
Logical Methods in Computer Science

Volume 19, Issue 4, 2023, pp. 29:1–29:33

https://lmcs.episciences.org/

Submitted Nov. 01, 2022

Published Dec. 18, 2023

SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION

ROBERTO CASADEI a, STEFANO MARIANI b, DANILO PIANINI a,
MIRKO VIROLI a, AND FRANCO ZAMBONELLI b

a Alma Mater Studiorum—Università di Bologna, Via dell’Università, 50, Cesena (FC), Italy
e-mail address: roby.casadei@unibo.it, danilo.pianini@unibo.it, mirko.viroli@unibo.it

b Università di Modena e Reggio Emilia, Via Giovanni Amendola, 2, Reggio Emilia (RE), Italy
e-mail address: stefano.mariani@unimore.it, franco.zambonelli@unimore.it

Abstract. A recurrent task in coordinated systems is managing (estimating, predicting,
or controlling) signals that vary in space, such as distributed sensed data or computation
outcomes. Especially in large-scale settings, the problem can be addressed through decen-
tralised and situated computing systems: nodes can locally sense, process, and act upon
signals, and coordinate with neighbours to implement collective strategies. Accordingly,
in this work we devise distributed coordination strategies for the estimation of a spatial
phenomenon through collaborative adaptive sampling. Our design is based on the idea
of dynamically partitioning space into regions that compete and grow/shrink to provide
accurate aggregate sampling. Such regions hence define a sort of virtualised space that is
“fluid”, since its structure adapts in response to pressure forces exerted by the underlying
phenomenon. We provide an adaptive sampling algorithm in the field-based coordination
framework, and prove it is self-stabilising and locally optimal. Finally, we verify by simula-
tion that the proposed algorithm effectively carries out a spatially adaptive sampling while
maintaining a tuneable trade-off between accuracy and efficiency.

1. Introduction

A significant problem in computer systems engineering is dealing with phenomena that
vary in space: for instance, their estimation, prediction, and control. Concrete related
application examples include: the monitoring of waste in urban areas to improve waste
gathering strategies [MZ19]; the estimation of pollution in a geographical area, for alerting
or mitigation-aimed response purposes [CPP+20]; the sensing of the temperature in a large
building, to support the synthesis of control policies for the Heating, Ventilation, and Air
Conditioning (HVAC) system [MMP+17]. The general solution for addressing this kind
of problem consists of deploying a set of sensors and actuators in space, and building a
distributed system that processes gathered data and possibly determines a suitable actuation
in response [WKT11]. In many settings, the computational activity can (or has to) be
performed in-network [FRWZ07] in a decentralised way: in such systems, nodes locally sense,

Key words and phrases: spatial sampling, cooperative adaptive sampling, regional coordination, sensor
networks, field-based computing, self-organisation, event structures, Fluidware.

∗ This article is an extended version of the conference paper [CMP+22] presented at COORDINATION’22.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:29)2023
© R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0001-8921-8150
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0003-2702-5702
https://orcid.org/0000-0002-6837-8806
http://creativecommons.org/about/licenses

29:2 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

process, and act upon the environment, and coordinate with neighbour nodes to collectively
self-organise their activity. However, in general there exists a trade-off between performance
and efficiency, that suggests concentrating the activities on few nodes, or to endow systems
with the capability of autonomously adapt the granularity of computation [YVP13].

In this work, we focus on sampling signals that vary in space. Specifically, we would like
to sample a spatially distributed signal through device coordination and self-organisation
such that the samples accurately reflect the original signal and the least amount of resources
is used to do so. In particular, we push forward a vision of space-fluid computations, namely
computations that are fluid, i.e. change seamlessly, in space and – like fluids – adapt in
response to pressure forces exerted by the underlying phenomenon. We reify the vision
through an algorithm that handles the shape and lifetime of leader-based “regional processes”
(cf. [PCVN21]), growing/shrinking as needed to sample a phenomenon of interest with a
(locally) maximum level of accuracy and minimum resource usage. For instance, we would
like to sample more densely those regions of space where the spatial phenomenon under
observation has high variance, to better reflect its spatial dynamics. On the contrary, in
regions where variance is low, we would like to sample the phenomenon more sparsely to, e.g.,
save energy, communication bandwidth, etc. while preserving the same level of accuracy.

Accordingly, we consider the field-based coordination framework of aggregate comput-
ing [BPV15, VBD+19], which has proven to be effective in modelling and programming
self-organising behaviour in situated networks of devices interacting asynchronously. On top
of it, we devise a solution that we call aggregate sampling, inspired by the approaches of
self-stabilisation [VAB+18] and density-independence [BVPD17], that maps an input field
representing a signal to be sampled into a regional partition field where each region provides
a single sample; then, we characterise the aggregate sampling error based on a distance
defined between stable snapshots of regional partition fields, and propose that an effective
aggregate sampling is one that is locally optimal w.r.t. an error threshold, meaning that the
regional partition cannot be improved simply by merging regions. In summary, we provide
the following contributions:

• we define a model for distributed collaborative adaptive sampling and characterise the
corresponding problem in the field-based coordination framework;

• we implement an algorithmic solution to the problem that leverages self-organisation
patterns like gradients [FSM+13, VAB+18] and coordination regions [PCVN21];

• we prove this algorithm to self-stabilise, and to actually provide an effective sampling
according to a definition of “locally optimal regional partition”;

• we experimentally validate the algorithm to verify interesting trade-offs between sparseness
of the sampling and its error.

This manuscript is an extended version of the conference paper [CMP+22], providing (i) a
more extensive and detailed coverage of related work; (ii) more examples, clarifications, and
details regarding the formal model; (iii) a discussion of the source code of the aggregate
computing implementation; and (iv) proofs of self-stabilisation and local optimality of the
proposed algorithm.

The rest of the paper is organised as follows. Section 2 covers motivation and related
work. Section 3 provides a model for distributed sampling and the problem statement.
Section 4 describes an algorithmic solution to the problem of sampling a distributed signal
using the framework of aggregate computing. Section 5 performs an experimental validation

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:3

Figure 1. Air quality statistics map taken from https://archive.ph/

dMJO2. There are areas where the underlying phenomenon does not vary
significantly in space (light-grey oval), hence sampling could be made sparser
with tolerable loss of accuracy. In others (darker circle), variance is high,
requiring a more detailed spatial sampling.

of the proposed approach. Finally, Section 6 provides conclusive thoughts and delineates
directions for further research.

2. Motivation and Related Work

2.1. Motivations, Goal, and Applications. Consider a Wireless Sensor Network (WSN)
of any topology, statically (i.e. design-time, no mobility) deployed across a geographical
area to monitor a spatially-distributed phenomenon, such as, for instance, air quality, as
depicted in Figure 1. We want to dynamically (at run-time) and adaptively (depending on
the phenomenon itself) find a sparse set of samplers, i.e., devices responsible for providing
sensing data regarding some underlying phenomenon. We want the selection of samplers to
depend on both the spatial distribution of devices and the input phenomenon. Therefore,
the idea is that each sampler is responsible for an exclusive spatial sampling region that
may include several other devices, i.e., a partition of the system/environment. Moreover,
we want to determine a partitioning of the connected sampling devices that minimises the
number and maximises the size of sampling regions, while preserving as much as possible
the underlying information. Hence, in areas with low variance amongst spatially distributed
samples’ values, we want our regions to be larger, as many samples will report similar values,
and hence one sample nicely represents all. Conversely, in areas with high spatial variance
between samples, smaller regions are necessary as even proximal samples may have very

https://archive.ph/dMJO2
https://archive.ph/dMJO2

29:4 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

different values, hence more samples are required to accurately represent the phenomenon.
We also consider large-scale deployments with hundreds or thousands of devices.

Accordingly, we aim at designing a decentralised algorithm that can:

• dynamically (at run-time, continuously) partition a set of sampling devices into sampling
regions;

• consider phenomenon-specific metrics (e.g. variance of the sensors’ readings) for deciding
how to (re)compute partitions;

• both up-scale and down-scale sampling depending on such metrics;
• do so in a fully distributed way, based solely on local interactions (i.e., within a 1-hop

neighbourhood).

A similar algorithm can provide benefits across multiple application domains, as also witnessed
by the below described related literature. All forms of environmental monitoring can
greatly benefit, for instance, as many phenomena in such a domain are inherently spatially
distributed: air quality, water pollution, soil radiation, landslide monitoring, crop growth,
and so on [Cox99, YZMC20, ZGMB14, MCP12]. Another field of application is ecological
monitoring, such as geolocation of wolf packs or other animals moving habits [PSS+13]. But
in general, any application whose goal is to monitoring any measurable phenomenon, with
unknown or uncertain spatial dynamics, may find benefits in our proposed approach.

2.2. Related Work on Adaptive Spatial Sampling. There are several approaches in the
literature that attempt to solve this and similar problems, with heterogeneous techniques,
that we collectively refer to under the umbrella term of “adaptive spatial sampling”. Amongst
these, some [MSM18, Tho90] are restricted to the so-called sampling design problem, that
is, their concern is to deliver either design-time decision support about where to deploy
sensor devices or analytically devise out the best sampling algorithm given domain expertise
or infrastructural requirements (most often, residual energy management). Our approach
is not directly comparable to these, as we are concerned with run-time adaptation of the
sampling process based on domain-specific properties (e.g. sampling variance, that depends
on the phenomenon under observation). Others [RHK+05, GA14, MHD21, HP11, GC09]
more closely pursue our goal, but assume mobile sensing devices (e.g. robots), hence are
concerned with how to move them at run-time to optimise some desired metric (e.g. sampling
accuracy). On the contrary, we assume static sensor devices that have been already deployed
on a target area, without any prior knowledge of the actual spatial distribution of the
phenomenon to observe. Finally, a great deal of related research contributions have the
fundamental difference of adapting the sampling process to domain-agnostic, infrastructural
properties such as residual energy, distance amongst devices, bandwidth consumption,
rather than on the specific spatial distribution (and dynamics) of the phenomenon under
monitoring [YF04, MR04, BC04, BC03, SGAP00, SAL+03, BC02, ÖFL04].

Narrowing down the research landscape just overviewed, we now describe and compare
in more detail the approaches to spatial adaptive sampling most similar to ours, emphasising
the most notable differences.

In reference [VS05] the Topology Adaptive Spatial Clustering algorithm is presented. It
is a distributed algorithm that partitions a WSN into a set of disjoint sampling clusters, with
no prior knowledge of cluster number or size (like ours), by encoding geographical distance,
connectivity, and deployment density information in a single measure upon which leader
election (for cluster heads) happens. The goal is to group together nodes in proximity and

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:5

within regions of similar deployment density, to improve efficiency of data aggregation and
compression. Besides the focus on efficiency, that is only half the story in our approach (the
other being accuracy, hence the trade-off), two are the fundamental differences our approach
has with respect to this: first, in our case adaptation is domain dependent, in the sense that
it depends on some property (e.g. variance) of the phenomenon under observation, not on
infrastructural properties; second, we do also consider over-sampling when variation is high,
whereas reference [VS05] only considers under-sampling where measures are redundant.

In reference [LXZ+13], another distributed approach to spatial adaptive sampling is
presented. It is based on the assumption that neighbouring sampling nodes usually have
similar readings (high spatial correlation), hence can be grouped in a cluster to improve energy
consumption. The proposed algorithm uses such spatial correlation, two application-specific
threshold parameters (error tolerance and correlation range), and residual energy to elect
cluster heads, with the goal of minimising the number of clusters, and the variance of their
size. The introduction of the two application-dependant parameters makes this proposal
closer to ours, as they could be used to steer the adaptation toward domain-specific aspects,
to some extent. However, most of the calculations still rely on infrastructural properties
rather than measures about the phenomenon of interest, and the focus is, once again, on
energy saving, thus, authors do not consider over-sampling but solely under-sampling.

Reference [LM07] shares with us the interest in performing adaptation based on the
information observed by sensors, rather than on network, energy, or other infrastructural
aspects. However, they consider a special case where the clusters must correspond to
pre-determined “sources of interest”, such as physical objects/devices in the environment.
Moreover, clusters are formed with the secondary objective of being balanced, whereas we
allow them to be of different sizes and shapes (and even encourage to be so depending on
the spatial distribution of the phenomenon of interest).

Reference [LVP11] proposes SILENCE, a distributed, space-time adaptive sampling
algorithm based on (space-time) correlation of measured values. The foremost goal pursued
is efficiency: SILENCE in fact strives to minimise communication and processing overhead,
by minimising sampling redundancy and also adapting (i.e. slowing down) the scheduling
speed of sensor devices. However, yet again the basic assumption, and focus of the approach,
is the case where spatial correlation of sampled values is high; whereas we explicitly focus on
the opposite situation (while still providing a working solution even in the case considered
by SILENCE). Furthermore, also SILENCE only considers down-sampling.

Finally, the ASample algorithm [SKS10] is the one approach most similar to ours, not
in the techniques exploited, but in pursuing domain-driven adaptation, in doing so in a
fully-distributed way, and in considering the opportunity to over-sample, too. In particular,
ASample builds a Voronoi tessellation of the area where the WSN is deployed, in a fully
distributed way by considering only neighbourhood information, instead of the whole topology.
Such a tessellation considers a desired sampling accuracy, specified at the application level:
while a given Voronoi region is within the accuracy bound, it keeps expanding; on the
contrary, whenever the accuracy constraint is violated, a virtual centroid of a novel Voronoi
region is spawned, with a value that is obtained through interpolation of the neighbouring
regions. This is an important aspect to consider, as it introduces synthetic data, which
is something we avoid as we only increase sampling granularity if there are actual devices
available in the target area. Moreover, there is an assumption underlying the ASample
approach that does not hold in general, and, specifically, it is in contrast with our intended
goal (obtaining potentially irregular clusters to reflect the irregular spatial distribution of

29:6 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

the observed phenomenon): it is assumed that the smaller the area covered by the Voronoi
region, the less representative the samples drawn are, hence the smaller the impact on the
global sampling accuracy. In our targeted scenarios, the opposite could be true, too: smaller
regions represent sharp variance of measurements across space, and more accurately represent
the irregularities of the underlying phenomenon.

3. Distributed Aggregate Sampling: Model

In order to define the problem and characterise our approach, we leverage the event structure
framework [NPW81, ABDV18], which provides a general model of situated computations.
Within this formal framework, in this section we describe the computational model (Sec-
tion 3.1), self-stabilisation as a desired property of solutions in this model (Section 3.2),
and the spatial sampling problem that we tackle in this manuscript (Section 3.3). The
computational model introduces the necessary terminology to understand both the problem
formulation and the solution we propose in Section 4. Introducing the self-stabilisation
property is required to be able to evaluate such a solution in its effort to adapt to the
dynamics of the phenomenon of interest, both formally as done in Section 4.3 and practically
as done later in Section 5.

3.1. Computational Model. We consider a computational model where a set of devices
(typically comprising sensors and actuators to perceive and act upon the environment)
compute at discrete steps called computation rounds and interact with neighbour devices by
exchanging messages. Executions of such systems can be modelled through event structures
[NPW81, Pra86] as in [AVD+19, ABDV18]1. Following the general approach in [ABDV18],
we enrich the event structure with information about the devices where events occur.

Definition 3.1 (Situated event structure). A situated event structure (ES) is a triplet
⟨E,⇝, d⟩ where:

• E is a countable set of events;
• ⇝ ⊆ E × E is a messaging relation from a sender event to a receiver event (these are

also called neighbour events);
• d : E → ∆, where ∆ is a finite set of device identifiers δi, maps an event ϵ ∈ E to the

device d(ϵ) ∈ ∆ where the event takes place.

The elements of the triplet are such that:

• the transitive closure of ⇝ forms an irreflexive partial order < ⊆ E × E, called causality

relation (an event ϵ is in the past of another event ϵ′ if ϵ < ϵ′, in the future if ϵ′ < ϵ, or
concurrent otherwise);

• for any δ ∈ ∆, the projection of the ES to the set of events Eδ = {ϵ ∈ E | d(ϵ) = δ} forms
a well-order, i.e., a sequence ϵ0 ⇝ ϵ1 ⇝ ϵ2 ⇝

Additionally, we introduce the following notation:

• recvs(ϵ) = {d(ϵ′) | ϵ ⇝ ϵ′} to denote the set of receivers of ϵ, i.e., the devices receiving a
message from ϵ;

1 Our notion of an event structure does not use the conflict relation [NPW81], which is used to express
non-determinism. Indeed, we only use partial ordering. Though it could be called a pomset [Pra86], we use
this terminology to conform to previous research [ABDV18, VBD+19]. In our model, non-determinism is
provided by the environment: then, a single event structure is used to describe one possible system execution,
and results referring to multiple system executions universally quantify over all the possible event structures.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:7

• T−
ϵ0

= {ϵ : ϵ < ϵ0} to denote the past event cone of ϵ0 (which is a finite set, since we assume
the system has a starting point in time at any device);

• T+
ϵ0

= {ϵ : ϵ0 < ϵ} to denote the future event cone of ϵ0;
• X|E′ to denote the projection of a set, function, or ES X to the set of events E′ ⊆ E.

Note that the projection of an event structure to the future event cone of an event is still
a well-formed ES.

ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23 ϵ24 ϵ25

ϵ31 ϵ32 ϵ33 ϵ34

ϵ41 ϵ42 ϵ43 ϵ44 ϵ45 ϵ46

ϵ51 ϵ52 ϵ53

Devices

Time

Figure 2. Example of an event structure. In the node labels, superscripts
denote device identifiers, while subscripts are progressive numbers denoting
subsequent rounds at the same device. The blue (resp. green) background
denotes the future (resp. past) of a reference event denoted with a yellow
background.

An example of ES is given in Figure 2, events denote computation rounds. Notice that
self-messages (i.e., messages from an event to the next on the same device) can be used to
model persistence of state over time. Also, notice that two subsequent events at some device
(e.g., ϵ44 and ϵ45 of device 4 in Figure 2) may share a same sender event from a neighbour
(ϵ32 in this case): in a real system, this could be due to two distinct communication acts
with the same message, as well as to a mechanism by which the receiving device reuses the
most recently received message from that neighbour through some message retention policy
(which is an implementation mechanism useful to support stability of neighbourhoods).

Remark 3.2 (Communication and distributed execution). The description of a system
execution as an event structure as per Definition 3.1 abstracts from details regarding the
actual communication and scheduling mechanisms used in a deployed system. Concrete
communication mechanisms may include point-to-point network channels, based on wired or
wireless technologies, broadcasts, intermediaries (like, e.g., the cloud), or even stigmergic
(i.e., environment-mediated) means. The computation rounds may be scheduled at a fixed
frequency, using a particular time distribution, or reactively (e.g., in response to new sensor
values or reception of messages from neighbours). A more in-depth discussion of how aggregate
computing systems may be deployed and executed can be found in [CPP+20, PCV+21].

29:8 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

In the computation model we consider, based on [ABDV18], each event ϵ represents the
execution of a program taking all incoming messages, and producing an outgoing message
(sent to all neighbours) and a result value associated with ϵ. Such “map” of result values
across all events defines a computational field, as follows.

Definition 3.3 (Computational field). Let E = ⟨E,⇝, d⟩ be an event structure. A compu-
tational field on E is a function f : E → V that maps every event ϵ in E (also called the
domain of the field) to some value in a value set V.

Computational fields are essentially the “distributed values” which our model deals with;
hence computation is captured by the following definition.

Definition 3.4 (Field computation). Let E = ⟨E,⇝, d⟩ be an event structure, and denote
FE,V the set of fields on domain E and co-domain V, i.e., FE,V = {f : E → V}. Given two
sets of values V,V′, a field computation over E is a function ΦE : FE,V → FE,V′ mapping
an input field to an output field on the same domain of E (but possibly on a different
co-domain).

This definition naturally extends to the case of zero or multiple input fields.
Now, we define the notion of a field-based program, which we denote as a construct

expressing a computation on any possible environment, where an environment can be modelled
by an event structure and fields over it denoting environmental values perceivable by devices
(e.g., temperature fields would assign a temperature value to each event).

Definition 3.5 (Field-based operator). A field-based operator (or field-based program) is a
function P taking an event structure as input and yielding the field computation that would
occur on it, namely P (E) = ΦE.

In other words, a field-based operator works as a “program” (design-time): it applies to
a certain event structure to generate a resulting field computation (run-time). It would
also be correct to say that a field-based program provides an implementation of a field-based
operator, similarly to how, e.g., quick-sort provides an implementation of a sorting operator
on lists. Notice also that we restrict our analysis to computable field-based operators as
per previous work [ABDV18].

There exist core languages and full-fledged programming languages for conveniently
expressing field-based programs: these are known as field calculi and aggregate programming
languages, respectively [VBD+19]. One of these is used in Section 4.2 to implement our
adaptive spatial sampling algorithm. However, as the following example demonstrates,
field-based programs can also be expressed, in our framework of event structures, by a local
perspective, in terms of how inputs and ingoing messages at one event are mapped to an
output and outgoing messages.

Example 3.6 (Gradient field computation and operator). Term gradient commonly refers to
a kind of distributed data structures for estimating the distance from any device in a network
to its closest source device, and a family of distributed algorithms for building them [ACDV17],
which are very useful for implementing self-organising systems [Nag02, VAB+18, WH07].

In our framework, a distributed algorithm for building gradients (gradient operator) can be
modelled as a field-based operator PG mapping any event structure E = ⟨E,⇝, d⟩ to a gradient
field computation ΦG over it. A gradient field computation ΦG : FE,Bool×Metric → FE,R is
essentially a map:

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:9

• from an input field fi : FE,Bool×Metric mapping each event ϵ ∈ E with a pair
(source,metric) ∈ Bool × Metric, where Metric ⊆ E × R, denoting source events/de-
vices (those where source = ⊤), distinguished from non-source events/devices (those
where source = ⊥), and a metric associating neighbouring events to an estimation of the
corresponding spatial distance, metric(ϵ) = {(ϵ′, x) | ϵ′ ⇝ ϵ ∧ x ∈ R};

• to the output field stabilising (cf. Section 3.2) to the minimum distances to source devices.

A simple operator for a gradient computation could be implemented through the following
function, local to an event ϵ0 ∈ E receiving from a possibly empty set of sender events ϵi
(with ϵ0 denoting the sender event at the same device, if any, and with ϵi>0 the sender events
from other devices), of the input field’s value and the message set M = {ϵi 7→ gi} providing
the neighbours’ current gradient estimates:

g(source, {ϵi 7→ dist i}, {ϵi 7→ gi}) =

0 source = ⊤

mini>0{gi + disti} source = ⊥ ∧ {ϵi>0} ≠ ∅

+∞ otherwise

An example of the induced computation is shown in Figure 3, assuming a simple metric
where dist0 = 0 and dist i>0 = 1.

3.2. Self-stabilisation. We now provide the definitions necessary to model self-stabilisation
following the approach in [VAB+18]. Namely, the following definitions capture the idea
of adaptiveness whereby as the environment of computation stabilises, then the result of
computation stabilises too, and such a result does not depend on previous transitory changes.

Definition 3.7 (Static environment). An event structure E = ⟨E,⇝, d⟩ is said to be a static
environment if it has stable topology, namely all events of a given device always share the
same set of receivers, i.e., ∀ϵ, ϵ′, d(ϵ) = d(ϵ′) ⇒ recvs(ϵ) = recvs(ϵ′).

Note that, following the approach in [VAB+18], we introduce the notion of a static
environment to capture the eventual situation in which the environment stops perturbing
the system. This is instrumental to rely on an abstract characterisation of self-stabilising
computations, which are those in which the system keeps intercepting changes in the
environment and adapting to them: whenever (and if) the environment becomes static, one
can observe the result of that adaptation that eventually establishes.

Definition 3.8 (Stabilising environment). An event structure E = ⟨E,⇝, d⟩ is said to
be a stabilising environment if it is eventually static, i.e., ∃ϵ0 ∈ E such that E|T+

ϵ0

=

⟨E|T+
ϵ0

,⇝ |T+
ϵ0

, d|T+
ϵ0

⟩ is static. In this case we say it is static since event ϵ0.

Definition 3.9 (Stabilising field). Let event structure E = ⟨E,⇝, d⟩ be a stabilising
environment, static since event ϵ0. A field f : E → V is said stabilising if it eventually
provides stable output (an output that does not change since some round), i.e., ∃ϵ >
ϵ0 such that ∀ϵ′ > ϵ, ϵ′′ > ϵ it holds that d(ϵ′) = d(ϵ′′) =⇒ f(ϵ′) = f(ϵ′′).

An example of a stabilising field, which can also be thought as being generated by a
gradient computation (cf. Example 3.6), is provided in Figure 3. The environment is static
since event ϵ31 (every event in the future event cone of ϵ31 has the same set of receivers), and
from event ϵ32 (excluded) it holds that each device does not change the value it produces in
its rounds.

29:10 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

ϵ1
1

ϵ1
2

ϵ1
3

ϵ2
1

ϵ2
2

ϵ2
3

ϵ2
4

ϵ2
5

ϵ3
1

ϵ3
2

ϵ3
3

ϵ3
4

ϵ4
1

ϵ4
2

ϵ4
3

ϵ4
4

ϵ4
5

ϵ4
6

ϵ5
1

ϵ5
2

ϵ5
3

...

...

...

...

...

Devices

Time

∞ ∞ 2
2

∞ ∞ 1 1 1
1

∞ 0 0 0
0

∞ ∞ ∞ 1 1 1
1

∞ ∞ 2
2

Figure 3. Example of a stabilising field. We use labels above the nodes
to denote the values computed in the corresponding events, assuming the
program is a gradient operator as per Example 3.6.

Definition 3.10 (Stabilising computation). A field computation ΦE = FE,V → FE,V is said
stabilising if, when applied to a stabilising input field, it yields a stabilising output field.

Definition 3.11 (Self-stabilising operator). A field-based operator (or program) P is said self-
stabilising, if in any stabilising environment E it yields a stabilising computation ΦE such that,
for any pair of input fields f1, f2 eventually equal, i.e. f1|T+

ϵ
= f2|T+

ϵ
for some event ϵ, their

output is eventually equal too, i.e., there exists a ϵ′ > ϵ such that ΦE(f1)|T+

ϵ′
= ΦE(f2)|T+

ϵ′

Notice that universally quantifying over event structures, i.e., considering infinitely
many system executions, makes finding decision procedures for properties like stabilisation
undecidable in general. However, this does not prevent us from reasoning about such
properties for a specific program, as we carry on in this paper—and as developed in previous
works, e.g., in [VAB+18]. 2

3.3. Problem Definition. We start by introducing the notion of regional partition, which
is a finite set of non-overlapping contiguous clusters of devices: a notion that prepares the
ground to that of an aggregate sampling which we introduce in this paper.

Definition 3.12 (Regional partition field, contiguous regions). Let E = ⟨E,⇝, d⟩ be a
stabilising environment static since event ϵ0. A regional partition field is a stabilising field
f : E → V on E such that:

• (finiteness) the image Img(f) = {f(x) | x ∈ E} is a finite set of values;
• (eventual contiguity) there exists an event ϵ′0 > ϵ0 such that for any pair of events
ϵ1, ϵn ∈ T+

ϵ′
0

, f(ϵ1) = f(ϵn) implies that there is a sequence of events ϵ1 < ... < ϵn connecting

ϵ1 to ϵn where f(ϵi) = f(ϵ1) = f(ϵn) ∀1 ≤ i ≤ n.

2On the other hand, note that most of our definitions could be given considering finite runs, where proving
decidability could be easier—but this is not developed for the sake of generality.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:11

Note that the set of domains of regions induced by f is defined by regions(f) = {f−1(v) : v ∈
Img(f)}. Moreover, given two regions E,E′ ∈ regions(f), we say that they are contiguous
if ∃ϵ ∈ E, ϵ′ ∈ E′ : ϵ⇝ ϵ′ ∨ ϵ′ ⇝ ϵ.

An example of a regional partition field is shown in Figure 4. Notice that for any pair of
events in the same space-time region there exists a path of events entirely contained in that
region. Also, notice that, by this definition, different disjoint regions denoted by the same
value r are not possible.

Definition 3.13 (Aggregate sampling). An aggregate sampling is a stabilising computation
ΦS : FE,V → FE,V that, given an input field to be sampled, yields as output a regional
partition field.

ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23 ϵ24 ϵ25

ϵ31 ϵ32 ϵ33 ϵ34

ϵ41 ϵ42 ϵ43 ϵ44 ϵ45 ϵ46

ϵ51 ϵ52 ϵ53
...

...

...

...

...

Devices

Time

Figure 4. Example of a regional partition field with regions rblue, rgreen,
ryellow, rwhite (the background is used to denote the output of the field).
Notice that contiguity does not hold everywhere and anytime but only since
event ϵ32.

Once we have defined an aggregate sampling process in terms of its inputs, outputs, and
stabilising dynamics, we need a way to measure the error introduced by the aggregate
sampling. To this purpose, we introduce the notion of a stable snapshot, namely a field
consisting of a sample of one event per device from the stable portion of a stabilising field.

Definition 3.14 (Stable snapshot). Let E = ⟨E,⇝, d⟩ be an event structure, and f : E → V

be a stabilising field on E which provides stable output from ϵ0 ∈ E. We define a stable
snapshot of field f as a field obtained by restricting f to a subset of events in the future
event cone of ϵ0 and with exactly one event per device, i.e., a field fS : ES → V such that
ES ⊆ T+

ϵ0
, and ∀ϵ, ϵ′ ∈ ES : d(ϵ) = d(ϵ′) =⇒ ϵ = ϵ′, and ∀ϵ ∈ T+

ϵ0
, ∃ϵ′ ∈ ES : d(ϵ′) = d(ϵ).

Definition 3.15 (Stable snapshot error-distance). We call stable snapshot error-distance
any metric µ : FE,V × FE,V → R

+
0

over stable snapshots that feature same domain (event
structure) and codomain (set of values).

29:12 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

We are now able to characterise adequacy properties for a sampling operator, intuitively
capturing the fact that sampling correctly trades-off the size of regions with their accuracy.
We first start by introducing a notion that handles accuracy, stating that any of the produced
regions won’t cause the error-distance to be over a certain threshold.

Definition 3.16 (Aggregate sampling error). Let ΦE : FE,V → FE,V be an aggregate
sampling, and consider an input field fi : E → V and corresponding output regional partition
fo : E → V. We say that fo samples fi within error η according to error-distance µ, if the
error-distance of stable snapshots of fi and fo in any region is not bigger than η, that is: let
f s
i and f s

o be stable snapshots of fi and fo, then for any region E′ ∈ regions(f s
o), we have

µ(f s
i |E′ , f s

o |E′) ≤ η.

Note that accuracy can be generally achieved simply by partitions defining many small
regions—up to the corner case in which all regions include just one device, hence trivially
induce zero error-distance. Therefore, we are also interested in efficiency, namely the
ability of a regional partition to rely on as few regions as possible. Without a centralised
approach, however, partitioning is necessarily sub-optimal, since it can rely only on local
interaction/competition among regions, hence it should be expected that some regions will
stop “expanding” as they reach a smaller threshold. Additionally, there can also be corner
cases where regions with very small error-distance are created, e.g., because what remains
to be covered in an iterative selection of regions is simply a very small part of the network,
or one with rather uniform values introducing little sampling errors. What we may require
from an adequate sampling operator, however, is that such regions are somewhat not the
norm. This is formally captured by the following definition, essentially introducing a “lower
bound” for the error-distance of regions.

Definition 3.17 (Local optimality of a regional partition). Let ΦE : FE,V → FE,V be an
aggregate sampling, consider an input field fi and corresponding output regional partition
fo such that fo samples fi within error η according to distance µ, and denote with f s

i and
f s
o the stable snapshots of fi and fo, respectively (cf. Definition 3.16). We say that fo is

locally optimal under error η and with efficiency k (k > 0) if all pairs of contiguous regions
E′, E′′ ∈ regions(fo) are such that µ(f s

i |E′∪E′′ , f s
o |E′∪E′′) ≥ k · η.

For example, we will show that the algorithm we propose guarantees k = 0.5 (see
Section 4.3). Note that we call this notion “local optimality” to stress the fact that an
identified partition is not necessarily the best one that could be found, but it is one that
cannot be significantly improved with a small change, such as combining two regions—a
small improvement is possible, depending on the efficiency factor k. This notion well fits our
goal of dealing with dynamic phenomena and large-scale environments, where one is more
geared towards finding good heuristics for self-organising behaviour.

So, we are now ready to define the goal operator for this paper.

Definition 3.18 (Effective sampling operator). An effective sampling operator with efficiency
k is a self-stabilising operator Pη, parametric in the error bound η, such that in any stabilising
environment E and stabilising input fi, a locally optimal regional partition with efficiency k
and within error η is produced.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:13

4. Aggregate Computing-based Solution

In this section, we define a space-based adaptive sampling algorithm, called AggregateSam-

pler, (Section 4.1), discuss its implementation in aggregate computing [BPV15, VBD+19]
(Section 4.2), and prove the algorithm is a self-stabilising, effective sampler with efficiency at
least k = 0.5 (Section 4.3). The algorithm is defined in terms of the computational model
described in Section 3.1, as well as its implementation, and is the one evaluated in Section 5.
The proofs are based on the definitions of Section 3.2 and Section 3.3.

4.1. AggregateSampler Algorithm for Adaptive Spatial Sampling. The problem
of creating partitions in a self-organising way is very much related to a problem of multi-leader
election [PCVN21, PCV22].

Building on this idea, our approach starts by solving a sparse leaders election prob-
lem [Lyn96], for which self-stabilising solutions exist [MADB20, BCC+21, PCV22]. Leaders
are used as samplers of the input field. During the election of leaders/samplers, we associate
them with larger and larger regions of “follower devices” that will provide the sampled value
as output. During execution of the algorithm, such regions will expand until the desired
error-distance can be kept under the threshold η. This process is managed so that there
won’t be any overlap with other regions, and so that no devices of the network remain outside
of some region (i.e., each device will follow exactly one leader).

To ensure that regions are connected, and won’t overcome the threshold independently
of the chosen leader, we adopt as error-distance one based on “distance among devices”, as
follows. The algorithm can be configured to adopt any strategy that is able to turn input
and output fields into a metric m for devices: such a metric is as usual a function mapping a
pair of neighbour devices to a non-negative real number, called the “local sampling distance”
of the two devices—intuitively, the higher the physical distance of devices and the higher the
difference of input values and output values of the two devices, the higher is m for that pair.
Given this metric, any pair of devices of the network can be associated with a path sampling
error, which is the size of the shortest path (according to the metric) connecting the two
devices. The proposed algorithm will then produce regions adopting as error-distance µ the
maximum path sampling error of any pair of devices in the region, and it will turn out that
any pair of contiguous regions combined will necessarily give error-distance greater than
0.5 ∗ η (efficiency k = 0.5).

The algorithm is defined as follows (see Figure 5):

(1) each device announces its candidature for leadership;
(2) each device propagates to its neighbours the candidature of the device it currently

recognises as leader, its sampled value, and the path sampling error from it, fostering
the expansion of its corresponding region;

(3) devices discard candidatures whose path sampling error from the leader exceeds half the
expected threshold (η/2);

(4) in case multiple valid candidatures (i.e., those that are not discarded) reach a device,
one is selected based on a competition policy.

The specific strategies for computing the local sampling distance and the leader competition
policy are application-dependent—we will provide some instances in Section 5.

29:14 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

η/2 η/2 η/2 η/2

η η << η

Figure 5. Example of a regional partitioning (with three contiguous regions)
created by the algorithm on a simplified system where devices are arranged
on a line. Notation: black dots denote the leaders/samplers; the coloured
areas denote regions; and the red extension lines are used to denote the
error-distances. Note that no device in a region can have path sampling error
greater than η/2 with respect to the leader, and that very small regions can
still exist in corner cases (e.g., the green region on the right).

Competition and leader strength. Although competition among leaders could be realised in
several ways, many techniques may lead to non-self-stabilising behaviour: for instance, if the
winning leader is selected randomly in the set of those whose error is under threshold, regions
may keep changing even in a static environment. In this work, we propose a simple strategy:
every leader associates its candidature with the local value of a field that we call leader
strength; in case of competing candidatures, the highest such value is selected as winner,
breaking the symmetry. The leader strength can be of any orderable type, and its choice
impacts the overall selection of the regions by imposing a selection priority over leaders
(hence on region-generation points). If two candidate leaders have the same strength, then
we prefer the closest one. If we are in the (unlikely) situation of perfect symmetry, with two
equally-strong candidate leaders at the same distance, then their device identifier is used to
break symmetry.

Region expansion and path sampling error. Inspired by previous work on distributed systems
whose computation is independent of device distribution [BVPD17], the proposed approach
essentially accumulates the path sampling error along the path from the leader device towards
other devices along a gradient (cf. Example 3.6), a distributed data structure that can be
generated through self-stabilising computations [VAB+18] (cf. Section 3.2). We thus have
two major drivers:

(1) the leader strength affects the creation of regions by influencing the positions of their
source points;

(2) the path sampling error influences the expansion in space of the region across all directions,
mandating its size and (along with the interaction with other regions) its shape.

For instance, a metric could be the absolute value of the difference in the perceived signal
(e.g., a value sampled from a sensor—cf. Section 3.1) between two devices: devices perceiving
very different values would tend not to cluster together (even if spatially close), as they would
perceive each other as farther away (leading to irregular shapes).

As the simulations in the next section verify, connecting region expansion with the
error-distance (i.e., using the error-distance as a distance metric for gradient computation)
enables the determination of locally optimal sampling regions. We recall that the local
optimality property means that all regions are essentially needed except for corner cases.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:15

1 // Definition of the record (product type) Sample + accessor functions

2 def Sample(symmetryBreaker, distance, leaderId) = [symmetryBreaker, distance, leaderId]

3 def breakSymmetry(sample) = sample.get(0)

4 def sampleDistance(sample) = sample.get(1)

5 def areaCenter(sample) = sample.get(2)

6 def discard() = Sample(POSITIVE_INFINITY, POSITIVE_INFINITY, POSITIVE_INFINITY)

7 // Logic to control the propagation of candidacies

8 def expansionLogic(sample, localId, radius) =

9 mux (areaCenter(sample) == localId || sampleDistance(sample) >= radius) {

10 discard()

11 } else {

12 sample

13 }

14
15 def AggregateSampler(mid, radius, symmetryBreaker, metric) {

16 let local = Sample(-symmetryBreaker, 0, mid)

17 areaCenter(

18 share (received <- local) {

19 let candidacies = received.set(1, received.get(1) + metric())

20 let filtered = expansionLogic(candidacies, mid, radius)

21 min(local, foldMin(discard(), filtered))

22 }

23)

24 }

Figure 6. Source code of the algorithm.

4.2. Aggregate Computing-based Implementation. An implementation of the algo-
rithm expressed in the Protelis aggregate programming language [PVB15] is shown in Figure 6.
In aggregate computing, a so-called aggregate program such as the one shown in Figure 6, is
repeatedly run by all the devices: it expresses a logic for mapping the local context (given by
sensor readings and messages from neighbours) to an output value and an output message
to be sent to all the neighbours. In other words, aggregate computing leverages the com-
putational model described in Section 3.1, where each event denotes a full execution of the
aggregate program against the event’s inputs, determining the message payload passed to
receiving events.

The core of the program is function AggregateSampler, which consists of the following
main elements:

• sampler candidacies are modelled as ordered triplets , using 3-element tuples, with corre-
sponding accessor functions (Figure 6, Lines 1–6), of the elements:
(1) simmetryBreaker: a value used to break symmetry, capturing the “strength” of a

candidacy;
(2) distance: a value capturing the distance to the sampler node of a candidacy (e.g.,

computed through a gradient—cf. Example 3.6);
(3) leaderId: holding the device identifier of the candidate sampler;

• function expansionLogic (Figure 6, 8–13) is defined to determine when a candidacy has
to be discarded, i.e., when it comes from the device itself or when the distance of the
candidate sampler is greater or equal than a radius parameter;

• function AggregateSampler (Figure 6, 15–24) is the entry point of the algorithm,
parametrised in terms of the executing device identifier (mid), a maximum spatial range of

29:16 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

candidacies (radius), a value to break symmetry (symmetryBreaker), and a metric function
providing distances to neighbours;

• share(x <- init){ e } is a bidirectional communication construct [ABD+20], that works
as follows: the declared variable x, which is set to init at the first round, collects the
evaluations of the overall share expression in neighbour devices (including the device
itself), and the new value for the current device (which is the data item that will be sent
to neighbours) is obtained by evaluating expression e;

• the distance field of the neighbour candidacies is updated , (Figure 6, Line 19), by adding
to each candidacy provided by a neighbour the local distance w.r.t. that neighbour3 (as
provided by metric);

• neighbours’ candidacies that are too far or support the current device are de-prioritised
(Figure 6, Lines 20), by function expansionLogic(); and, finally

• selecting the winner over the processed candidacies through minimisation , by min and
foldMin (Figure 6, Line 21), which minimise over the filtered candidacy triplets, with
default candidacy as the one with the lowest priority (provided by discard()), and against
the local candidacy.

The above described algorithm is an effective sampling operator (Definition 3.18) as long as (i)
half the path sampling error η is used as parameter radius, so that function expansionLogic

does not expand regions beyond the given error η, and (ii) an additive metric is used, so
that it is impossible to decrease the error by expanding any given region (at best, it will stay
the same).

4.3. Formal Analysis. In this section, we prove that the proposed solution is self-stabilising
(cf. Definition 3.10, Definition 3.11) and that it represents an effective sampling operator lead-
ing to a bounded-error locally optimal regional partition (cf. Definition 3.13, Definition 3.17,
Definition 3.18).

Since our aggregate sampling must be a stabilising computation (see Definition 3.13), we
start by proving that our algorithm is self-stabilising. We do so by exploiting the framework in
[VAB+18, ABD+20], which defines a set of self-stabilising fragments which can be composed
together to yield self-stabilising operators (Definition 3.11). In particular, in [VAB+18]
it is proved that any closed expression in the self-stabilising fragment is self-stabilising, by
structural induction on the syntax of expressions and programs ([VAB+18], Appendix E,
Lemma 2): values and variables are already self-stabilised, a function application self-stabilises
(by the inductive hypothesis) if its arguments are self-stabilising, and similar considerations
can be done for the other program fragments.

Theorem 4.1 (AggregateSampler is self-stabilising).

Proof. In [ABD+20], it is proved that an expression of the following form (called a minimising
share pattern) is self-stabilising:

1 share(x <- e) { fR(minHoodLoc(fMP(x), e), x) }

where (see Section 5.2 in [VAB+18] and, especially, Section 4.7 and Figure 7 in [ABD+20]):

• fR(x, prev) is a “raising function”, with respect to partial orders, of x and prev (the value
of x at the previous round);

3Note that this operation, together with the share application, essentially provides the same structure as
the basic gradient algorithm discussed in Example 3.6.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:17

1 def updateDistance(x, metric) {

2 x.set(1, x.get(1) + metric())

3 x

4 }

5 def fR(x, prev) = x

6 def fMP(x, localId, radius, metric) =

7 expansionLogic(updateDistance(x, metric), localId, radius)

8 def minHoodLoc(e, loc) = min(loc, foldMin(discard(), e))

9 def AggregateSampler(mid, radius, symmetryBreaker, metric) {

10 let local = Sample(-symmetryBreaker, 0, mid)

11 areaCenter(

12 share (x <- local) {

13 let candidacies = x.set(1, x.get(1) + metric())

14 let filtered = expansionLogic(candidacies, mid, radius)

15 min(local, foldMin(discard(), filtered))

16 }

17)

18 }

(a) First step of the conversion to a minimising-share form: received has been renamed
to x; functions updateDistance, fR, fMP, and minHoodLoc have been defined.

1 // ... omitted ...

2 areaCenter(

3 share (x <- local) {

4 let filtered = fMP(x, mid, radius, metric)

5 min(local, foldMin(discard(), filtered))

6 }

7)

8 // ... omitted ...

(b) The update to the distance field and the call to expansionLogic have been replaced
by fMP.

1 // ... omitted ...

2 share (x <- local) {

3 let filtered = fMP(x, mid, radius, metric)

4 min(local, foldMin(discard(), filtered))

5 }.get(2)

6 // ... omitted ...

(c) Replace areaCenter with its definition (selection of the second element in the tuple).

1 // ... omitted ...

2 share (x <- local) {

3 minHoodLoc(fMP(x, mid, radius, metric), local)

4 }.get(2)

5 // ... omitted ...

(d) Replace the share body with a call to minHoodLoc.

Figure 7. Syntactic steps for passing from Figure 6 to Figure 8.

• fMP is a monotonic progressive function of x, which can take further arguments as far as
they are self-stabilising expressions that do not contain the share-bounded variable x; and

29:18 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

1 def updateDistance(x, metric) {

2 x.set(1, x.get(1) + metric())

3 x

4 }

5 def fR(x, prev) = x // raising function

6 def fMP(x, localId, radius, metric) = // monotonic progr.

7 expansionLogic(updateDistance(x, metric), localId, radius)

8 def minHoodLoc(e, loc) = // minimum of loc and e’s values

9 min(loc, foldMin(discard(), e))

10 def AggregateSampler(mid, radius, symmetryBreaker, metric) {

11 let local = Sample(-symmetryBreaker, 0, mid)

12 share (x <- local) {

13 fR(minHoodLoc(fMP(x, mid, radius, metric), local), x)

14 }.get(2)

15 }

Figure 8. Protelis code from Figure 6 rewritten to conform to the minimising
share self-stabilising pattern as per the Proof of Theorem 4.1.

• minHoodLoc(e, loc) selects the minimum among the neighbours’ values of expression e

and the current device’s local value loc.

Now, the block of Protelis code (Figure 6) in Lines 15–24 can be rewritten as shown in
Figure 8 that conforms to the minimising share pattern, where:

• the raising function fR is an identity on the first parameter, which is a trivially valid raising
function (see Example 5.5 in [VAB+18]);

• function expansionLogic is a valid monotonic progressive function fMP of x, since it
transforms neighbours’ candidacies supporting the current device and those at a distance
farther than radius to the highest value for the data type (cf. discard()), leaving the
others unaltered; none of the provided additional arguments (id, radius, and metric)
contains the share-bounded variable x.

More gradually, the transformation can be obtained by:

(1) renaming received to x, and defining functions fR, fMP, and minHoodLoc (Figure 7a);
(2) realising that fMP is a valid replacement for the combination of distance field update and

call to expansionLogic and replacing accordingly (Figure 7b);
(3) replacing areaCenter with its definition (Figure 7c);
(4) replacing the share body with minHoodLoc, as they perform the same operation (Fig-

ure 7d);
(5) adding a call to fR, which is an identity function, does not alter the behaviour of the

code and leads directly to the code in Figure 8.

The other elements in the program are only operations on local data which are also
self-stabilising expressions. Since the AggregateSampler function consists exclusively of
self-stabilising expressions, it is in turn self-stabilising [VAB+18, ABD+20].

Theorem 4.2 (AggregateSampler is an effective sampling operator).

Proof. To prove that our algorithm represents an effective sampling operator Pη =
AggregateSampler, we have to prove that it yields, on any stabilising input field fi,
an output stabilising field fo of locally optimal regional partitions. As per Theorem 4.1, Pη

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:19

is self-stabilising, so on a stable input it will yield a stable output: let f s
o be its snapshot,

and f s
i the corresponding input.

On the one hand, accuracy is guaranteed since AggregateSampler ensures that no
device has path sampling error greater than η/2 from the leader: for the triangular inequality
property of metric spaces (m(a, b) ≤ m(a, c) + m(c, b)) this ensures that stable snapshot
distance µ does not overcome η.

On the other hand, for local optimality under error η and distance µ, there must
not exist two contiguous regions E′, E′′ ∈ regions(f s

o), with samplers δ′ and δ′′, where
µ(f s

i |E′∪E′′ , f s
o |E′∪E′′) ≤ η/2. Suppose two such regions exists, and let δ′ be stronger than

δ′′ (i.e., it has higher symmetry breaker). Then, the path sampling error between δ′ and δ′′

is necessarily higher than η/2, because of the steps 3 and 4 of the algorithm: in fact, if it
were smaller than η/2 then δ′′ would have followed δ′, and would not have been a leader (cf.
Figure 9).

η/2 η/2 << η

η/2 η/2 η/2η/2<< η

Figure 9. Examples of regional partitionings with efficiency 0.5. Notation:
black dots denote the leaders; the coloured areas denote regions; and the
red extension lines are used to denote the error-distances. Note how the
union of the green singleton region (associated to the weakest leader) with
its neighbouring regions would make the error-distance of the latter exceed
η/2—if that would not be the case, then the former region would not have
existed in the first place (cf. Theorem 4.2).

4.4. Cost analysis. Executing one cycle of the proposed algorithm requires operating over
the information received from all the neighbours, which is, of course, proportional to their
number. Operations within the share block (Lines 19–21 in Figure 6) are, indeed, operations
on fields: by the aggregate computing semantics, they are evaluated for each neighbour.
Thus, computationally, the cost of the algorithm is proportional to neighbourhood size: larger
neighbourhoods require more effort.

From the point of view of message size, the payload of the algorithm has two components:
the data type used to represent the sample, and, potentially, additional data that needs to
be shared to compute the result of the metric function. The former depends on the actual
types used for symmetryBreaker and leaderId, the latter on the type of distance returned by
metric.

For example, assuming a classic TCP/IPv6 network and devices with a single network
interface, we could use the local MAC address (6 bytes) as symmetryBreaker, the IP address
(16 bytes) as leaderId, and a 4-byte floating-point number as return type of metric, resulting
in a payload of 26 bytes per device per round. Additionally, however, further data might
have to be shared to compute the metric; for instance, if devices are equipped with a GPS,

29:20 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

they may compute distances by sharing their coordinates and using the Haversine algorithm.
Assuming a local sensor named gps, the Protelis code for such implementation of metric

could be:

1 def distanceWithGps() {

2 let latLong = env.get("gps")

3 haversine(latLong, nbr(latLong))

4 }

The nbr call would incur into an additional network cost, as the local position would be
shared with all neighbours. Assuming a couple of 4-bytes floating-point numbers for latitude
and longitude, that would result into an additional 8 bytes per device per round, bringing
the total up to 34 bytes from the initial 26 bytes. Notice, however, that this additional
cost could get nullified if the metric function is implemented in a way that does not require
additional data to be shared (for instance, by using the wireless signal strength as a proxy
for the distance, or by using the hop distance).

If the algorithm is implemented in an aggregate computing language, and no application-
specific optimisation is devised, an identifier for each interaction (share or nbr call) is attached
to the message, so the payload would also include the size of one or two identifiers (again,
depending on whether the metric requires data to be shared).

5. Evaluation

This section discusses the evaluation of the algorithm proposed in Section 4 against the
properties defined in Section 3 by means of simulation. We first present the evaluation
goals (Section 5.1), scenarios (Section 5.2), parameters (Section 5.3), evaluation metrics
(Section 5.4), and main implementation details (Section 5.5), and finally provide a discussion
of the results (Section 5.6). The whole experimental framework has been published as
permanently available artefacts [Pia22, Pia23b] in Zenodo, with instructions for replicating
the results.

5.1. Evaluation Goals. In this section, we validate the behaviour of the proposed effective
aggregate sampling algorithm. The goals of the evaluation are the following:

• stabilisation: we expect the algorithm to be self-stabilising (as per Definition 3.11 and
Theorem 4.1), and thus to behave in a self-stabilising way under different conditions;

• high information (entropy): we expect the algorithm to split areas with different mea-
surements, namely, to dynamically increase the number of regions on a per-need basis to
minimise the aggregate sampling error (as per Definition 3.16);

• error-controlled upscaling : we expect the algorithm to not abuse of region creation, but
to keep the minimum number of regions (hence of the largest possible size—efficiency)
required to maintain accuracy (as per Definition 3.17 and Theorem 4.2), intuitively,
grouping together devices with similar measurements.

Clearly, upscaling and high information density are at odds: maximum information is
achieved by maximising the number of regions, and thus assigning each device a unique region;
however, doing so would prevent any upscaling. On the other hand, the maximum possible
upscaling would be achieved when all devices belong to the same region, thus minimising
information. We want our regions to change in space “fluidly” and opportunistically tracking

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:21

the situation at hand, achieving a trade-off between upscaling and amount of information
(as per Definition 3.18).

5.2. Scenarios. We challenge the proposed approach by letting the algorithm operate on
synthetic and realistic scenarios.

In the synthetic scenarios, we use different deployments of one thousand devices and
different data sources. We deploy devices into a square arena with different topologies:

i) grid (regular grid): devices are regularly located in a grid;
ii) pgrid (perturbed/irregular grid): starting from a grid, devices’ positions are perturbed

randomly on both axes;
iii) uniform: positions are generated with a uniform random distribution;
iv) exp (exponential random): positions are generated with a uniform random distribution

on one axis and with an exponential distribution on the other, thus challenging device-
distribution sensitivity.

In all cases, we avoid network segmentation by forcing each device to communicate at
least with the eight closest devices. We simulate the system when sampling the following
phenomena:

i) Constant : the signal is the same across the space, we expect the system to upscale as
much as possible;

ii) Uniform: the signal has maximum entropy, each point in space has a random value, we
thus expect the system to create many small regions;

iii) Bivariate Gaussian (gauss): the signal has higher value at the centre of the network,
and lower towards the borders, producing a Gaussian curve whose expected value is
located at the centre of the network, we expect regions to be smaller where the data
changes more quickly;

iv) Multiple bivariate Gaussian (multi-gauss): similar to the previous case, but the signal
value is built by summing three bivariate Gaussian whose expected value is one third of
the previous Gaussian, and whose expected values are located along the diagonal of the
network (bottom-left corner, centre, top-right corner);

v) Dynamic: the system cycles across the previous states, we use this configuration to
investigate whether and how the proposed solution adapts to changes in the structure
of the signal.

In the realistic scenario, we use air quality data from the European Environment
Agency [Pia23a], and, specifically, the PM10 data from February 2020 (included) to May
2020 (excluded). We position the sensor stations in their correct position as reported by
the agency, and assume logical connectivity with close-by stations. We force each station to
communicate with at least the closest stations, and we ensure that no network segmentation
exists by enforcing full network reachability. This results in a much sparser network than
the synthetic ones, and whose variance in the number of neighbours is much higher: some
stations located in places far from geographical Europe (such as Réunion and other French
overseas departments) have very few connections (possibly, a single one), while sensors
located in dense urban areas can have dozens. To emulate energy-constrained devices, such
as LoRaWAN motes, we limit the operating frequency of each device to 1/1800Hz (namely,
one round every half hour on average).

29:22 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

5.3. Parameters. The proposed solution can be tuned by three main parameters: the leader
strength, the error tolerance, and the distance metric. In the experiments, we fix the error
tolerance to a constant value, while we choose among three different alternatives for the
leader strength and the distance metric.

For the leader strength parameter we use the local concentration of PM10 in the realistic
experiment, while in the synthetic one we consider:

i) value: the local value of the tracked signal s;
ii) mean: the neighbourhood-mean value of the tracked signal s, assuming N to be the set

of neighbours (including the local device), and si to be the value of the tracked signal
at device i ∈ N , the value is computed as:

M =

∑

i∈N

si

|N |

iii) variance: the neighbourhood-variance of the tracked signal s, assuming Mi to be the
neighbourhood-mean computed at device i ∈ N , the value is computed as:

∑

i∈N

(Mi − si)
2

|N |

For the metric, in the synthetic scenario, we consider:

i) distance: the spatial distance is used as distance metric;
ii) diff : assuming that si is the value of the tracked signal at device i, the distance between

two neighbouring devices a and b is measured as:

eab = eba = min(ϵ, |sa − sb|)

where ϵ ∈ R+, ϵ = 0 iff a = b, 0 < ϵ ≪ 1 otherwise, we bound the minimum value to
preserve the triangle inequality;

iii) mix : we mix the two previous metrics so that both the error and the physical distance
affect in the distance definition; i.e., assuming ab to be the spatial distance between
devices a and b, we measure the mix metric as:

ab · eab

For the realistic scenarios we use instead:

i) dist: the spatial distance is used as distance metric;
ii) distB: same as dist, but country borders are considered as barriers;
iii) σ(PM10): we weight the distance between neighbouring devices by a factor that depends

on the Air Quality Index (AQI) value at the device location—devices with more different
AQIs are considered more distant;

iv) σ(PM10)B: same as σ(PM10), but country borders are considered as barriers.

The idea is to challenge the algorithm by looking at how it behaves when operating on
a network with a sparser and more heterogeneous structure, as well as to investigate the
impact of arbitrary limits and non-linearities (e.g., the country borders) unrelated with
the underlying signal included in the expansion metrics. Figure 10 shows a snapshot in
time of the partitioning generated by the simulator in the realistic scenario for each of the
aforementioned metrics.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:23

(a) PM10 concentrations (darker
areas have higher PM10).

(b) Partitions computed using
dist.

(c) Partitions computed using
distB .

(d) Partitions computed using
σ(PM10).

(e) Partitions computed using
σ(PM10)B .

Figure 10. Snapshots produced by the simulator at the same moment.
Notice that the latter metrics (σ(PM10) and σ(PM10)B) are capable of
capturing and managing contiguous areas with similar levels of air quality,
tracking the underlying spatial structure of the signal.

5.4. Evaluation Metrics. We evaluate the system behaviour by considering the following
evaluation metrics. Assume, at any time instant, that a set D of devices is partitioned into a
set of regions R = R1 ∪ · · · ∪R|R|, where each Rr is a set of devices {Dr

1, . . . , Dr
|Rr|

}, and
each device Dr

d senses the local value of the tracked signal srd:

• Region count |R| (regions). Counting the regions provides an indication about efficiency
(Definition 3.17): more partitions should be expected in environments where the sampled
signal has higher entropy.

• Mean region size µR =
∑|R|

i=1
|Ri|/|R| (devices). Related to the region count, but density-

sensitive: when devices are distributed irregularly (as in the exp deployment, see Sec-
tion 5.2), we expect this metric to be less predictable.

• Standard deviation of the mean of the signal in regions σ(µs) (same unit of the signal).
This is a proxy for inter-region difference, with higher values denoting larger differences

29:24 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

between different regions. The mean signal inside region Rr is computed as:

µRr

s =

|Rr|
∑

i=1

sri

|Rr|

while the mean of the means of the signal is

µR
s =

∑|R|
i=1

µRi

s

|R|

0 50 100 150 200 250 300 350 400
time

0

100

200

300

400

|R
| (

re
gi

on
s)

|R| for diverse phenomena when scenario=exp
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

200

400

600

R
 (d

ev
ice

s)

R for diverse phenomena when scenario=exp

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

100

200

300

400

500

|R
| (

re
gi

on
s)

|R| for diverse phenomena when scenario=grid
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

200

400

600

R
 (d

ev
ice

s)

R for diverse phenomena when scenario=grid

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

100

200

300

400

500

|R
| (

re
gi

on
s)

|R| for diverse phenomena when scenario=pgrid
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

200

400

600

R
 (d

ev
ice

s)

R for diverse phenomena when scenario=pgrid

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

100

200

300

400

|R
| (

re
gi

on
s)

|R| for diverse phenomena when scenario=uniform
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

200

400

600

R
 (d

ev
ice

s)

R for diverse phenomena when scenario=uniform

multi
dynamic
constant
bivariate
uniform

Figure 11. Region count (left column) and size (right column) across de-
ployments and scenarios. The system behaves very similarly regardless of
the device disposition. As expected, the higher information density leads to
a larger number of smaller regions. The dynamic scenario shows that the
partitions change in response to changes in the signal.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:25

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=exp

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=exp
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=grid

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=grid

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=pgrid

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=pgrid
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=uniform

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=uniform
multi
dynamic
constant
bivariate
uniform

Figure 12. Standard deviation of the mean region value (left) and mean
standard deviation (right) across deployments and scenarios, indicating re-
spectively how much the regions readings differ from each other (the higher
the more different) and how the regions are internally similar (the lower the
more homogeneous are regions). The constant and uniform random signals
work as baselines: in the former case, very large areas gets formed, while in
the latter most regions count a single device (as expected). In the other cases,
inter-region differences is maximised (they get as high as the most extreme
case) keeping internal consistency under control.

thus

σ(µs) =

√

√

√

√

1

|R|

|R|
∑

i=1

(µRi
s − µR

s)
2

29:26 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

• Mean standard deviation of the signal in regions µ(σs) (same unit of the signal). This is
a proxy for the intra-region error. The lower this value, the more similar are the signal
readings inside regions, hence the lower the error induced by the grouping (Definition 3.16).
The standard deviation of the tracked signal inside region Rr is computed as:

σRr

s =

√

√

√

√

1

|Rr|

|Rr|
∑

i=1

(sri − µRr
s)2

thus

µ(σs) =

|R|
∑

i=1

σRi

s

|R|

• Standard deviation of the standard deviation of the signal in regions σ(σs) (same unit
of the signal). Proxy metric for the consistency of partitioning. Higher values suggest
that partitions have different internal error, hence behave differently (striving to satisfy
Definition 3.18). It is computed as:

σ(σs) =

√

√

√

√

1

|R|

|R|
∑

i=1

(σRr
s − µ(σs))2

5.5. Implementation and Reproducibility. We rely on an implementation coded in
the Protelis aggregate programming language [PVB15]. The simulations are implemented
in the Alchemist simulator [PMV13]. The data analysis leverages Xarray [HH17] and
matplotlib [Hun07].

In the synthetic scenarios, for each element in the Cartesian product of the device
deployment type, signal form, leader strength, and distance metric, an experiment was
carried out. Each experiment has been repeated 100 times with different random seeds,
resulting in multiple simulation runs per experiment. Random seeds control both the
evolution of the system (i.e., the order in which devices compute) and their position on the
arena (except for the regular grid deployment, which is not randomised).

For the realistic scenario, since the position of the devices is mandated by the real-world
deployment, we run 10 simulation repetitions for each experiment; in this case, the random
seed controls the evolution of the system (the order in which the devices compute).

The presented results are obtained from taking the average of the metrics across all
the repetitions; when a chart does not mention some parameters, then the results that are
presented are also averaged across all values the parameter may assume for the simulation
set. The experiment has been open sourced, publicly released45, documented, equipped with
a continuous integration system to guarantee replicability, and published as a permanently
available, reusable artefact [Pia22].

4https://github.com/DanySK/Experiment-2022-Coordination-Space-Fluid
5https://github.com/DanySK/experiment-2023-lmcs-pm10-pollution-space-sampling

https://github.com/DanySK/Experiment-2022-Coordination-Space-Fluid
https://github.com/DanySK/experiment-2023-lmcs-pm10-pollution-space-sampling

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:27

0 50 100 150 200 250 300 350 400
time

0

2

4

6

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=exp
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

1

2

3

4

5

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=grid
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

1

2

3

4

5

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=pgrid
multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

2

4

6

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when scenario=uniform
multi
dynamic
constant
bivariate
uniform

Figure 13. Intra-region partitioning homogeneity, measured as the standard
deviation across regions of the standard deviation of the signal inside regions.
Higher values denote that different regions are more heterogeneous, i.e., that
some have larger errors than others.

0 100 200 300 400 500 600
time

0

10

20

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=value

dynamic
multi
constant
bivariate
uniform

0 100 200 300 400 500 600
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=value
dynamic
multi
constant
bivariate
uniform

0 100 200 300 400 500 600
time

0

10

20

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=mean

dynamic
multi
constant
bivariate
uniform

0 100 200 300 400 500 600
time

0.0

2.5

5.0

7.5

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=mean

dynamic
multi
constant
bivariate
uniform

0 100 200 300 400 500 600
time

0

10

20

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=variance

dynamic
multi
constant
bivariate
uniform

0 100 200 300 400 500 600
time

0

2

4

6

8

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when leader sel.=variance

dynamic
multi
constant
bivariate
uniform

Figure 14. Effect of different policies for leader selection. The behaviour of
the system is similar regardless of the way the region leader is selected.

29:28 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=distance

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=distance

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

30

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=valuediff

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=valuediff

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0

5

10

15

20

25

30

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=combined

multi
dynamic
constant
bivariate
uniform

0 50 100 150 200 250 300 350 400
time

0.0

0.5

1.0

1.5

(
s)

(s
ig

na
l u

ni
t)

(s) for diverse phenomena when metric=combined

multi
dynamic
constant
bivariate
uniform

Figure 15. Effect of different error measurement metrics. The system is very
sensible to the metric used to accumulate error, which directly impacts the
way distance is perceived, thus determining the maximum size and number of
areas.

5.6. Results. The full analysis counts 637 charts; the interested reader can check them out
in the experiment repository. In this manuscript, we show the most relevant ones, that we
believe help to shed light on the behaviour of the proposed algorithm.

In Figure 11, we show that our implementation stabilises, since after a short transition all
values become stable. Obviously, in the dynamic case, these transitions are present throughout
the experiment. As expected, the aggregate sampler defines a number of regions that differs
depending on the underlying phenomenon under observation. From Figure 12 and Figure 13,
we notice that the system indeed tries to maximise inter-region differences and minimise
intra-region differences, thus effectively addressing the trade-off between high information
(entropy) and error-controlled upscaling (as per Definition 3.18). Finally, Figure 14 and
Figure 15 show how the algorithm reacts to changing parameters. As expected, while
modifying the leader selection policy has minimal impact on the behaviour of the system,
changing the error-distance metric greatly affects its behaviour. In all cases, we notice that
the driver signal with higher information entropy (uniform) generates a larger number of
smaller regions than all other signals, while the one with the lowest information entropy
(constant) always produces few (usually one) large regions. The reason is that the leader
selection impacts the originating point of a region, but it is its expansion (driven by the
metric) that ultimately determines its extension and shape.

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:29

2020-02-01 2020-03-01 2020-04-01 2020-05-01
time

50

100

150

200

250

300

|R
| (

re
gi

on
s)

PM10 in EU from 2020-02-01 to 2020-03-31: |R|

(PM10) (PM10)B dist distB

2020-02-01 2020-03-01 2020-04-01 2020-05-01
time

10

15

20

25

30

35

R
 (d

ev
ice

s)

PM10 in EU from 2020-02-01 to 2020-03-31: R

(PM10) (PM10)B dist distB

2020-02-01 2020-03-01 2020-04-01 2020-05-01
time

101

102

(
s)

(s
ig

na
l u

ni
t)

PM10 in EU from 2020-02-01 to 2020-03-31: (s)
(PM10)
(PM10)B

dist
distB

2020-02-01 2020-03-01 2020-04-01 2020-05-01
time

101

102

(
s)

(s
ig

na
l u

ni
t)

PM10 in EU from 2020-02-01 to 2020-03-31: (s)
(PM10)
(PM10)B

dist
distB

Figure 16. Region count (top left), mean region size (top right), intra-region
error (bottom left), and inter-region difference (bottom right) with different
metrics for the realistic experiment. When fed with a metric that considers
both distance and error appropriately, the algorithm is able to create regions
in a way that is both efficient and accurate. This is especially true for the
ability to maximise the difference among different regions (bottom right).
The algorithm is also robust to the presence of arbitrary-set limits, such as
the country borders: although introducing them as an impassable barrier
generates (with the same metric) a higher region count with a smaller mean
size (top charts), the quality of the solution is only marginally affected (bottom
charts).

These findings, coming from the analysis of the results produced by the synthetic
environments, are confirmed when real-world data is used instead. In Figure 16, indeed, we
see that the algorithm is very sensitive to the choice of the metric (as expected); yet, it is
pretty robust to the presence of arbitrarily-set spatial limits such as country borders: although
they inevitably lead to more regions of a smaller size, the key performance indicators (high
inter-regional difference and low intra-regional difference) remain pretty much unchanged.

6. Conclusions and Future Work

In this paper, we tackled the problem of defining an aggregate sampler sensitive to the spatial
dynamics of the phenomenon under observation. In particular, we wanted to minimise the

29:30 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

sampling error (minimum when all available sampling devices are used) while also minimising
the regions count—two contrasting goals.

We formalised the problem within the framework of event structures and field-based
coordination, suitable to represent situated, large-scale, and dynamic computations. We
thus designed a spatial adaptive aggregate sampler based on a leader election strategy that
dynamically creates and grows/shrinks sampling clusters (or regions) based on two main
control “knobs”: the error-distance metric and the leader strength. We proved that the
proposed algorithm is self-stabilising and enjoys a local optimality property. Through
simulation, the proposed algorithm is shown to satisfy the mentioned trade-off.

As measuring performance and efficiency of such an adaptive algorithm is far from trivial,
we exploited several metrics to validate intended behaviour. However, as a follow-up work we
would like to synthesize a single indicator able to measure both accuracy and efficiency, using
information theory such as those derived from entropy (e.g. mutual information). Also, we
are analysing openly available air pollution datasets to design new simulations based on real-
world data, to better emphasise the impact that our aggregate sampler could have for policy
making based on spatial phenomena. Finally, future work will be devoted to investigating
how space-fluid sampling can integrate with time-fluid aggregate computations [PCV+21].

Acknowledgment

This work has been supported by the MIUR PRIN 2017 Project “Fluidware” (N.
2017KRC7KT) and the EU FSE PON R&I 2014-2020.

References

[ABD+20] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli. Field-based
coordination with the share operator. Log. Methods Comput. Sci., 16(4), 2020. URL: https:
//lmcs.episciences.org/6816.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-time universality
of field calculus. In Coordination Models and Languages - 20th IFIP WG 6.1 International
Conference, COORDINATION 2018, Held as Part of the 13th International Federated Confer-
ence on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018.
Proceedings, volume 10852 of Lecture Notes in Computer Science, pages 1–20. Springer, 2018.
doi:10.1007/978-3-319-92408-3_1.

[ACDV17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. Compositional blocks for
optimal self-healing gradients. In 11th IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2017, Tucson, AZ, USA, September 18-22, 2017, pages 91–100. IEEE
Computer Society, 2017. URL: http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18,
doi:10.1109/SASO.2017.18.

[AVD+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. A higher-order
calculus of computational fields. ACM Transactions on Computational Logic, 20(1):1–55, jan
2019. doi:10.1145/3285956.

[BC02] Manish Bhardwaj and Anantha P. Chandrakasan. Bounding the lifetime of sensor networks
via optimal role assignments. In Proceedings IEEE INFOCOM 2002, The 21st Annual Joint
Conference of the IEEE Computer and Communications Societies, New York, USA, June 23-27,
2002, pages 1587–1596. IEEE Computer Society, 2002. doi:10.1109/INFCOM.2002.1019410.

[BC03] Seema Bandyopadhyay and Edward J. Coyle. An energy efficient hierarchical clustering algorithm
for wireless sensor networks. In Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies, San Franciso, CA, USA,
March 30 - April 3, 2003, pages 1713–1723. IEEE Computer Society, 2003. doi:10.1109/INFCOM.
2003.1209194.

https://lmcs.episciences.org/6816
https://lmcs.episciences.org/6816
https://doi.org/10.1007/978-3-319-92408-3_1
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1145/3285956
https://doi.org/10.1109/INFCOM.2002.1019410
https://doi.org/10.1109/INFCOM.2003.1209194
https://doi.org/10.1109/INFCOM.2003.1209194

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:31

[BC04] Seema Bandyopadhyay and Edward J. Coyle. Minimizing communication costs in hierarchically-
clustered networks of wireless sensors. Comput. Networks, 44(1):1–16, 2004. doi:10.1016/

S1389-1286(03)00320-7.
[BCC+21] Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric E. Severson,

and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In PODC
’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 33–44. ACM, 2021. doi:10.1145/3465084.3467898.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for the internet of
things. IEEE Computer, 48(9):22–30, 2015. URL: http://dx.doi.org/10.1109/MC.2015.261,
doi:10.1109/MC.2015.261.

[BVPD17] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. Self-adaptation to device
distribution in the internet of things. ACM Transactions on Autonomous and Adaptive Systems,
12(3):12:1–12:29, 2017. doi:10.1145/3105758.

[CMP+22] Roberto Casadei, Stefano Mariani, Danilo Pianini, Mirko Viroli, and Franco Zambonelli. Space-
fluid adaptive sampling: A field-based, self-organising approach. In Coordination Models and
Languages - 24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held as Part
of the 17th International Federated Conference on Distributed Computing Techniques, DisCoTec
2022, Lucca, Italy, June 13-17, 2022, Proceedings, volume 13271 of Lecture Notes in Computer
Science, pages 99–117. Springer, 2022. doi:10.1007/978-3-031-08143-9_7.

[Cox99] Louis Anthony Cox. Adaptive spatial sampling of contaminated soil. Risk Analysis, 19(6):1059–
1069, 1999. doi:10.1023/A:1007022409290.

[CPP+20] Roberto Casadei, Danilo Pianini, Andrea Placuzzi, Mirko Viroli, and Danny Weyns. Pulverization
in cyber-physical systems: Engineering the self-organizing logic separated from deployment. Future
Internet, 12(11):203, 2020.

[FRWZ07] Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. In-network aggregation techniques
for wireless sensor networks: a survey. IEEE Wirel. Commun., 14(2):70–87, 2007. doi:10.1109/
MWC.2007.358967.

[FSM+13] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli,
and Josep Lluís Arcos. Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput., 12(1):43–67, 2013. doi:10.1007/s11047-012-9324-y.

[GA14] Sahil Garg and Nora Ayanian. Persistent monitoring of stochastic spatio-temporal phenomena with
a small team of robots. In Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014, 2014. URL: http://www.roboticsproceedings.org/rss10/p38.html,
doi:10.15607/RSS.2014.X.038.

[GC09] Rishi Graham and Jorge Cortés. Cooperative adaptive sampling via approximate entropy max-
imization. In Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009,
combined withe the 28th Chinese Control Conference, December 16-18, 2009, Shanghai, China,
pages 7055–7060. IEEE, 2009. doi:10.1109/CDC.2009.5400511.

[HH17] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and datasets in Python. Journal of Open
Research Software, 5(1), 2017. doi:10.5334/jors.148.

[HP11] Yousef E. M. Hamouda and Chris I. Phillips. Adaptive sampling for energy-efficient collaborative
multi-target tracking in wireless sensor networks. IET Wirel. Sens. Syst., 1(1):15–25, 2011.
doi:10.1049/iet-wss.2010.0059.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science Engineering,
9(3):90–95, May 2007. doi:10.1109/MCSE.2007.55.

[LM07] Yen-Ting Lin and Seapahn Megerian. Sensing driven clustering for monitoring and control
applications. In 4th IEEE Consumer Communications and Networking Conference, CCNC 2007,
Las Vegas, NV, USA, January 11-13, 2007, pages 202–206. IEEE, 2007. doi:10.1109/CCNC.2007.
47.

[LVP11] Eun Kyung Lee, Hariharasudhan Viswanathan, and Dario Pompili. SILENCE: distributed
adaptive sampling for sensor-based autonomic systems. In Proceedings of the 8th International
Conference on Autonomic Computing, ICAC 2011, Karlsruhe, Germany, June 14-18, 2011, pages
61–70. ACM, 2011. doi:10.1145/1998582.1998594.

[LXZ+13] Zhidan Liu, Wei Xing, Bo Zeng, Yongchao Wang, and Dongming Lu. Distributed spatial
correlation-based clustering for approximate data collection in WSNs. In 27th IEEE International

https://doi.org/10.1016/S1389-1286(03)00320-7
https://doi.org/10.1016/S1389-1286(03)00320-7
https://doi.org/10.1145/3465084.3467898
http://dx.doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758
https://doi.org/10.1007/978-3-031-08143-9_7
https://doi.org/10.1023/A:1007022409290
https://doi.org/10.1109/MWC.2007.358967
https://doi.org/10.1109/MWC.2007.358967
https://doi.org/10.1007/s11047-012-9324-y
http://www.roboticsproceedings.org/rss10/p38.html
https://doi.org/10.15607/RSS.2014.X.038
https://doi.org/10.1109/CDC.2009.5400511
https://doi.org/10.5334/jors.148
https://doi.org/10.1049/iet-wss.2010.0059
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1145/1998582.1998594

29:32 R. Casadei, S. Mariani, D. Pianini, M. Viroli, and F. Zambonelli Vol. 19:4

Conference on Advanced Information Networking and Applications, AINA 2013, Barcelona, Spain,
March 25-28, 2013, pages 56–63. IEEE Computer Society, 2013. doi:10.1109/AINA.2013.26.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[MADB20] Yuanqiu Mo, Giorgio Audrito, Soura Dasgupta, and Jacob Beal. A resilient leader election

algorithm using aggregate computing blocks. IFAC-PapersOnLine, 53(2):3336–3341, 2020. doi:
10.1016/j.ifacol.2020.12.1497.

[MCP12] Muhammad F. Mysorewala, Lahouari Cheded, and Dan O. Popa. A distributed multi-robot
adaptive sampling scheme for the estimation of the spatial distribution in widespread fields.
EURASIP J. Wirel. Commun. Netw., 2012:223, 2012. doi:10.1186/1687-1499-2012-223.

[MHD21] Sandeep Manjanna, Ani Hsieh, and Gregory Dudek. Scalable multi-robot system for non-myopic
spatial sampling. CoRR, abs/2105.10018, 2021. URL: https://arxiv.org/abs/2105.10018,
arXiv:2105.10018.

[MMP+17] Diana Manjarres, Ana Mera, Eugenio Perea, Adelaida Lejarazu, and Sergio Gil-Lopez. An energy-
efficient predictive control for HVAC systems applied to tertiary buildings based on regression
techniques. Energy and Buildings, 152:409–417, October 2017. doi:10.1016/j.enbuild.2017.
07.056.

[MR04] Vivek Mhatre and Catherine Rosenberg. Design guidelines for wireless sensor networks: com-
munication, clustering and aggregation. Ad Hoc Networks, 2(1):45–63, 2004. doi:10.1016/

S1570-8705(03)00047-7.
[MSM18] Hossein K. Mousavi, Qiyu Sun, and Nader Motee. Space-time sampling for network observability.

CoRR, abs/1811.01303, 2018. URL: http://arxiv.org/abs/1811.01303, arXiv:1811.01303.
[MZ19] Imran Mahmood and Junaid Ahmed Zubairi. Efficient waste transportation and recycling:

Enabling technologies for smart cities using the internet of things. IEEE Electrification Magazine,
7(3):33–43, 2019. doi:10.1109/MELE.2019.2925761.

[Nag02] Radhika Nagpal. Programmable self-assembly using biologically-inspired multiagent control. In
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems part 1 - AAMAS’02. ACM Press, 2002. doi:10.1145/544741.544839.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and domains,
part I. Theor. Comput. Sci., 13:85–108, 1981. doi:10.1016/0304-3975(81)90112-2.

[ÖFL04] Petter Ögren, Edward Fiorelli, and Naomi Ehrich Leonard. Cooperative control of mobile sensor
networks: Adaptive gradient climbing in a distributed environment. IEEE Trans. Autom. Control.,
49(8):1292–1302, 2004. doi:10.1109/TAC.2004.832203.

[PCV+21] Danilo Pianini, Roberto Casadei, Mirko Viroli, Stefano Mariani, and Franco Zambonelli. Time-
fluid field-based coordination through programmable distributed schedulers. Logical Methods in
Computer Science, Volume 17, Issue 4, November 2021. doi:10.46298/lmcs-17(4:13)2021.

[PCV22] Danilo Pianini, Roberto Casadei, and Mirko Viroli. Self-stabilising priority-based multi-leader
election and network partitioning. In IEEE International Conference on Autonomic Computing
and Self-Organizing Systems, ACSOS 2022, Virtual, CA, USA, September 19-23, 2022, pages
81–90. IEEE, 2022. doi:10.1109/ACSOS55765.2022.00026.

[PCVN21] Danilo Pianini, Roberto Casadei, Mirko Viroli, and Antonio Natali. Partitioned integration and
coordination via the self-organising coordination regions pattern. Future Generation Computing
Systems, 114:44–68, 2021. doi:10.1016/j.future.2020.07.032.

[Pia22] Danilo Pianini. Danysk/experiment-2022-coordination-space-fluid: 0.5.0-dev08+67e7add, 2022.
URL: https://zenodo.org/record/6473292, doi:10.5281/ZENODO.6473292.

[Pia23a] Danilo Pianini. Aggregated pm10 data for europe, 2023. URL: https://zenodo.org/record/
7546591, doi:10.5281/ZENODO.7546591.

[Pia23b] Danilo Pianini. Danysk/experiment-2023-lmcs-pm10-pollution-space-sampling: 2.3.0, 2023. URL:
https://zenodo.org/record/7712978, doi:10.5281/ZENODO.7712978.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of computational
systems with ALCHEMIST. Journal of Simulation, 7(3):202–215, 2013. doi:10.1057/jos.2012.
27.

[Pra86] Vaughan R. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Program., 15(1):33–
71, 1986. doi:10.1007/BF01379149.

https://doi.org/10.1109/AINA.2013.26
https://doi.org/10.1016/j.ifacol.2020.12.1497
https://doi.org/10.1016/j.ifacol.2020.12.1497
https://doi.org/10.1186/1687-1499-2012-223
https://arxiv.org/abs/2105.10018
https://arxiv.org/abs/2105.10018
https://doi.org/10.1016/j.enbuild.2017.07.056
https://doi.org/10.1016/j.enbuild.2017.07.056
https://doi.org/10.1016/S1570-8705(03)00047-7
https://doi.org/10.1016/S1570-8705(03)00047-7
http://arxiv.org/abs/1811.01303
https://arxiv.org/abs/1811.01303
https://doi.org/10.1109/MELE.2019.2925761
https://doi.org/10.1145/544741.544839
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1109/TAC.2004.832203
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1109/ACSOS55765.2022.00026
https://doi.org/10.1016/j.future.2020.07.032
https://zenodo.org/record/6473292
https://doi.org/10.5281/ZENODO.6473292
https://zenodo.org/record/7546591
https://zenodo.org/record/7546591
https://doi.org/10.5281/ZENODO.7546591
https://zenodo.org/record/7712978
https://doi.org/10.5281/ZENODO.7712978
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1007/BF01379149

Vol. 19:4 SPACE-FLUID ADAPTIVE SAMPLING BY SELF-ORGANISATION 29:33

[PSS+13] Nathalie Peyrard, Régis Sabbadin, Daniel Spring, Barry W. Brook, and Ralph Mac Nally. Model-
based adaptive spatial sampling for occurrence map construction. Stat. Comput., 23(1):29–42,
2013. doi:10.1007/s11222-011-9287-3.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggregate programming. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April
13-17, 2015, pages 1846–1853, 2015. doi:10.1145/2695664.2695913.

[RHK+05] Mohammad H. Rahimi, Mark H. Hansen, William J. Kaiser, Gaurav S. Sukhatme, and Deborah
Estrin. Adaptive sampling for environmental field estimation using robotic sensors. In 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta,
Canada, August 2-6, 2005, pages 3692–3698. IEEE, 2005. doi:10.1109/IROS.2005.1545070.

[SAL+03] John A. Stankovic, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Jennifer C. Hou. Real-time
communication and coordination in embedded sensor networks. Proc. IEEE, 91(7):1002–1022,
2003. doi:10.1109/JPROC.2003.814620.

[SGAP00] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J. Pottie. Protocols for self-
organization of a wireless sensor network. IEEE Wirel. Commun., 7(5):16–27, 2000. doi:

10.1109/98.878532.
[SKS10] Piotr Szczytowski, Abdelmajid Khelil, and Neeraj Suri. Asample: Adaptive spatial sampling in

wireless sensor networks. In IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, SUTC 2010 and IEEE International Workshop on Ubiquitous and
Mobile Computing, UMC 2010, 7-9 June 2010, Newport Beach, California, USA, pages 35–42.
IEEE Computer Society, 2010. doi:10.1109/SUTC.2010.37.

[Tho90] Steven K. Thompson. Adaptive cluster sampling. Journal of the American Statistical Association,
85(412):1050–1059, December 1990. doi:10.1080/01621459.1990.10474975.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Engineering
resilient collective adaptive systems by self-stabilisation. ACM Transactions on Modeling and
Computer Simulation, 28(2):1–28, mar 2018. doi:10.1145/3177774.

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo
Pianini. From distributed coordination to field calculus and aggregate computing. Journal of
Logical and Algebraic Methods in Programming, 109:100486, December 2019. doi:10.1016/j.
jlamp.2019.100486.

[VS05] Reino Virrankoski and Andreas Savvides. TASC: topology adaptive spatial clustering for sensor
networks. In IEEE 2nd International Conference on Mobile Adhoc and Sensor Systems, MASS
2005, November 7-10, 2005, The City Center Hotel, Washington, USA, page 10. IEEE Computer
Society, 2005. doi:10.1109/MAHSS.2005.1542850.

[WH07] Tom De Wolf and Tom Holvoet. Designing self-organising emergent systems based on information
flows and feedback-loops. In Proceedings of the First International Conference on Self-Adaptive
and Self-Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007, pages 295–298.
IEEE Computer Society, 2007. doi:10.1109/SASO.2007.16.

[WKT11] Fang-Jing Wu, Yu-Fen Kao, and Yu-Chee Tseng. From wireless sensor networks towards cyber
physical systems. Pervasive Mob. Comput., 7(4):397–413, 2011. doi:10.1016/j.pmcj.2011.03.
003.

[YF04] Ossama Younis and Sonia Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. In Proceedings IEEE INFOCOM 2004, The 23rd Annual Joint Con-
ference of the IEEE Computer and Communications Societies, Hong Kong, China, March 7-11,
2004. IEEE, 2004. doi:10.1109/INFCOM.2004.1354534.

[YVP13] Jing Tao Yao, Athanasios V. Vasilakos, and Witold Pedrycz. Granular computing: Perspectives
and challenges. IEEE Trans. Cybern., 43(6):1977–1989, 2013. doi:10.1109/TSMCC.2012.2236648.

[YZMC20] Eun-Hye Yoo, Andrew Zammit-Mangion, and Michael G. Chipeta. Adaptive spatial sampling
design for environmental field prediction using low-cost sensing technologies. Atmospheric Envi-
ronment, 221:117091, 2020. doi:10.1016/j.atmosenv.2019.117091.

[ZGMB14] Sabri-E. Zaman, Manik Gupta, Raul J. Mondragón, and Eliane L. Bodanese. An eigendecom-
position based adaptive spatial sampling technique for wireless sensor networks. In IEEE 39th
Conference on Local Computer Networks, LCN 2014, Edmonton, AB, Canada, 8-11 September,
2014, pages 430–433. IEEE Computer Society, 2014. doi:10.1109/LCN.2014.6925809.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/s11222-011-9287-3
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1109/IROS.2005.1545070
https://doi.org/10.1109/JPROC.2003.814620
https://doi.org/10.1109/98.878532
https://doi.org/10.1109/98.878532
https://doi.org/10.1109/SUTC.2010.37
https://doi.org/10.1080/01621459.1990.10474975
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1109/MAHSS.2005.1542850
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1016/j.pmcj.2011.03.003
https://doi.org/10.1016/j.pmcj.2011.03.003
https://doi.org/10.1109/INFCOM.2004.1354534
https://doi.org/10.1109/TSMCC.2012.2236648
https://doi.org/10.1016/j.atmosenv.2019.117091
https://doi.org/10.1109/LCN.2014.6925809

	1. Introduction
	2. Motivation and Related Work
	2.1. Motivations, Goal, and Applications
	2.2. Related Work on Adaptive Spatial Sampling

	3. Distributed Aggregate Sampling: Model
	3.1. Computational Model
	3.2. Self-stabilisation
	3.3. Problem Definition

	4. Aggregate Computing-based Solution
	4.1. AggregateSampler Algorithm for Adaptive Spatial Sampling
	4.2. Aggregate Computing-based Implementation
	4.3. Formal Analysis
	4.4. Cost analysis

	5. Evaluation
	5.1. Evaluation Goals
	5.2. Scenarios
	5.3. Parameters
	5.4. Evaluation Metrics
	5.5. Implementation and Reproducibility
	5.6. Results

	6. Conclusions and Future Work
	Acknowledgment
	References

