading value of the cover cannot be considered, this
strongly perturbs the effectiveness of the simulation outputs. Therefore, an empiric ap-
proach was adopted to consider each material as a ‘cloud cover’ (Otkas in RayMan). In
other words, each technical solution suitable for making screens is considered equivalent
to a sky with different levels of cloud cover, based on the features of the material adopted
for shadowing. The correlation is based on an empirical approach that this study has devel-
oped which assumes clouds to reduce the sky luminance, as described by Suarez-Garcia
et al. [52]. In fact, they defined a metric for this effect expressed by the Otka indicator,
which ranges from 0 Otka for a 100% open sky to 8 Otka for 100% cloudy (the Otka index
has no units).

Table 1 reports the correlation that has been adopted between a material’s solar
transmission features and corresponding cloud cover indexes, while Table 2 shows PET
corresponding values, which allow the screening levels to be correlated with their effects as
perceived by humans. Table 1 includes a list of possible and recurrent materials which might
be selected, but they are not the only ones. The list is thus open to further integrations.
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Table 1. Solar transmission and cloud cover by RayMan.

Scenarios Materials Solar Transmission Cloud Cover (Otka)

1 No cover, without sun-shading sail 100% 0
2 ETFE (ethylene tetrafluoroethylene) 90% 2

3 Generic sun-shading sail not waterproof
(uncoated) 30% 5

4 Tarp-curtain waterproof (PVC-coated) * 7% 7

* Coating in PVC to make the membrane waterproof.

Table 2. Physiological equivalent temperature (by Matzarakis [53]).

PET (◦C) Thermal Perception Grade of Physical Stress

>41 Very hot Extreme heat stress
35–41 Hot Strong heat stress
29–35 Warm Moderate heat stress
23–29 Slightly warm Slight heat stress
18–23 Comfortable No thermal stress
13–18 Slightly cool Slight cold stress
8–13 Cool Moderate cold stress
4–8 Cold Strong cold stress
<4 Very cold Extreme cold stress

Point n. 4 of the methodology consists in running the simulations and comparing the
results obtained for each scenario, as described in the following paragraph as clarification.

4. Case Study

The case study is located in Bologna, Italy (Figure 4a), in the middle of the Po Valley.
According to the Köppen–Geiger classification [54], this area can be classified as having a
humid subtropical climate (Cfa) Mediterranean climate, i.e., a humid climate with a short
dry summer and heavy precipitation occurring during mild winters.
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The city of Bologna is a forerunner in sustainability and resilience in many fields,
from climate change adaptation to the social empowerment of its citizens. Among the
most important initiatives to this end, Bologna is a member of the Covenant of Mayors, is
included in the 100 Climate-Neutral Cities’ list, and is involved in C40 activities such as the
Reinventing Cities program.

The case study, in particular, is located within the “Bolognina” district, an historic
working-class neighborhood that still has one of the highest rates of social housing in the
city. It comes to a high-density urban fabric with few green spaces and large impermeable
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surfaces. Since the neighborhood was extensively bombed during World War II, most of the
buildings were rebuilt soon after, but few or no retrofitting actions were implemented in
the following decades due to the chronic lack of resources of social housing agencies. This
has pushed technical and functional obsolescence to critical levels, also due to the intensive
use and high occupation rates of dwellings. The area has critical environmental conditions,
especially for urban heatwaves and the low energy performance of buildings. In turn, these
exacerbate social (fragile users) and economic issues (energy poverty, housing affordability).
For these reasons, the Municipality has started a huge and ambitious regeneration plan for
the entire area aimed at significantly improving livability within and the attractiveness of
the district. The new town hall was also built here.

The “Ex-fuochisti” building compound that we have chosen as case study is part of
that strategy, as the Municipality and Social Housing Agency (which manages the housing
property) planned to convert this former warehouse into a new museum of social housing
in Bologna, with the aim of revitalizing the area. The complex consists of a rectangular
courtyard (20 m × 30 m) enclosed by 15 m tall buildings (Figure 4b). Currently, the
courtyard is paved with asphalt and is informally used as a car park. The surrounding
buildings are composed of bricks and partly covered by plaster whose finishing colors vary
from light yellow to orange. Red-brownish clay roof tiles complete the envelope.

We produced a simulation of the current courtyard’s microclimatic conditions in
summer, as performed with the ENVI-met and RayMan software. We adopted temperature
surface by ENVI-met output in two cases: with asphalt surface (current state) and grass
(hypothesis). The RayMan input and boundary data are reported in Figure 5.
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All simulations were carried out considering the situation of 15 August 2021 at 13:00,
which was the hottest day of the previous year. The meteorological data used for the
simulation are retrieved from Emilia-Romagna Regional Environmental Protection Agency
(ARPAER [55]).

The overall redevelopment strategy established by the Municipality of Bologna for
this area envisages replacing as much as possible the paved and dark surfaces with green
surfaces (grass, shrubs, trees). However, given that the specific function of this courtyard
will be a public square in front of a museum, an optimal balance must be found between
permeable and impermeable surfaces. This is because a completely green area could
hamper the usability of that space as a public square.

For this reason, in the early design stage, the involved architects proposed to deploy a
sun-shading sail covering the courtyard, but, before developing the solution, they required
a simulation of its effect in terms of achievable OTC levels. To this end, four scenarios with
different shading materials were simulated through RayMan, as synthetized graphically
in Figure 6.
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The project envisaged a shading cover over the entire square, made with triangular
modules of textile material supported by a network of steel cables. The steel wires are
hooked to the pillars on the western edge of the square and to the facade of the Ex-fuochisti
building on the east side.

5. Results

The outputs of the performed simulation included Tmrt (◦C) and PET (◦C) for each
scenario, as reported in Table 3, and Figures 7 and 8.

Table 3. Results from RayMan simulation.

Surface
Temperature Scenarios Cloud Cover

(Otka) Tmrt Gap Compared
to Scenario 1 PET Gap Compared

to Scenario 1

37 ◦C

1 0 48.7 36.1
2 2 47.1 −1.6 ◦C (−3.3%) 35.2 −0.9 ◦C (−2.5%)
3 5 45.6 −3.1 ◦C (−6.4%) 34.3 −1.8 ◦C (−5.0%)
4 7 45.5 −3.2 ◦C (−6.6%) 34.2 −1.9 ◦C (−5.3%)

39 ◦C

1 0 49.5 36.7
2 2 48.0 −1.5 ◦C (−3.0%) 35.7 −1.0 ◦C (−2.7%)
3 5 46.5 −3.0 ◦C (−6.1%) 34.8 −1.9 ◦C (−5.2%)
4 7 46.3 −3.2 ◦C (−6.5%) 34.7 −2.0 ◦C (−4.5%)
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Tmrt and PET levels decreased in each scenario, along with the decrease in the trans-
parency of the shading material tested. The sun-shading sail improved Tmrt by around 3%
and PET by 2.5% for the scenario n.2, while PVC-coated tarp (n.4) enabled a reduction in
these values of 4.5% and 6.6%, respectively. Since these variations happened regardless
of the floor surface temperature, we can argue that the floor surface temperature did not
significantly affect the perceived comfort in this case. Thus, although the shading did
not significantly change the outdoor microclimate, it allowed at least a 1 ◦C reduction in
thermal stress associated with PET, moving it down from “Hot” to “Warm”.

The results of the study we carried out showed a main role of mean radiant tempera-
ture in order to reduce PET. This is because of the energy balance equation of the human
body: clouds or sun-shading reduce solar thermal radiation, which triggers a decrease in
PET and correlated thermal sensation by a logarithmic trend. Moreover, the results showed
a correlation between mean radiant temperature and floor surface temperature. The floor
surface temperature did not play a specific role in modifying the improvement of PET
values by shading scenarios. As Figure 8 shows, floor surface temperature did not influence
PET trends.

It is important to point out that the human body can perceive even minor temperature
variations, such as 0.5 ◦C [56], so the effects of the presented solutions on OTC are relevant.

6. Discussion and Limitations

When tested on the Bologna case study, the methodology provided analytical data
allowing the estimation of sun-shading sail effects on OTC, thus proving that the designer(s)
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is capable of easily understanding the differences among the alternative design options.
The stratagem of a cloudy sky was used to simulate the impact of different materials on
PET and Tmrt, suggesting that this should be a way to evaluate the sky under sun-shading
sails and thus filling a gap in this tool.

Sun-shading sails are a useful type of street/urban furniture technology to improve
local thermal comfort, which we believe should be included in software simulations. But
this is not the only one, since there are several kinds of artificial furniture or nature-
based solutions [57–61] at the urban scale (e.g., floor fountains, beach umbrellas, benches,
raingardens, etc.), which are difficult to model as inputs in outdoor microclimate simulation
software. This might depend on the initial purpose of these software, which are often used
to evaluate case studies at the urban level (e.g., urban heat island). However, these have the
potential to simulate several architectural and urban scenarios at the human scale if small
improvements are made. Outdoor thermal comfort evaluation needs a tool to simulate the
effects at the architectural scale, such as a square, a park, or a street where urban furniture
plays a key role in increasing or decreasing the presence of people in the space. A recent
research project indeed shows a strong correlation between outdoor thermal comfort and
the willingness of people to make use of public space [62].

In this study, the use of cloud coverage and the Otka indicator is an escamotage—a
trick to “misleading” RayMan, in order to consider sun-shading covering. However, the
results seem promising in correlating different materials with OTC levels, which is why we
recommend integrating them in future research studies and software development.

The authors are aware that the results of the proposed methodology for simulating
the effect of sun-shading sails on courtyards might benefit from a comparison with on-site
monitoring, as well as that one case study alone is not statistically valid; but as mentioned,
this was not the primary scope of the article, which was rather to pave the way for the
development of other research projects on the simulation of sun-shading devices. Moreover,
validation with real cases is not such a common practice in the field: in fact, among the large
number of studies on the outdoor microclimate and urban heat island, only a few articles
concern software validation with on-site measurement or from satellite or thermography
by drone [63].

This study represents a first attempt to evaluate such a complex issue—which is not
widely investigated and may instead have significant impacts on the understanding of
outdoor spaces quality—by adopting the software RayMan. This software is already used in
different fields for similar purposes and offers reliable results [51]. As the overarching goal
is to raise the awareness of designers around such a complex but relevant topic for future
built environments, the proposal is to bring them closer to the issue by means of a simple
software/procedure, thus increasing their understanding of the effects of different materials.
This may imply that some OTC variables are overlooked, or that the precision of results is
not primarily considered. Other software, such as TRNSYS, would certainly provide more
precise data and simulated measurements, but it would require skilled professionals to use
the application and would take time to calculate the different sun-shading scenarios.

The main outcome of this study does not lie in the case study results themselves but in
the proposed workflow that has been devised to evaluate the effect of diverse sun-shading
materials on PET.

Although PET does not comprehensively describe OTC variations, it is widely con-
sidered the most representative and intuitive parameter for describing the scope of the
investigation as reported in the article. Similarly, it has been noted that the diffused compo-
nent of solar radiation is not considered at present, while it could have an impact. However,
the reference outdoor microclimate physics model (e.g., Oke research [64,65]) does not yet
include it, and this can be assumed as neglectable to the goal of the study. Nonetheless,
further variables or indicators might be included in future stages of the research to expand
and complete the study.
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7. Conclusions

This article presented a simplified approach to evaluating OTC variations due to
diverse sun-shading sail materials in a public courtyard.

Despite the mentioned limitations and boundaries, the proposed main goal of this
study is to start a debate or prompt research on these specific issues where consistent gaps
have been detected. Therefore, the strength of the study lies in providing designers with
tools and procedures that are useful to support the decision-making process in its earlier
stages, regarding OTC improvement through the shading of open spaces. As such, it is
important to develop effective tools ensuring outdoor public spaces that are better designed
and more usable by people. Different from currently available models and equations to
evaluate the urban microclimate [66–69], future studies should increasingly focus on how
to feature devices that are sprawling in design practice. In general, software modeling
tools lack a comprehensive database, including the large variety of technical solutions
currently adopted for equipping urban spaces, such as benches, rain gardens, canopies
and tents, umbrellas, gazebos, and other “light” elements. Also, thanks to evaporative
cooling [30,65,70–73], green infrastructures can play a role in covered public spaces, which
is why it could be interesting to analyze their effects in combination with artificial materials;
however, this would require a more detailed approach that was not within the scope of
the presented study. In other words, in addition to the many studies addressing the urban
context and urban heat islands at a large scale, design solutions at the architectural scale
deserve to be further investigated.

Despite focusing on the early stages and considering only a few OTC indexes, this
study attempted to initiate the process by proposing a correlation between common shad-
ing materials and Otka used by RayMan. On this basis, a simplified, easy to replicate
approach for the simulation has been devised and can be applied by skilled design teams
themselves. Therefore, we are confident that soon, statistical validity and on-site measure-
ment will also be available to make the procedure sound and diffused, or at least, other
researchers will be interested and further develop the topic of sun-sail shading simulations
for OTC improvement.
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