
   

 

 

 

Volume 41, Issue 2
 

Platform competition and willingness to pay in a vertical differentiated two-
sided market

 

Francesco Angelini 
Department of Statistical Science "Paolo Fortunati", University of Bologna

Corrado Benassi 
Dipartimento di Scienze Economiche, Alma Mater

Studiorum Università di Bologna

Massimiliano Castellani 
Department of Statistical Science "Paolo Fortunati",

University of Bologna

Abstract
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1 Introduction

In two-sided markets with cross-network externalities, the products’ perceived quality may
depend on the number of users: accordingly, given heterogeneity in the willingness to pay
(WTP) for network sizes, price competition in two-sided markets can be studied with models
of vertical differentiation. Starting from the works on two-sided markets by Armstrong (2006)
and Armstrong and Wright (2007), several scholars modeled platforms competition as based on
differentiation or consumers’ taste for variety (Hagiu, 2009; Reisinger, 2012; Lee, 2014; Zennyo,
2016; Roger, 2017). A related stream of literature focused on product differentiation and network
externalities in one-sided markets (Lambertini and Orsini, 2002, 2005, 2006).1

In this perspective, Gabszewicz and Wauthy (2014), assuming that the WTP of both sides of
the market is uniformly distributed, show that the qualities of the two products are endogenous
to the price decisions of the platforms, and the size of the network endogenously determines the
WTP of the agents to register with one of the (two) platforms.

In Gabszewicz and Wauthy (2014), users from both sides met by platforms are character-
ized by heterogenous preferences, which interacts with the size of network externalities, and
single-home, namely each of them only trades on one of the two platforms. Following the
product differentiation literature (Gabszewicz and Thisse, 1979), the authors use the uniform-
distribution model of vertical differentiation: their framework is particularly suitable to analyse
the firms’ strategies in two-sided markets such as those of credit cards (Rysman, 2007), where
consumers meet merchants in the credit card platform, of smartphone’s apps (Gans, 2012) and
videogames, where programmers meet users and players, of managed care plans, where patients
meet health providers, and of classified advertising (Ambrus and Argenziano, 2009).2 However,
the uniform-distribution assumption downplays the role of the WTP distribution across agents,
even though the shape of such distribution can in principle affect the firms’ equilibrium choices
and may in fact have a bearing on the very existence of equilibrium. Indeed, concerns for ana-
lytical generality as well as substantive questions about the role of inequality can be addressed
within vertical differentiation models precisely when a non uniform distribution of the WTP is
assumed (Benassi et al., 2006, 2016, 2019).3

In this paper we generalize the model of Gabszewicz and Wauthy (2014) to the case of any
logconcave distribution of the WTP, to enquiry about equilibria in a two-sided market in a
more general distributional setup: this should in principle enable one to assess how distribu-
tional assumptions affect equilibrium outcomes, as well as to highlight the role of the implicit
assumption that heterogeneity on both sides of the market is described by the same distribution
of the WTP. In particular, the latter turns out to be a sensitive issue, as our results cast some
doubt on equilibrium existence when the two distributions differ.

The remainder of the paper is organised as follows. In Section 2, we introduce the model; in
Section 3 the existence of an equilibrium under logconcavity is proved; in Section 4 we discuss
the results. Section 5 concludes the paper.

2 The model

As in Gabszewicz and Wauthy (2014), there are two platforms and two groups of single-homing
users, one for each side of the market. Platforms, denoted by i, sell products i = 1, 2 to both
users, who respectively pay price pi and price πi to register to platform i. Each user can register

1In contrast to this literature where network size is the only vertical dimension, Baake and Boom (2001)
assume that consumers’ WTP increases in both the product’s quality and the size of its network.

2As suggested by Jeitschko and Tremblay (2020), another case in which users of both sides of the market
are single-homing was the early home-computer market, where the two platforms were DOS-based machines and
Macintosh machines, and where softwares were available for either one or the other platform.

3In general, Yurko (2011) shows that income inequality has important implications for the degree of product
differentiation.



with only one platform, following a one-to-one matching process. The users’ utilities are given
by

Uv
i = βxi − pi

Ux
i = σvi − πi

where the marginal WTP for i = 1, 2 is respectively β and σ, while xi and vi denote the numbers
of users registered with platform i, as measures of cross-network externalities. Two types of
users are accordingly identified by their marginal WTP β and σ. These are distributed according
to the density functions f (β) and g (σ); we normalize the numbers of both types of users to one,
so that the implied cumulative distributions are F (β) : [0, 1] → [0, 1] and G(σ) : [0, 1] → [0, 1].

Platforms choose prices pi and πi, taking the users’ expectations xei and vei as given, such
that xe

2
> xe

1
and ve

2
> ve

1
.4 Therefore, the marginal users are identified by

β1 =
p1
xe
1

, β2 =
p2 − p1
xe
2
− xe

1

(1)

σ1 =
π1
ve
1

, σ2 =
π2 − π1
ve
2
− ve

1

(2)

and the demand functions are defined as

Dv
1 = F (β2)− F (β1) , D

v
2 = 1− F (β2)

Dx
1 = G (σ2)−G (σ1) , D

x
2 = 1−G (σ2)

Finally, by definition, the platform payoffs are

Π1 = p1D
v
1 + π1D

x
1 = p1 [F (β2)− F (β1)] + π1 [G (σ2)−G (σ1)]

Π2 = p2D
v
2 + π2D

x
2 = p2 [1− F (β2)] + π2 [1−G (σ2)]

Given this general framework, our key assumption about the distributions of the users’ WTP
is logconcavity:5

Assumption 1 The distributions F (β) and G(σ) are logconcave.

Letting primes denote derivatives, this can be cast in a more convenient form by means of
the following elasticities:

θf (β) = 1 +
βf ′ (β)

f (β)
, θg (σ) = 1 +

σg′ (σ)

g (σ)

and

ηF (β) =
βf (β)

1− F (β)
, ηG (σ) =

σg (σ)

1−G (σ)

The former are the Esteban elasticities of the relevant densities (Esteban, 1986), while the latter
are the (positive) elasticities of 1−F (β) and 1−G (σ). It is then easy to prove that logconcavity
of any continuous distribution J = F,G (j = f, g) amounts to the constraint

ηJ (·) + θj (·) > 1

4As in Gabszewicz and Wauthy (2014), we do not explicitly take into consideration the case where ve1 = ve2
since this would imply zero profit in equilibrium. Moreover, since ve1 > 0, it is impossible that a firm is excluded
from the market, that is, the two firms both enjoy a positive demand.

5As is well known, this is a usual assumption in product differentiation models, following Caplin and Nalebuff
(1991).



which in turn implies that ηJ (·) in an increasing function (An, 1998).6

3 Price equilibrium

In this section, we find a Nash equilibrium in the two-sided market duopoly as the solution
of the price game. We adopt the definition of equilibrium given by Gabszewicz and Wauthy
(2014):

Definition 1 A (pure-strategy) Nash Equilibrium is defined by two quadruples (p∗,x∗), with
p∗ = {p∗i , π

∗

i } and x∗ = (v∗i , x
∗

i ), i = 1, 2, such that: (i) given expectations x∗, (p∗i , π
∗

i ) is a best
reply against (p∗j , π

∗

j ), i 6= j, and vice-versa; (ii) Dv
i (p

∗

1
, p∗

2
) = x∗i ; D

x
i (π

∗

1
, π∗

2
) = v∗i , i = 1, 2.

In order to establish the existence of such an equilibrium, we start by considering the price
setting problem of platform i = 2. Given the price pair (p1, π1) set by the firm 1, as well as
expectations (vei , x

e
i ), v

e
1
< ve

2
, xe

1
< xe

2
, p2 and π2 are charged by platform 2 to maximize its

profit:

∂Π2

∂p2
= 1− F (β2)− p2f (β2)

∂β2
∂p2

= 0

∂Π2

∂π2
= 1−G (σ2)− π2g (σ2)

∂σ2
∂π2

= 0

These first order conditions can be cast in elasticity terms as7

ηF (β2)ε
β
2,2 = 1 (3)

ηG(σ2)ε
σ
2,2 = 1 (4)

where εki,j , (k = β, σ), denotes the (relevant) price elasticity of the (relevant) marginal user.8 It
is easily seen that

εβ
1,2 = −

p1
p2 − p1

< 0, εβ
2,2 =

p2
p2 − p1

> 1

εσ1,2 = −
π1

π2 − π1
< 0, εσ2,2 =

π2
π2 − π1

> 1

such that the sum of the elasticities of the marginal users are (standardly) constant and equal
to one: εk

1,2 + εk
2,2 = 1, while εk

1,1 = 1, k = β, σ.
We now turn to platform 1, which maximizes its profit with respect to its prices p1 and π1,

for any given price pair (p2, π2):

∂Π1

∂p1
= F (β2)− F (β1) + p1

[

f (β2)
∂β2
∂p1

− f (β1)
∂β1
∂p1

]

= 0

∂Π1

∂π1
= G (σ2)−G (σ1) + π1

[

g (σ2)
∂σ2
∂π1

− g (σ1)
∂σ1
∂π1

]

= 0

6For a similar approach to modeling distributions of the WTP in the framework of vertical differentiation with
uncovered markets, see Benassi et al. (2016, 2019).

7Second order conditions check is reported in the Appendix.
8For example, εβi,j = (∂βj/∂pi) (pi/βj), ε

σ
i,j = (∂σj/∂πi) (πi/σj).



Again, these can be cast in elasticity terms

1− F (β2)

1− F (β1)
=

1− ηF (β1)

1− ηF (β2) ε
β
1,2

(5)

1−G (σ2)

1−G (σ1)
=

1− ηG (σ1)

1− ηG (σ2) εσ1,2
(6)

Accordingly, in a price equilibrium it has to be the case that (3), (4), (5), and (6) hold. This,
combined with the requirement that expectations are fulfilled, i.e.

xe1 = F (β2)− F (β1) , x
e
2 = 1− F (β2) (7)

ve1 = G (σ2)−G (σ1) , v
e
2 = 1−G (σ2) (8)

allows us to prove the following

Proposition 1 Suppose the distribution of both types β and σ is the same, i.e. F (·) = G (·).
Then under Assumption 1, there exists a price equilibrium (p∗,x∗).

Proof. See Appendix.

It can be seen that Proposition 1 leads to equilibrium prices

(p∗1, p
∗

2) =

(

1,
1

1− ηF (β∗

2
)

)

[F (β∗

2)− F (β∗

1)]β
∗

1 (9)

(π∗

1, π
∗

2) =

(

1,
1

1− ηG(σ∗

2
)

)

[G (σ∗

2)−G (σ∗

1)]σ
∗

1 (10)

where (β∗

1
, β∗

2
) = β∗ and (σ∗

1
, σ∗

2
) = σ∗, are such that (7) and (8) hold. One obvious corollary is

that when the two distributions of the WTP are uniform, one recovers the results by Gabszewicz
and Wauthy (2014), that is β∗ = σ∗ =

(

1

7
, 3
7

)

.

4 Discussion

The fairly broad distributional setup underpinning Proposition 1 raises two main questions.
The first is, how different distributional shocks affect equilibrium – i.e., what happens to prices,
market shares and profits if the distribution of WTP is altered by some exogenous shock; the
second concerns our assumption that the WTP is identically distributed on the two sides of the
market.

As to distributional shocks, the framework provided by equation (9) and (10), though not
easily amenable to comparative statics propositions, does allow to perform numerical simulations
which may shed some light on this issue. Here we limit ourselves to considering two simple
cases vis à vis the standard uniform distribution: (a) a symmetric constant-mean change in
dispersion; and (b) a first order (stochastic dominance) shifts, which obviously implies higher
average WTP.9

Case (a) can be captured by a simple generalization of the uniform distribution such that
F (β) = (2β − 1 + 2ρ) /4ρ: ρ ∈ (0, 1/2] is a dispersion parameter, which in fact ranks distri-
butions by second order stochastic dominance.10 It is easily seen that in this example prices,
quantities and profits all decrease with ρ;11 more generally, lower concentration of the WTP

9It can be checked that equilibrium is unique in all examples discussed in this section.
10Clearly, ρ = 1/2 yields the standard uniform distribution over [0, 1]. The mean is obviously 1/2 and the

variance of this distribution is ρ2/3.
11Let c = c (ρ) = (2ρ+ 1) /ρ, a decreasing function such that c > 4 for ρ ∈ (0, 1/2]. Then x1 = c/14 and x2 =

c/7; p1 = π1 = c2/ [196(2− c)] and p2 = π2 = c2/ [49(c− 2)]; Π1 = c3/ [1372 (c− 2)], Π2 = 2c3/ [343 (c− 2)].



entails a shrinking market, as the effects of the density falling in the middle of the support is not
compensated by higher density near the outer boundaries – a mean-preserving higher spread of a
symmetric distribution has asymmetric effects on served demand.12 In this particular instance,
it is also the case that higher dispersion narrows the difference between the market shares of the
two platforms, so that in this respect the uniform distribution case examined by Gabszewicz
and Wauthy (2014) identifies (within this framework) minimum heterogeneity.

We take up case (b) by turning to a numerical simulation: we compare the uniform dis-
tribution with two simple triangular distributions: the former is dominated by, and the latter
dominates, the uniform distribution.13 Table I gives a summary picture.

Table I: First Order Stochastic Dominance
triangular F1 uniform F triangular F2

average WTP 1/3 1/2 2/3
x1 = v1 0.302 0.286 0.236
x2 = v2 0.541 0.571 0.709
p1 = π1 0.025 0.041 0.055
p2 = π2 0.088 0.163 0.310

Π1 0.015 0.023 0.026
Π2 0.095 0.187 0.440

While clearly limited in scope, this exercise seems to identify a general pattern: unsur-
prisingly, higher average WTP is unambiguously associated with higher values of all relevant
variables but one: the exception is the decreasing value of x1 – the first order dominance shift
associates higher mean with a lower density at low values of the WTP. A noteworthy implication
is that this appears to drive a sort of polarization, as the market shares of the two platform
diverge in size.

We finally turn to a problem which seems to us quite relevant in the analysis of two-sides
markets: indeed, at a theoretical level the natural question presents itself as to what extent
the existence result of Proposition 1 carries over to the case where G and F are different
distributions. The following provides some perspective on this issue:

Remark 1 Let F : [0, 1] → [0, 1] be a (continuously differentiable) logconcave distribution, and
let t : [0, 1] → [0, 1] be an increasing concave transformation, such that G : [0, 1] → [0, 1],
G (σ) = F (t (σ)), is also logconcave. If β∗ = (β∗

1
, β∗

2
) and σ∗ = (σ∗

1
, σ∗

2
) are equilibrium values

such that β∗

i = t (σ∗

i ), i = 1, 2, then t (σ) = σ.

Proof. See Appendix.

Though admittedly confined to the arguably specific case of concave transformations, this
can be looked at as a sort of baseline scenario, as such transformations preserve logconcavity
(Bagnoli and Bergstrom, 2005). Overall, the perspective one gains from Remark 1 is essentially
negative: the existence of an equilibrium in this framework is inconsistent with t being strictly
concave – indeed, it is easily seen that the logic of the proof rules out existence also in the
case where t is (strictly) convex: even disregarding logconcavity, a necessary condition for
existence is that the second derivative of t changes sign over [0, 1]. All this points to the fact
that, while assuming that the WTP is identically distributed on both sides of the market may

12Indeed, this is generally the case in vertical differentiated markets, as high-WTP customers are served anyway,
while the extent of market access for low-WTP depends on how the distributive shock operates in specific cases
(Benassi et al., 2019).

13These two triangular distribution, F1 (β) = 2β−β2 and F2 (β) = β2, are one the ‘mirror image’ of the other.
Their means are respectively µ1 = 1/3 < µU = 1/2 < µ2 = 2/3, with obvious notation. The same applies to
G = F .



seem unduly restrictive, the existence of equilibrium is likely to constrain severely the degree
of heterogeneity between the distributions of users. In other words, some degree of consistency
between these distributions seems to be required for equilibrium to exist. At equilibrium each
firm is setting its prices in such a way that the marginal revenue is the same on the sellers’ and
the buyers’ side, marginal revenue itself depending crucially on both the set prices and the shape
of the two distributions: i.e., profit maximization (which with zero variable costs delivers unit
demand elasticity at equilibrium) constrains the relationship between ε (the way the position
of the marginal consumer is affected by a marginal change in prices) and η (the way that very
change in turn affects the willingness to pay). If the two distributions are the same, marginal
changes in (p1, π1) have the same effect on profits as marginal changes in (p2, π2): equilibrium
existence ensures that along this dimension the two firms’ choices are consistent, and indeed
prices, profits and demand are the same for both firms. However, if the two distributions differ,
the combination of ε and η consistent with one firm making positive profits does not necessarily
entail positive profits for the other firm.

5 Conclusion

Two-sided markets and platforms are playing an ever increasing role in the economy; they are
characterized by network externalities between the two sides of the market and, potentially, by
vertical differentiation of the products provided by the platforms. Analysing the effect of these
externalities on platform competition in vertical differentiated two-sided markets needs taking
into account the heterogeneity of the users on both sides, which up to now has been mainly
addressed by assuming a uniform distribution of the WTP of agents.

In our paper we generalize the model by Gabszewicz and Wauthy (2014), which studies the
price competition between two platforms in a two-sided market with uniform distribution of
WTP of single-homing agents on both sides, to consider the case of any logconcave distribution
of WTP.14 Logconcavity of the income (or WTP) distribution may in fact affect the equilibrium
conditions with respect to the uniform case, or influence its very existence (Benassi et al., 2006,
2016, 2019).

We prove the existence of an equilibrium when both sides of the market have the same
logconcave distribution of WTP, and we find that when the distribution is not the same on
both sides this equilibrium may not exist. Moreover, by way of a suitable example we study
how a symmetric constant-mean change in dispersion and a first order stochastic dominance
shift of the distribution affect equilibrium prices and profits: lower concentration of the WTP
shrinks the market and narrows the difference between the market shares of the two platforms,
while a higher mean WTP is associated with a lower density at low values of the WTP.

Though admittedly limited in scope, these examples show that the standard assumption of
a uniform distribution of the WTP is not neutral; on the other hand, our general results casts
some doubt on the robustness of the (often) implicit assumption that the distribution of WTP
on both sides of the market is the same, which should be relevant to the assessment of the
results in platform markets analyses.

14As a further extension of the model by Gabszewicz and Wauthy (2014) where users are assumed to join
only one platform (single-homing), the results could be checked when users join more than one platform (multi-
homing). We thank an anonymous reviewer for this suggestion.
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