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Spatially dependent mixture models via
the Logistic Multivariate CAR prior

Mario Beraha∗†, Matteo Pegoraro‡, Riccardo Peli‡and Alessandra Guglielmi∗

08 June 2021

Abstract

We consider the problem of spatially dependent areal data, where for each
area independent observations are available, and propose to model the density
of each area through a finite mixture of Gaussian distributions. The spatial de-
pendence is introduced via a novel joint distribution for a collection of vectors
in the simplex, that we term logisticMCAR. We show that salient features
of the logisticMCAR distribution can be described analytically, and that a
suitable augmentation scheme based on the Pólya-Gamma identity allows to
derive an efficient Markov Chain Monte Carlo algorithm. When compared
to competitors, our model has proved to better estimate densities in differ-
ent (disconnected) areal locations when they have different characteristics.
We discuss an application on a real dataset of Airbnb listings in the city of
Amsterdam, also showing how to easily incorporate for additional covariate
information in the model.

Keywords: Finite mixture models; spatial density estimation; logistic normal;
multivariate CAR models; Pólya-gamma augmentation; Airbnb

1 Introduction

In spatial statistics, it is often assumed that data in neighboring locations are likely
to behave more similarly than those that are far away. Thus, inference and prediction
methods have been developed to take into account spatial dependence. Spatial data
are classified into three main categories, according to Cressie (1992): geostatistical
data, for which an exact location is known for each observation, areal (or lattice)
data, when each observation is associated to a specific area or node in a lattice, and
point patterns, where the object of the inference is the event location. Examples of
the first are environmental applications (see Webster and Oliver, 2007) and geologi-
cal reservoir characterization for oil and gas recovery (see Pyrcz and Deutsch, 2014,
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for examples). A recent review paper on statistical models for areal data is Baner-
jee (2016), which focuses on disease mapping and spatial survival analysis. Point
patterns are often employed in ecology, as described in Velázquez et al. (2016). See
also the textbook by Banerjee et al. (2014) for data classification, applications and
statistical models and techniques for spatially dependent data.

1.1 Setup

We focus on areal data, and, in particular, we consider the problem of modeling data
from I different groups, where each group corresponds to a specific areal location.
More in detail, we assume that the spatial domain Ω is divided into I areas and,
for each area, there is a vector of observations yi = (yi1, . . . , yiNi) from the same
variable, each value yij corresponding to a different subject j in area i. The goal
of this manuscript is the proposal of a statistical model, for data {yi, i = 1, . . . , I},
accounting for dependence arising from spatial proximity while being flexible enough
to model data that do not fit standard parametric distributions. We further assume
that data, within each areal unit i, are independent and identically distributed (i.i.d.)
from an area-specific density fi; the problem we address is the joint estimation of
spatially dependent densities f1, . . . , fI . We take the Bayesian viewpoint and we
specify a prior for dependent densities (f1, . . . , fI) that encourages distributions as-
sociated to areas that are spatially close to be more similar than those associated
to areas that are far away. Relaxing the assumption of identically distributed ob-
servations within each area is straightforward in the regression context, i.e. when
covariates for each subject are available.

As motivating application, we consider publicly available data on Airbnb listings
in the city of Amsterdam (NL). Airbnb is the largest vacation rental marketplace.
In recent years it has been debated that Airbnb has deeply transformed the social
structure of major touristic cities, as Amsterdam (Van Der Zee, 2016), Barcelona
(Garcia-Ayllon, 2018) and several US cities (Wachsmuth and Weisler, 2018), driving
up property prices and disrupting communities. The application dataset consists of
more than 17, 000 listings spread over neighborhoods in Amsterdam. Our goal is to
predict the nightly price of a new listing, with information given by covariates, taking
into account the spatial dependence. Such a model can be of interest to a “new”
lessor wishing to rent their house or flat on Airbnb. The area-specific estimate of the
density might allow the lessor to understand the full market of renting apartments
in his/her neighborhood, unlike a simple point estimate of the average price. The
lessor might also understand if it is worth making home improvements in order to
get a higher rent or assessing, for instance, the posterior predictive probability of
the rent being above some threshold.

A peculiar feature of the municipality of Amsterdam is that three neighborhoods
are not connected to the rest of the city but among themselves (see, for instance,
Figure 6), i.e. there are two different connected components in the adjacency graph
of neighborhoods. It is likely that the nightly prices exhibit substantially different
behavior when comparing one component to the other. Hence, we want to build
a model that encourages sharing of information across neighboring areas, but does
not force densities belonging to different components to be similar a priori.
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Compared to more traditional spatial regression techniques such as eigenvector
spatial filtering (see Griffith et al., 2019, for a review), geographically weighted re-
gression (Brunsdon et al., 1998) or the models in the R package CARBayes (Lee,
2013), our approach does not make distributional assumptions (such as assuming
Gaussian-distributed responses) and our focus here is on density modeling and esti-
mation and density regression via mixture models.

1.2 Previous work on Bayesian spatial density modeling

To model our distributions we resort to the well established class of mixture models
(Fruhwirth-Schnatter et al., 2019), that are a classical tool for density estimation. In
the Bayesian nonparametric setting, since MacEachern (2000), a great effort has been
dedicated to modeling a set of related, though not identical, distributions. Dealing
with spatial processes, Gelfand et al. (2005) and Duan et al. (2007) developed a
spatial dependent Dirichlet process as random-effects distribution in the context
of point-reference data. The stick-breaking representation of the Dirichlet process
allows all the models built from it to be considered as infinite mixture models.
Starting from the stick-breaking representation of the dependent Dirichlet process
in the particular case of single atoms (atoms not indexed by covariates), Dunson and
Park (2008) proposed the kernel stick-breaking process mixtures; spatial extensions
of these type of mixtures have been developed to accommodate for general covariates
and spatial locations for geostatistical data, such as, e.g., Rodriguez and Dunson
(2011) and Ren et al. (2011). Jo et al. (2017) considered mixture models based
on species sampling priors where the spatial dependence is introduced through a
Gaussian multivariate conditional autoregressive (CAR, Besag, 1974) model on a
suitable transformation of the weights. Despite their focus being on point-referenced
data, their model can be easily extended to areal data, as we do in Sections 4.3 and
6 for a comparison with our approach. The idea of building spatial dependence in
mixture models through a CAR distribution on latent variables is also shared by Li
et al. (2015), where the authors propose an area-dependent Dirichlet process that
can also formally identify boundaries between areas, and Zhou et al. (2015), that use
the trick of normalization of CAR distributions to time-varying weights in a rather
complex application with focus on estimation of ambulance demand.

Despite the theoretical properties of Bayesian nonparametric mixtures, comput-
ing the posterior inference in this setting may yield computational issues. In fact,
typical MCMC algorithms here would need to marginalize out the infinite dimen-
sional distribution from the joint distribution of data and parameters, which might
not be possible for models exhibiting a complicate dependence structure such as
those mentioned above. As an alternative, finite-dimensional approximations of the
infinite mixture representation are typically used in the MCMC algorithms. How-
ever, as recently pointed out by Lijoi et al. (2020), the truncation procedure, for
some models, might yield unwanted assumptions on the prior distribution of the
number of clusters.
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1.3 Our contribution and outline

In this paper, we consider a finite mixture model, where the number H of compo-
nents is fixed. Finite mixtures are particularly suited for the problem of modeling
areal densities because (i) they adapt capturing the spatial dependence more than
nonparametric mixtures, mainly because the weights of the finite mixtures are not
forced to decrease exponentially fast to 0 as in many Bayesian nonparametric mix-
ture models, and (ii) posterior inference under finite mixtures is extremely simple
and admits efficient parallel code (unlike nonparametric models), thus helping our
model scaling up as the size of the dataset increases. See Frühwirth-Schnatter (2006)
and Celeux et al. (2019) for more insights on finite mixtures.

The first contribution of this work is the introduction of a joint distribution for a
collection w1, . . . ,wI of I vectors in the simplex SH , reflecting the areal proximity
structure in the distribution, through a logistic transformation of Gaussian multi-
variate CAR models. This distribution has been termed here the logistic MCAR
distribution. Other authors have considered similar tricks, e.g. Jo et al. (2017), who
build on the CAR model by Clayton and Kaldor (1987).

A second contribution of this work is the proposal of a finite Gaussian mixture
model for each of the I area-related densities, keeping in mind the flexibility of
the Gaussian mixtures to accurately approximate smooth densities. We let all the
mixtures share the same set of atoms, while introducing similarity between the
different mixtures through the logistic MCAR distribution, that we use as a prior
for the weights of the mixtures. Through simulated data examples and the Airbnb
application we show how specific features of the proposed model include (i) a sparse
mixture specification as meant in Malsiner-Walli et al. (2016) and (ii) densities
corresponding to areal units which belong to two different connected components in
the proximity graph may behave differently. We discuss this last particular point in
our data illustrations.

A third contribution of this paper is that we show how the full conditionals of the
mixture weights can be sampled using a Gibbs sampler based on the Pólya-Gamma
distribution, without resorting to Metropolis-Hastings steps, by exploiting a data
augmentation scheme. As discussed in Polson et al. (2013), this update can lead to
major improvements in the mixing of the chain. Our examples focus on continuous
responses and the Gaussian kernel, though extensions to different kernels can be
straightforwardly accommodated in our framework.

The rest of this article is organized as follows. Section 2 gives background on
finite mixture models and the geometry on the finite-dimensional simplex. Section 3
illustrates the definition and properties of the joint distribution of a collection of I
vectors in the simplex, taking into account the underlying spatial proximity matrix.
Our area-dependent mixture model is illustrated in Section 4.1, and the sparse mix-
ture specification is detailed in Section 4.2; Section 4.3 discusses on the differences
between our spatial prior and that in Jo et al. (2017). Section 5 sketches the Gibbs
sampler to compute the posterior and Section 6 presents results from two simula-
tion studies with comparison with competitor models. The application to Airbnb
Amsterdam is discussed in Section 7, where we propose two generalizations of our
area-dependent mixture model to include subject-specific covariates and relaxing the

4



identity in distribution assumption within each area. We conclude in Section 8 with
final comments and discussion. The Appendix collects the proofs for the theoretical
results, Monte Carlo simulations from the joint distribution of the I vectors in the
simplex, full description of the Gibbs sampler, as well as additional plots and tables
for the examples. Codes of our MCMC algorithm for simulated data and Airbnb
Amsterdam application has been implemented C++ and Python and is available at
https://github.com/mberaha/spatial_mixtures.

2 Preliminaries

2.1 Mixture Models

For any areal unit i = 1, . . . , I and subject j = 1, . . . , Ni, we assume observation
yij ∈ Y ⊂ Rp. In this paper, we fix p = 1, but multivariate responses can be
straightforwardly accommodated in our context. A flexible model for the density in
each area can be constructed by assuming a finite mixture, specifically

yij | wi, τ i
iid∼ fi(·) =

H∑
h=1

wihk(· | τih) j = 1, . . . , Ni (1)

where k(· | τ) is a density on Y for any τ ∈ Θ, and Θ is the parameter space. Each
vector wi = (wi1, . . . , wiH)T , the weights of the mixture (1), belongs to the H − 1
dimensional simplex SH , where

SH := {(z1, . . . , zH) ∈ RH : 0 ≤ zh ≤ 1, h = 1, . . . , H,
H∑
h=1

zh = 1} (2)

and τ i = (τi1, . . . , τiH)T are parameters in ΘH . In this paper, we refer to τ i and wi

as the atoms and the weights of the mixture fi.
Our goal is to introduce dependence between mixtures such that data in neigh-

boring areas are more likely to be modeled with similar distributions than data in far
areal units. A general mixture model like (1) would require to model jointly both the
atoms and the weights of all the mixtures, in order to obtain a dependence structure
suitable for spatial applications, which can be a challenging task in general, unless
we consider a very specific application. In our approach instead, borrowing ideas
from the single atom dependent Dirichlet processes, we constrain all the atoms across
the different areas to be equal, i.e. τ 1 = τ 2, . . . = τ I = τ , and focus only on the
weights of the mixtures. In this way, a sufficient condition for two different mixtures
to be similar is to have similar weights. In general, it is more difficult to define mix-
tures with area-dependent weights than generalizing to area-dependent weights and
atoms, since simulation algorithms for models based on standard mixture models
can usually be adapted with few modifications to dependent atoms.

When the goal of the inference is cluster estimation, the choice ofH might become
crucial. An alternative consists in assumingH random, including it in the state space
of the MCMC algorithm; see, for instance, Nobile (1994). However, inference in this
setting can be computationally intensive as it needs to rely either on specifically
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designed trans-dimensional MCMC moves (see Green, 1995; Richardson and Green,
1997), or to numerically evaluate infinite series, as in Miller and Harrison (2018) and
in the marginal sampler in Argiento and De Iorio (2019). On the other hand, sparse
mixture models, as meant in Malsiner-Walli et al. (2016), assume a large value for
H, larger than needed, and a prior assigning large mass to configurations where the
weights of the superfluous components assume values close to zero. This implies
that the prior number of non-empty components (i.e. components where at least
one observation is allocated to) is significantly smaller than H.

In Section 3 we propose a prior distribution for (w1, . . . ,wI), in such a way
that weights associated to close areas are more similar than weights associated to
areas farther away, by constructing a Markov random field for random vectors with
bounded sum. Moreover, by assuming a prior on the hyperparameters, we also show
that this prior can induce sparsity in the mixture (see Section 4.2) as in Malsiner-
Walli et al. (2016).

2.2 Geometry on the simplex SH

The simplex SH ⊂ RH defined in (2) is not a vector subspace of RH . However,
SH is a vector space when equipped with the so-called Aitchison geometry, that
defines the operation of perturbation (analogous of addition), powering (analogous
of multiplication by scalar) and inner product. If w,w1,w2 ∈ SH , α ∈ R we have

w1 ⊕w2 = C(w11w21, . . . , w1Hw2H) :=

(
w11w21∑H
i=1 w1iw2i

. . .
w1Hw2H∑H
i=1w1iw2i

)

α�w = C(wα1 , . . . , wαH) 〈w1,w2〉 =
1

2H

H∑
i,j=1

log
w1i

w1j

log
w2i

w2j

where C denotes the closure, or normalization (i.e. dividing each element by the
sum of all the elements) of a vector in RH . The symbols ⊕, � and 〈·, ·〉 denote
perturbation, powering and inner product, respectively.

Many maps from SH to RH−1 are available in the literature. For our purpose we
focus on the bijective additive log-ratio transformation (alr), defined by alr : w 7→ w̃:

w̃j = log
wj
wH

, j = 1, . . . , H − 1

and its inverse, w = alr−1(w̃) := C(ew̃1 , . . . , ew̃H−1 , 1), that is

wj =
ew̃j

1 +
∑H−1

h=1 ew̃h
, j = 1, . . . , H − 1, wH = 1−

H−1∑
h=1

wh =
1

1 +
∑H−1

h=1 ew̃h
. (3)

Observe that both maps are linear, i.e., for any w1,w2 ∈ SH , w̃1, w̃2 ∈ RH−1,
α ∈ R,

alr(w1 ⊕w2) = alr(w1) + alr(w2), alr(α�w1) = α alr(w1)

alr−1(w̃1 + w̃2) = alr−1(w̃1) + alr−1(w̃2), alr−1(αw̃1) = α� alr−1(w̃1).
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The alr transformation is often applied in the context of compositional data analysis,
where statistical inference for data in the simplex has been pioneered by Aitchison
(1986). In particular, this map was used in Aitchison and Shen (1980) to define
a new distribution on the simplex, the logistic-normal distribution. Formally, we
say that w = (w1, . . . , wH−1, wH := 1 −∑H−1

h=1 wh)
T ∈ SH follows the logistic-

normal distribution of parameters µ,Σ for µ ∈ RH−1, and Σ a positive definite
(H − 1)× (H − 1) matrix if

w̃ = alr(w) =

(
log

w1

wH
, . . . , log

wH−1

wH

)T
∼ NH−1(µ,Σ)

where NH−1(µ,Σ) denotes the (H−1)-dimensional Gaussian distribution with mean
µ and covariance matrix Σ. The logistic-normal distribution offers a rich way to
model data embedded on the simplex and is particularly suited for our application.
Although moments of this distribution exist, their expression is not available analyt-
ically. However, when modeling data in the simplex, one is usually more interested
in the pairwise ratios of the components than on the values of the components them-
selves. In turn, these expected values and covariances are available analytically and
given by

E
[
log

wi
wj

]
= µi − µj, Cov

(
log

wi
wj
, log

wl
wk

)
= Σil + Σjk − Σik − Σjl

where Σil denotes the (i, l)-element of the matrix Σ.

3 The logistic MCAR distribution

In this section, we introduce and describe a joint distribution for a collection of
vectors in the simplex w1, . . . ,wI ∈ SH , reflecting the areal proximity structure in
the distribution. For each pair of areas i and j, gij ∈ [0, 1] indicates the amount
of spatial proximity between them. In the rest of the paper we assume gij = 1 if i
and j are neighbors, i.e. the areas share at least a border, and gij = 0 otherwise,
but we could consider more general settings. By definition, gii = 0 for all i. The
matrix G = [gij]

I
i,j=1 is called the proximity matrix and we assume it known. It

will be useful, for our analyses, to identify the matrix G with a graph, whose nodes
are denoted by indexes 1, . . . , I and the links are given by the gij’s, i.e. there is a
link between nodes i and j if, and only if, gij = 1. We define the joint distribution
of w1, . . . ,wI introducing the transformed vectors w̃i := alr(wi), i = 1, . . . , I and
assuming a joint Gaussian conditional autoregressive distribution for (w̃1, . . . , w̃I).

Conditionally autoregressive (CAR) models are a special case of Markov random
fields. In general, if {X1, . . . , Xn}, with Xi ∈ R, is a set of random variables, to
define a CAR model over X1, . . . , Xn, one usually starts by assigning the conditional
distribution of each Xi given all the others X−i := {X1, . . . , Xi−1, Xi+1, . . . Xn}.
The set of conditional distributions, under assumptions, identifies the unique joint
distribution of (X1, . . . , Xn). The class of CAR models is large; see further detail in
Besag (1974), Cressie (1992), Cressie (1993), Kaiser and Cressie (2000), Cressie and
Wikle (2015) and references therein, just to include a few papers.
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We generalize the univariate CAR model in Leroux et al. (2000) assuming the
following multivariate conditionally autoregressive (MCAR) model:

w̃i | w̃−i,Σ, ρ ∼ NH−1

(
ρ
∑I

j=1 gijw̃j + (1− ρ)m̃i

ρ
∑I

j=1 gij + 1− ρ
,

Σ

ρ
∑I

j=1 gij + 1− ρ

)
, i = 1, . . . , I,

(4)
where Σ is a definite positive (H−1)×(H−1) matrix and m̃i ∈ RH−1 for all i. When
H − 1 = 1, (4) gives the prior proposed in Leroux et al. (2000). If ρ ∈ (−1, 1), the
joint distribution is well defined and unique (for a proof, see Gelfand and Vounatsou,
2003). From (4) we have that w̃ = vec(w̃1, . . . , w̃I), the vectorization of the weights,
is such that

w̃ ∼ NI(H−1)

(
m̃,
(
(F − ρG)⊗ Σ−1

)−1
)

(5)

where ⊗ denotes the Kronecker product, m̃ = vec(m̃1, . . . , m̃I) and F = diag(
ρ
∑

j g1j + 1 − ρ, . . . , ρ
∑

j gIj + 1 − ρ). The matrix A−1(G, ρ) := (F − ρG) =

ρ (diag(G1I)−G) + (1− ρ)II in (5), where 1I ∈ RI denotes the vector of ones and
II denotes the I × I identity matrix, has a key role here. When ρ = 1, (4) reduces
to the intrinsic CAR model, and the joint density of (w̃1, . . . , w̃I) is improper. If
ρ = 0, the w̃i’s are independent. See below for further properties of A(G, ρ).

We say that the sequence of vectors w1, . . . ,wI follows a logistic multivariate
CAR distribution of parameters ρ and Σ on a graph G if the transformed variables
(w̃1, . . . , w̃I), w̃i = alr(wi), follow the MCAR model in (4) (or (5)). We write
(w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G).

One key aspect is the relation that (4) induces over the vectors on the sim-
plex rather than on their alr-transformation. This is made clear by the following
proposition.

Proposition 1 If (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G), then, for any i =
1, . . . , I,

E
[
log

wil
wik
| w−i

]
= log

((
mil

mik

)1−ρ ∏
j∈Ui

(
wjl
wjk

)ρ)(ρ|Ui|+1−ρ)−1

l, k = 1, . . . , H

(6)
where Ui = {j : gij > 0}, |Ui| =

∑
j gij and mi = (mi1, . . . ,miH), with mi =

alr−1(m̃i).

Proof: see Appendix A.

There are several immediate but interesting properties of (6). First of all, if ρ = 1,
(6) means that the expected value of (the logarithm of) the ratios between the
components of wi is equal to (the logarithm of) the geometric mean of the corre-
sponding ratios of the components of the vectors wj nearby. If ρ = 0, the right
hand side of (6) reduces to log(mil/mik), which is to be expected since, in this case,
the wi’s would not be spatially correlated. Instead, in case 0 < ρ < 1, which we
assume throughout the paper (see Section 4.1), we can interpret the right hand side
of (6) as a weighted mean on the simplex, according to Aitchison geometry, of two
components: the first component mil/mik corresponding to the mean m and the
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second
∏

j∈Ui (wjl/wjk) taking into account the spatial dependence. In other words,
Proposition 1 provides the same interpretation of (4) but for ratios between com-
ponents of the anti-transformed vectors in the simplex, if we look at them through
the Aitchison geometry.

Starting from the joint distribution in (5), we can also study the marginal co-
variance of wi,wj in (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G) for i 6= j. We point
out that the matrix A(G, ρ)−1, introduced above, is a strictly diagonal dominant
matrix (i.e. for each row, the absolute value of the diagonal entry is larger than or
equal to the sum of the absolute values of the off-diagonal entries in that row) with
negative off-diagonal entries, and, hence, its inverse A(G, ρ) has elements which are
all positive.

Proposition 2 If (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G), then

Cov

(
log

wil
wim

, log
wjl
wjm

)
= Aij (Σll − 2Σlm + Σmm) i, j = 1, . . . , I l,m = 1, . . . , H − 1

Cov

(
log

wil
wiH

, log
wjl
wjH

)
= AijΣll i, j = 1, . . . , I l = 1, . . . , H − 1

In particular, Cov
(

log wil
wim

, log
wjl
wim

)
= 0 if areas i and j belong to different connected

graph components of the graph G.

Proof: see Appendix A.

Observe that the logisticMCAR distribution of (w1, . . . ,wI) is not exchangeable,
i.e. it is not true that L(w1, . . . ,wI) and L(wπ({1}), . . . ,wπ({I})) are equal for any
(π({1}), . . . , π({I})) permutation of (1, . . . , I). Here, as in the rest of the paper, the
distribution of a random element y is denoted by L(y). Nonetheless, the logisticM-
CAR distribution induces exchangeable priors on all the fully connected components
of the graph G.

The logisticMCAR distribution shares the same limitation as the logistic-normal
one, i.e. moments are not available in closed-form expressions. In Appendix B we
report an extensive Monte Carlo (MC) simulation where we compute the covariance
between different components of the vectors of weights and we draw a comparison
between the logisticMCAR and the Dirichlet distributions.

4 Spatially dependent mixture models

We return to the problem of formalizing a Bayesian model for I groups of data
(y1, . . . ,yI), yi = (yi1, . . . , yiNi), i = 1, . . . , I. As mentioned at the beginning of
Section 3, we assume that each vector yi is associated to an area i and that for each
pair of areas i and j, gij = 1 if i and j are neighbors and gij = 0 otherwise.

9



4.1 The finite mixture model with spatially dependent weights

Let the proximity matrix G = [gij]
I
i,j=1 be fixed. We assume that y1, . . . ,yI , condi-

tioning to w1, . . . ,wI and τ , are independent and that, for each i = 1, . . . , I,

yij | wi, τ
iid∼

H∑
h=1

wihN (· | τh) j = 1, . . . , Ni, (7)

τh
iid∼ P0 h = 1, . . . , H (8)

(w1, . . . ,wI) | ρ,Σ ∼ logisticMCAR(m̃, ρ,Σ;G) (9)

Σ ∼ Inv-Wishart(ν, V ) (10)

ρ ∼ π(ρ) (11)

where wi = (wi1, . . . , wiH)T ∈ SH−1 (see (2)) and m̃ = vec(m̃1, . . . , m̃I) ∈ RI(H−1).
As often considered, we study the case where the kernel in the mixture (7) is the
Gaussian density with mean µh and variance σ2

h, so that τh = (µh, σ
2
h) and P0 is a

probability distribution over Θ = R × R+. Specific choices of P0 are discussed in
Sections 6 and 7. We consider independent marginal priors for ρ and Σ. Moreover,
the support of the prior of ρ is typically assumed to be (0, 1) to induce the similarity
of spatial neighbors (see, for instance, Gelfand and Vounatsou, 2003, Section 4).

Model (7) - (11) assumes that each group of data yi is modeled as a (finite)
mixture of Gaussian kernels. Specifically, observations within each group are i.i.d
given the weights and the atoms of the mixtures, while conditionally to all the
mixture weights w1, . . . ,wI , observations in different groups are independent. All
the I mixtures share the same set of atoms τ1, . . . , τH , which are assumed i.i.d from
the base measure P0, a continuous distribution on Θ = R × R+. The dependence
between mixtures in different areal units is induced only by the prior on the mixture
weights.

In order to derive a Gibbs sampler for our model, we introduce the latent vari-
ables sij, one for each observation, indicating to which component of the mixture
observations are allocated to, and rewrite (7) as

yij | sij = h, τh
ind∼ N (· | τh) j = 1, . . . , Ni, i = 1, . . . , I (12)

p(sij = h | wi) = wih h = 1, . . . , H (13)

A component in the mixture is said empty if it has not been allocated to any obser-
vation. Here, and in the whole paper, cluster denotes any allocated component and
the number of clusters is the number of allocated components. It is clear from (12)-
(13) that the allocated and empty components, as well as the number of clusters,
are random variables, with marginal prior distributions induced by our model.

We complete the specification of our model by adopting a marginal prior on m̃
that encourages sparsity in the mixtures. We discuss this choice in detail in the next
Section 4.2.

4.2 Sparse mixtures via a prior on m̃

Generally, a sparse mixture is obtained when the number of clusters is smaller than
the total number of components H. There are two well-known strategies to obtain
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sparse mixtures in the Bayesian context. The first one assigns a prior on the weights
that forces them to be stochastically decreasing, so that the “last” weights are
very small and the corresponding mixture components are seldom allocated. The
alternative strategy consists in assigning a prior for the weights that concentrates
its mass around the edges of the simplex in a symmetric way, as it is the case of the
sparse Dirichlet distribution, i.e. a Dirichlet distribution with all the parameters
equal to α, with 0 < α < 1. In the latter case, there is no preferential ordering
of the weights and any mixture component could be allocated. We think that the
first approach might not fit spatial applications, in particular when the proximity
graph G has disconnected components, since assuming decreasing weights for all the
mixtures would force data from two disconnected components to be always sampled
from the few components with larger weights, and hence to behave always similarly.

Here, we show how we can mimic the sparse Dirichlet distribution for the weights,
by assuming a suitable prior on parameters m̃i’s in our model. We start by observing
that in the mixture model (7) for the i-th area, if coordinate values in the vector
m̃i in (9) are very different among each other, this would force some components
h in (7) to be more often allocated than others, being their weights larger than the
others (in mean). Hence, we induce “symmetric” sparsity in our marginal prior for
the weights by assuming m̃i ∼ NH−1(0, η2I). Observe that, since the distribution
of m̃i is centered in 0 and isotropic, we are not forcing, marginally, any specific
ordering on the weights.

To understand the role of η2, let us consider an illustrative example when H = 3
and I = 1. Let m1 = alr−1m̃1 and consider d12 = (log(m11/m1H)− log(m12/m1H))2,
which corresponds to the distance between m11 and m12 in the Aitchison geometry.
We may consider d12 as a plug-in estimator of the distance between w11 and w12.
The largest values of d12 are obtained when one between m11, m12 and m1H is
approximately 1 and the others are close to zero. Moreover, from m̃1 ∼ N2(0, η2I),
we have that d12/(2η

2) has chi-squared distribution with one degree of freedom.
Hence the random variable d12 is stochastically increasing with η2.

This feature holds also for larger values of H as shown in Figure 2, where the
behavior of wi, for different values of η2, is illustrated. We conclude that η2 is a
sparsity tuning parameter and sparsity of the wi’s is obtained for larger values of
η2. Note that this is the opposite behavior of other sparsity priors, such as the
double exponential or the horseshoe (Bhadra et al., 2019), where a distribution with
significant mass near zero is assumed. Because our parameters are transformed
through the logistic map (3), assuming a prior concentrated in zero for m̃ would
result in a prior concentrated on (1/H, . . . , 1/H) for w, of course this being far from
sparsity.

Assuming each m̃i in the prior specification (4) to be random and i.i.d would
imply that, a priori, the mixture weights could be extremely different in neighboring
areas. However, this is not what we aim at modeling in applications, where we
typically assume that data in close areal units follow similar distributions. On the
other hand, assuming m̃1 = . . . = m̃I seems overly restrictive, since we would loose
the property that two connected graph components in (w̃1, . . . , w̃I) are independent
under CAR distributions when marginalizing out the only shared parameter m̃1.
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Hence we propose to extend the logisticMCAR(m̃, ρ,Σ;G) in (9) assuming

{m̃i = m̃j = m̃Cm iff i, j ∈ Cm for some m} (14)

where C1, . . . , Ck denote the connected components of graph G, i.e. all the pa-
rameters m̃is are assumed common within each connected component. For such
parameters, we assume

m̃C1 , . . . m̃Ck

iid∼ NH−1(0, η2I). (15)

4.3 Comparison with competitor models

As mentioned in the Introduction, we have defined a prior for (w1, . . . ,wI), allowing
weights associated to close areas to be more similar than weights associated to areas
farther away, through the logistic transformation of a Gaussian CAR model. The
idea is not new in the literature, and the prior for the mixture weights of area-
dependent densities in Jo et al. (2017) is closely related to our prior. We discuss
the differences between the two priors in this section and we further compare their
features by fitting simulated data to the two models in Section 6.1.

We briefly introduce the class of spatially dependent species sampling mixtures
in Jo et al. (2017), who define the weights in the mixtures to be spatially dependent,
modeling them from a Gaussian CAR distribution, as we do. Their focus is on geo-
referenced data (with multiple observations in each geographic location), and they
propose two different CAR specifications, namely the Mercer CAR and the Clayton-
Kaldor CAR (Clayton and Kaldor, 1987) priors. Since it is not straightforward to
extend the Mercer CAR formulation to areal data as it requires the computation of
a geographical distance rather than defining a proximity matrix, we only consider
the Clayton-Kaldor CAR species sampling model in Jo et al. (2017) for comparison.
We have shown in Section 4.2 that our marginal prior can mimic the sparse Dirichlet
distribution by assuming m̃ in the logisticMCAR(m̃, ρ,Σ;G) to be random. Below,
we discuss how sparsity is obtained also in the spatially dependent species sampling
model in Jo et al. (2017), but only in some sort of “asymmetric” manner, and how
this impacts the modeling of different connected components in the graph G.

In the following, we refer to the prior in Jo et al. (2017) as CK-SSM. Instead of
jointly modeling the transformed weights in each location, Jo et al. (2017) assume
independent univariate CAR model for (a transformation of) the weights associated
to each component of the mixture in the different areas. Recall that they assume
a mixture with infinite components, i.e., h = 1, 2, . . .. With our notation, let νh =
(w1h, . . . , wIh), then the CK-SSM prior for νh is

ν̃h
ind∼ NI(θ̃h, τ 2(I − ρG)) h = 1, 2 . . . , νih = wih =

eν̃hi∑
j eν̃ji

i = 1, . . . , I (16)

In order to guarantee that the denominator of the fraction in (16) is finite, Jo

et al. (2017) assume that θ̃h is a vector with all components equal to log{1 − (1 +
eb−ah)−1}, a and b being positive hyperparameters. In force of that, the weights ν̃hi
are stochastically decreasing with h for each area i. This ordering is preserved by
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Figure 1: Scatterplots of N = 100, 000 MC draws (in blue) from the marginal priors
of the weights in one single area with H = 3, under our logisticMCAR prior (left)
and (16) in Jo et al. (2017) (right). White/gray areas represents low-density zones
and dark blue zones high-density ones.

the exponential and normalization transformations, so that wih will be stochastically
decreasing with h as well, for each i. Note also that (16) makes w non-identifiable.

We start by considering I = 1 area and drop the subscript i. As in Jo et al. (2017),
we truncate (16) to the first H terms for computation. Figure 1 shows a comparison
of the marginal priors of the weights in the mixture (7) with H = 3, under our
logisticMCAR prior and (16) introduced in Jo et al. (2017). In particular, for our
logisticMCAR(m̃, ρ,Σ;G) prior we have assumed m̃ ∼ N2(0, 9I), w̃ ∼ N2(m̃, I),
that is (5) with Σ = I, while we fix θ̃h = log{1− (1 + e1−h)−1}, h = 1, . . . , H, in (16)
as in Jo et al. (2017) (a = b = 1) and τ 2 = 1.

We compare the priors via N = 100, 000 MC draws. Figure 1 shows the scat-
terplots of the draws of the two marginal priors. In particular, the draws from our
prior (left panel) recover the “sparse” symmetric Dirichlet prior with all parame-
ters equal to α < 1; the draws are symmetrically concentrated around the edges of
the simplex, and give significant mass to locations near the vertexes. On the other
hand, the draws from the CK-SSM prior clearly show asymmetry in favor of the first
component, also giving negligible mass to neighborhoods of the vertices. When the
number H of components in the mixture (7) is larger, we can compare the priors via
two functionals by computing (i) the number of active components (H(a)), that we
define as the components associated to weights greater than 0.01, i.e. the cardinality
of the set {h : wh > 0.01}, and (ii) the probability for each component of the vector
w ∈ SH to be greater than the threshold 0.05. We fix H = 30 and, simulating
N = 10, 000 MC draws as before, we plot the marginal prior distributions of these
functionals under our logisticMCAR prior (Figure (2a)) and (16) in Jo et al. (2017)
(Figure (2b)), for different values of the hyperparameters in the priors. From both
left panels, displaying the marginal priors of H(a) (as continuous lines to help seeing
the differences), it is clear that the two models may induce different types of prior
behaviors. However, when considering the right panels, displaying, for each index
h = 1, . . . , H, the probability that wh > 0.05, it is clear that, while under our prior,
for each degree of sparsity η2, the probability of inclusion of a single component
does not show a preferential ordering, this probability decreases with h under the
CK-SSM prior. Going back to the prior in (15), observe how this model specification
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Figure 2: Prior distribution of the number of active components (left) and the
probability for wh to be greater than 0.05 (right) under our prior (top row) and
prior (16) in Jo et al. (2017) (bottom row). Here H = 30.

gives a major difference with the mixture model in Jo et al. (2017).
This is particularly relevant if we aim at considering the context where areal units

are connected through the graph G, but there are at least two different connected
components, as we will have in the application in Section 7. Intuitively from the dis-
cussion above, CK-SSM would still force the different connected components in the
graph to behave similarly, because of the parameter θ̃ shared by all the mixtures;
see (16). We tested this scenario more in detail by considering a spatial domain
subdivided in four areas with two connected components {1, 2}, {3, 4}. Figure 12
shows the total variation distance for (w1,w2) and (w1,w4) under the logisticM-
CAR and CK-SSM priors, having fixed hyperparameters as above and ρ = 0.95.
It is clear that, as sparsity increases, the distance between w1 and w4 increases
under the logisticMCAR but decreases under the CK-SSM, showing how imposing
a sparse behavior in the CK-SSM prior forces similar distributions in disconnected
components of the graph. See also Figure 13 for a visual representation of draws
from the prior distributions. This effect becomes increasingly more evident as the
sparsity in each mixture is increased, as shown in Figure 2b. On the other hand, our
model allows for the required level of sparsity in each mixture without forcing the
different connected components in the graph to behave similarly. For this reason,
we believe we have introduced a more flexible model for jointly estimate spatially
dependent densities than Jo et al. (2017), at least for applications where different
connected components in the graph should exhibit different behaviors.

We will provide comparison also with the Hierarchical Dirichlet Process (HDP)
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mixture model in Teh et al. (2006) in Section 6. To keep the paper self-contained
as much as possible, we report the HDP mixture model as follows

yij | Fi iid∼
∫

Θ

k(yij | τ)Fi(dτ), {Fi}Ii=1 | G
iid∼ DαG G ∼ DβP0 (17)

where DβP0 denotes the Dirichlet measure, i.e. the distribution of a random proba-
bility measure that is the Dirichlet process with measure parameter βP0. We assume
the kernel k(· | τ) as the Gaussian density on Y for τ = (µ, σ2) as in (7). Thanks
to the stick-breaking representation of the Dirichlet process, it is possible to rewrite
the likelihood in (17) as

yij | {wih}∞h=1, {φ∗ih}∞h=1
iid∼

∞∑
h=1

wihk(yij | φ∗ih)

where φ∗ih | G
iid∼ G in (17) and {wih} for each i are a sequence of non-negative weights

summing to 1. Moreover, since each Fi, conditionally to G, is an independent draw
from the Dirichlet process prior with discrete base measure G, this yields that all
the atoms are shared across all populations. This means that the set of the unique
values in {φ∗ih}∞h=1 is equal to the set of unique values in {φ∗jh}∞h=1 for j 6= i and
coincides with the set of atoms in G. Hence, denoting by {τh}∞h=1 the atoms in G, the
HDP mixture model defines a joint probability distribution for random probability
measures with the same support points, as in our model. This is the motivation to
consider the HDP mixture model as the “natural competitor” of ours.

5 The Gibbs Sampler

We illustrate a MCMC algorithm to sample from the posterior distribution of our
model (7)-(11) and (14) - (15). The state is described by parameters τ = (τ1, . . . , τH),
(w̃1, . . . , w̃I), where w̃i = alr(wi), i = 1, . . . , I, {sij}ij (j = 1, . . . , Ni) in (12)-(13)
and m̃C1 , . . . m̃Ck in (15).

We use the following notation: given the sequence of vectors w1, . . . ,wI , we
denote by w−i the same sequence where the i–th vector has been removed. Given
a single vector wi, we denote by wi,−h the same vector where the h-component as
been removed. Finally, for the matrix Σ, let Σij denote the (i, j)-element; moreover,
Σi denotes its i–th row (as a vector) so that Σi,−j denotes the i–th row where the
j–th element has been removed and Σ−h,−k denotes the (H − 2) × (H − 2) matrix
there the h–th row and k–th column have been removed.

There are two “non-standard” steps in the Gibbs sampler: the update of the
transformed weights w̃i and the update of their means m̃C1 , . . . m̃Ck . Here, we only
describe the full conditionals of each w̃i. The full conditional of m̃Ci is a multivariate
Gaussian distribution. See Appendix C for more detail on it, together with the other
standard full conditionals.

We begin by writing the full conditional for w̃ih, for each i and h, as

L(w̃ih | w̃−i, w̃i,−h, rest) ∝ π(w̃ih | w̃−i, w̃i,−h, ρ,Σ)L(w̃ih | si, w̃i,−h) (18)
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where si = (si1, . . . , siH)T . The conditional prior π(w̃ih | w̃−i, w̃i,−h, ρ,Σ) can be
derived from (5) conditioning with respect to the other components of the vector
w̃i; we find

π(w̃ih | w̃−i, w̃i,−h, ρ,Σ) = N (µ∗ih,Σ
∗
ih),

where µ∗ih = µih + Σh,−hΣ
−1
−h,−h(w̃i,−h − µi,−h) and Σ∗ih = (ρ

∑I
j=1 gij+1−ρ)−1 (Σh,h

−Σh,−hΣ
−1
−h,−hΣ−h,h

)
by standard properties of the normal distribution, with µi =

(ρ
∑I

j=1 gij + 1 − ρ)−1(ρ
∑I

j=1 gijw̃j + (1 − ρ)m̃i). Moreover, using the same data
augmentation scheme proposed in Holmes and Held (2006), we write the term L(w̃ih |
si, w̃i,−h) as

L(w̃ih | si, w̃i,−h) =

(
eηih

1 + eηih

)Nih ( 1

1 + eηih

)Ni−Nih
where ηih = w̃ih − Cih, Cih = log

∑
k 6=h ew̃ik (with w̃iH := 0) and Nih is the number

of observations in area i assigned to component h.
To be able to sample from the full conditional of w̃ih, we express L(w̃ih | si, w̃i,−h)

using an augmentation technique, based on the Pólya-Gamma distribution. The
trick is analogous to that in Polson et al. (2013), in this case without covariates. We
describe it in detail in the next paragraphs.

We denote by ω ∼ PG(b, c) a random variable with a Pólya-Gamma distribution
with parameters b and c, i.e.

ω =
1

2π2

+∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

(19)

where gk
iid∼ Gamma(b, 1) and b, c > 0. The data-augmentation technique based on

the Pólya-Gamma distribution relies on the following integral identity:

(eη)a

(1 + eη)b
= 2−be(a−b/2)η

∫ +∞

0

e−ωη
2/2p(ω)dω

where p(ω) is the density of the PG(b, 0) random variable.
Taking advantage from the above equality, when introducing the latent variable

ωih ∼ PG(Ni, 0), we can derive the following full conditional for w̃ih:

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) = N(µ̂ih, Σ̂ih) (20)

where

µ̂ih =

(
µ∗ih
Σ∗h

+Nih −Ni/2 + ωihCih

)(
1

Σ∗ih
+ ωih

)−1

Σ̂ih =

(
1

Σ∗ih
+ ωih

)−1

.

Moreover, the full conditional of ωih can be expressed as

L(ωih | w̃i) = PG
(
Ni, w̃ih − log

∑
k 6=h

ew̃ik
)
. (21)

See Appendix C for the proof of Equations (20)-(21).
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These equations give a two steps Gibbs update for the variable w̃ih. Indeed, one
can first sample ωih from (21) (which depends on w̃ih) and secondly update w̃ih from
(20) (which depends on ωih). In this way, we are able to make two Gibbs steps in an
augmented state space instead of a single Metropolis Hastings step. There are two
reasons why one should prefer the former algorithm to the latter. First, the two-
Gibbs-steps simulation avoids the choice of a proposal density for the update, that
can be difficult due to the shape of the logistic transformation applied to the weights.
Moreover, using the Pólya Gamma augmentation trick can be helpful in settings
where the number of observations in a single area is not significantly greater than
the number of components in the mixture, as we consider in Section 6.1, scenario
II; see Section S6.3 of the supplementary material in Polson et al. (2013) for an
explanation of this statement.

6 Simulated data

We consider two simulation studies to illustrate the flexibility of our model; in
particular we will see that the model is able to exploit spatial dependence between
densities corresponding to close areas. In the first example, we compare our model
(SPMIX) with the Clayton-Kaldor Species Sampling Model of Jo et al. (2017) (CK-
SSM) and the HDP mixture model (see (17)), that we use as a sort of black-box
model for density estimation of grouped data. In the second example we generate
data from spatially dependent densities and we check if our model is flexible enough
to recover such dependence.

We run the Gibbs sampler for our model (7)-(11) together with the prior speci-
fication (14) - (15) (see Section 5 and Appendix C), and the direct sampler for the
HDP-mixture model in Teh et al. (2006). Both algorithms were coded in C++. In
addition, we have also implemented the CK-SSM model in Stan (Stan Development
Team, 2018) with the prior (16). All the MCMC chains were run for 10,000 iter-
ations after discarding the first 10,000 iterations as burn-in, keeping one every five
iterations, resulting in a final sample size of 2,000, unless otherwise specified. In
all cases, convergence was checked using both visual inspection of the chains and
standard diagnostics available in the CODA package.

The base measures for our model, for the HDP-mixture and for the CK-SSM
mixture are assumed all equal (and denoted by P0) to match the models under
comparison. Unless otherwise stated, we assume P0 equal to the Normal-inverse-
gamma distribution with parameters µ0 = 0, a = b = 2, λ = 0.1, i.e. µ | σ2 ∼
N (µ0, λ

−1σ2), σ2 ∼ IG(a, b) and the prior in (11) as ρ ∼ Beta(1, 1). For the HDP,
the total mass parameters α and β are fixed and equal to 1. For our model, we set
the prior hyperparameters for the marginal prior (10) of Σ as ν = 100 and V = I
for all the simulated examples. For the CK-SSM, we followed the hyperparameter
tuning outlined in their paper, except for the parameters a and b that we fix to
a = 0.1 and b = 0.5.

As metrics to compare the density estimates, i.e. the posterior mean of the
density evaluated on a fixed grid, we use the Kullback-Leibler divergence and the
Hellinger distance between the estimated density and the true one.
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Area 1 2 3 4 5 6
Scenario I Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) χ2(3, 0, 1) χ2(3, 0, 1)

Ni 1000 1000 1000 1000 1000 1000
Scenario II Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) χ2(3, 0, 1) χ2(3, 0, 1)

Ni 1000 10 1000 10 1000 10
Scenario III Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) Ca(0, 1) Ca(0, 1)

Ni 100 100 100 100 100 100

Table 1: Non-Gaussian simulated data: true densities and sample sizes for each area
under all scenarios

6.1 Non-Gaussian simulated data

We consider three scenarios. In each scenario we generate, for I = 6 different
areas, an i.i.d. sample from a density that is not Gaussian: namely t-student (t),
skew-normal (SN), chi-squared (χ2) and Cauchy (Ca). The matrix G is fixed and
represents a graph with only three connected components {1, 2}, {3, 4}, {5, 6}. The
three scenarios differ in the number of data in each area and in the data generating
densities, as reported in Table 1: t(ν, µ, σ) denotes the Student’s t distribution with
ν degrees of freedom, centered in µ and scaled by a factor σ; SN(ξ, ω, α) denotes
the Skew normal distribution with mean ξ + ωα/

√
1 + α2

√
2/π, χ2(k, 0, 1) denotes

the standard chi-squared distribution with k degrees of freedom and Ca(0, 1) the
Cauchy distribution. They cover extremely different cases: in Scenario I a large
number of data is available in each area, so that borrowing strength from nearby
areas would be superfluous; we actually expect our model to perform worse than the
HDP-mixture, being the latter fully nonparametric. On the other hand, in Scenario
II there are three areas (2, 4 and 6) with few data points (only 10). In this case, we
expect our model to express its strength and give a better density estimate than the
HDP-mixture, especially in those areas where few data are present. Finally, Scenario
III is an in-between condition, where not so many observations as in Scenario I are
available in each area. We also compare the results obtained with the CK-SSM
mixture.

In order to make a fair comparison between our model, CK-SSM and the HDP
models, we fixed the number of components H in our mixtures and in the CK-SSM
to 10. This choice was made by looking at the posterior distribution of the number
of components under the HDP-mixture in the different scenarios; we found that
the number of clusters ranges between 3 and 10. For each scenario we repeatedly
simulated 100 independent datasets. Table 2 shows the KL-divergence between the
true density and the estimate under the three models. We average those values over
the 100 simulated datasets, also considering ± one empirical standard deviation of
the 100 values obtained. Table 5 in Appendix D, reports the same values for the
Hellinger distance. From both tables, we can see that in all the three scenarios, the
CK-SSM has the worst performance in recovering the true data generating density.
This reflects what we discussed in Section 4.3: the prior of such model forces mixture
weights to be too similar across different connected components in the graph. We
can clearly see this for example from Figure 3, where the density estimates for
areas 4 and 6 (not connected in G) are close under the CK-SSM but not under
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Model 1 2 3 4 5 6
Scenario I SPMIX 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.01 0.02± 0.01

HDP 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.01 0.02± 0.01
CK-SSM 0.92± 0.46 0.92± 0.46 0.97± 0.16 0.98± 0.16 1.10± 0.31 1.10± 0.31

Scenario II SPMIX 0.02± 0.00 0.04± 0.04 0.02± 0.01 0.02± 0.07 0.03± 0.01 0.03± 0.10
HDP 0.01± 0.00 0.13± 0.04 0.03± 0.01 0.21± 0.07 0.03± 0.01 0.32± 0.10

CK-SSM 0.91± 0.40 0.90± 0.40 0.97± 0.17 0.97± 0.17 1.22± 0.45 1.23± 0.44
Scenario III SPMIX 0.15± 0.19 0.15± 0.18 0.09± 0.25 0.09± 0.25 0.06± 0.12 0.06± 0.12

HDP 0.16± 0.19 0.16± 0.18 0.26± 0.25 0.26± 0.25 0.13± 0.12 0.13± 0.12
CK-SSM 0.86± 0.33 0.86± 0.34 1.25± 0.29 1.25± 0.29 0.86± 0.41 0.86± 0.42

Table 2: Kullback-Leibler divergences between the true densities and the estimated
ones, aggregated over 100 simulated datasets with ± one standard deviation
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Figure 3: Non-Gaussian simulated data, Scenario I: true densities for areas 2, 4 and
6 and the corresponding density estimates under the three different models.

our model. The HDP-mixture gives overall better estimates than those under our
model in Scenario I. In this case, both density estimates are close enough to the true
densities; see Figure 3. As we expect, under Scenario II, our model gives a better
density estimate (than the HDP-mixture) in areas 2, 4 and 6, where only 10 data
points are available; see Figure 4. Indeed, our model retrieves information from the
neighboring areas, overcoming the lack of data in some of the areas. Interestingly,
our model performs better in areas 3-6, and similarly in areas 1 and 2, under Scenario
III, probably because of “extreme” data in areas 5 and 6, where we generate data
from a Cauchy distribution. This behavior is evident from Figure 4, being the 95%
point-wise credible interval of the posterior distribution of the density much wider
in HDP than in our approach. Finally, it is clear that our model fits data well also
when the true density is highly non-symmetric, such as in locations 3-6 in Scenarios
I and II.

6.2 Simulation from spatially dependent weights

In the second simulation example we apply our model to estimate spatially depen-
dent densities in contiguous areas, placed in a squared grid with a total number I
of areas, in a unit area squared domain; we study three different scenarios, choosing
I = 16, 64, 256. In the i-th area, we simulate observations as follows:

yij
iid∼ wi1N (−5, 1) + wi2N (0, 1) + wi3N (5, 1) j = 1, . . . , 25 (22)
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Figure 4: Non-Gaussian simulated data, Scenario II and III: estimated and true
densities for areas 4 and 6 under our (top row) and HDP mixture (bottom row)
models.

where the weights are chosen as alr−1(w̃i) and the transformed weights w̃i are given
by

w̃i1 = 3(xi − x̄) + 3(yi − ȳ) w̃i2 = −3(xi − x̄)− 3(yi − ȳ) (23)

where (xi, yi) are the coordinates of the center of area i and (x̄, ȳ) the coordinates
of the grid center. In this way, we introduce strong spatial dependence, induced by
(23), among the weights of different areas, as we observe in Figures 5a and 5b, where
we plot the weights of the first two components {wi1} and {wi2}, for the scenario
I = 64; of course wi3 = 1− wi1 − wi2.

(a) (b) (c)

Figure 5: Simulation from spatially dependent weights in Sect. 6.2: plots of {wi1}
(a), {wi2} (b) when I = 64; boxplots (c) of the Kullback-Leibler divergence between
true density (22) and estimated one under our model (spmix) and the HDP-mixture
model (hdp) for each simulation, averaged over the areas, for I = 16, 64, 256, in
logarithmic scale.

In our model, we consider areas i and j to be neighbors if they share an edge,
setting gij = 1 in (9) in this case, and gij = 0 otherwise. For each scenario, we
simulated 10 independent datasets, sampling 25 observations per area, and then we
compare the posterior estimates of the densities with the true ones via Kullback-
Leibler divergence. We compare our model with the HDP-mixture model, reporting
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in Figure 5c the errors, averaged over all areas, for the ten repetitions. Though
when I = 16 HPD gives much better estimates, our model outperforms the HDP-
mixture, when the number of areas is sufficiently large, with consistent results using
the Hellinger distance to measure the errors, as shown in Figure 14 in Appendix D.

The median execution times, over the 10 datasets, of the code corresponding to
our model was 25.28, 118.14 and 616.41 seconds for I = 16, 64, 256, respectively,
whereas, for fitting data for the HPD-mixtures was 18.39, 72.59, 207.46 seconds.
Based on our implementation, HDP is slightly faster, but our model still exhibits
competitive computational times, paired with lower errors when the number of areas
is large. Simulations were performed on a machine equipped with a 4x Xeon E5-2640
v4 @2.4GHz processor and 64 GB of RAM. In order to provide a fair comparison,
the implementation for our model ran on a single core since the sampler for the
HDP is inherently sequential. However, the Gibbs sampler we proposed can be
straightforwardly parallelized and this could greatly decrease the runtimes of our
model.

7 Airbnb Amsterdam

We consider the Airbnb listings dataset for the city of Amsterdam (The Nether-
lands), publicly available at http://insideairbnb.com/get-the-data.html. The
dataset consists of more than 20, 000 listings spread over Amsterdam, grouped by
the neighborhood. Our main goal is the prediction of the nightly price of a new
listing, with information given by covariates, and taking into account the spatial
dependence. As mentioned in the Introduction, (joint) density modeling and es-
timation, in this case, can give insight to landlords who need to take decision on
where their flats should be positioned in the flat rental market. In fact, full poste-
rior density estimate carries much richer information than a simple point estimate
of the average price, leading to better informed decisions about the market strategy.
We consider two generalizations of model (7) to account for covariates as follows.
Denote responses as yij (i.e. the nightly price of accommodation j in neighborhood
i) and covariates as xij = (xij1, . . . , xijd)

T . In the first model, denoted here M1,
we assume τh in (7) such that τh = (µh + βTxij, σ

2
h), h = 1, . . . , H. M1 can be

understood as a linear regression model with component-specific intercept and vari-
ance. We further generalize M1 by assuming that all the regression coefficients are
component-specific, i.e. τh = (µh + βThxij, σ

2
h), h = 1, . . . , H, and denote it by M2.

While model M1 assumes that the effect of the covariates on the pricing is shared
across all neighborhoods, and the spatial effect can be represented by the only inter-
cept, model M2 assumes that all the covariates have different effect on the pricing
depending on the neighborhood.

7.1 Data description

We consider as predictors characteristics of the house such as: (i) accommodates,
the number of guests that can be hosted, (ii) bathrooms, the number of bathrooms,
(iii) bedrooms, the number of bedrooms; together with two indicators of popularity
of the listing: (iv) number of reviews, the number of reviews present for that listing,
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and (v) review scores rating the average rating of the reviews. Finally, we com-
plete the set of covariates with two binary variables: (vi) instant bookable which
equals 1 if the listing can be booked instantly from the user and 0 if, instead, the re-
quest must go through an acceptance procedure from the host; (vii) host is superhost

that is 1 if the host is classified as a superhost by Airbnb and 0 otherwise. The su-
perhost badge can be obtained once a host has a sufficient number of reviews with
a rating above a certain threshold. These binary variables were included since the
user, while searching for an accommodation, can reduce her/his search only to in-
stant bookable listings and/or only to superhosts.

As preprocessing, we used the following steps: we removed the listings for which
at least one predictor is missing, as well as listings whose nightly price is below
two euros or above one thousand euros; then we transformed number of reviews

by taking the natural logarithm and review scores rating by the Box-Cox trans-

formation x
(λ)
i = (xλi − 1)/λ (Box and Cox, 1964) with λ = 12, being this value

automatically chosen by the Python package scipy.
Each listing is assigned to one of the twenty-two Amsterdam neighborhoods pro-

vided at the dataset web page, so that I = 22. The total number of observations
considered for our analysis is N1 + · · · + NI = 17, 201. Figure 6(a) shows sample
sizes in the log-scale for each neighborhood; of course, city center is the area with
the largest number of observations. Furthermore, in Figure 6, panels (b) and (c),
we report sample means and standard deviations of the nightly price in euros in
each neighborhood; the plots motivate the modeling of the spatial dependence, as
close neighborhoods tend to have similar distributions, at least in terms of mean
and standard deviation. Figure 6 shows that there are two distinct graph connected
components, one made only by three areal units; this agrees with official neighbor-
hood maps of the city of Amsterdam. As far as covariates are concerned, Figure 15
in Appendix D shows empirical correlations among the predictors and between pre-
dictors and the response. Figure 16 in Appendix D displays scatterplots of the
response price versus numerical predictors and boxplots for categorical predictors.
We note that only accommodates, bathrooms, bedrooms exhibit a significant linear
correlation with the price, which is confirmed by the scatter plots, while sample
linear correlation between accommodates and bathrooms is 0.362, 0.730 between
accommodates and bedrooms, 0.430 between bathrooms and bedrooms. However,
when computing the variance inflation factor, we found 2.197, 1.243 and 2.334, re-
spectively, values that suggest very mild multicollinearity. On the other hand, there
is no evident empirical effect of instant bookable and host is superhost on the
nightly price as Figure 16 in Appendix D shows. In the next subsection, we con-
sider both models M1 and M2 for the dataset, including all the covariates above
described, i.e. d = 7. We standardized all numerical predictors, subtracting the
sample mean and dividing by the sample standard deviation of each predictor; we
also centered the response on the overall sample mean.

7.2 Posterior inference

We complete the prior for model M1 assuming

(µh, σ
2
h)

iid∼ N (µh | 0, 2σ2
h)× IG(σ2

h | 2, 2), h = 1, . . . , H
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(a) No. of listings in the log-
scale

(b) Sample mean
(c) Sample standard devia-
tion

Figure 6: Number of listings (in the log-scale), sample means and standard devia-
tions of the nightly price in euros for each neighborhood in the Airbnb dataset, after
preprocessing.

and β ∼ Nd(0, σ2
βId). For the prior of model M2 we assume

((µh,βh), σ
2
h)

iid∼ N ((µh,βh) | 0, 10Id+1)× IG(σ2
h | 2, 2), h = 1, . . . , H.

We need to change the Gibbs sampler in Section 5, adding two further steps to
sample from the full conditional of β for model M1 or from the full conditional of
(µh, βh) for model M2. Both steps are standard updates in Bayesian linear regression
models; see Appendix C for further details.

Posterior inference is robust to the choice of all the hyper-parameters in the
prior distribution, but for the number H of components in the mixture, that is a
key parameter for mixture models. For this reason, we compare M1 and M2 via
predictive goodness-of-fit indexes such as the log-pseudo marginal likelihood (LPML,
Geisser and Eddy, 1979) and the widely applicable information criterion (WAIC,
Watanabe, 2013), when H varies in {5, 10, 15}. Better predictive performances are
associated to higher LPML and lower WAIC. In this comparison, we also consider a
generalization of the CK-SSM model in Jo et al. (2017) along the lines of model M1.
Table 3 shows that the best model is M1, across all values of H and that CK-SSM
does a worse job than M1 and M2. Given its superior predictive performance, in
the following we consider only M1.

In particular, M1 with H = 15 gives slightly better values of LPML and WAIC,
but the difference across all values of H seems negligible so that, to fix H, we
consider also the predictive mean squared error computed through a 10-fold cross-
validation. The cross-validation is stratified according to the areas, so that, each
time, approximately 10% of the data is missing from each neighborhood. More
in detail, each time we select 90% of the dataset as “training set” (to simulate
from the relative posterior) and compute the mean of the predictive distribution
corresponding to data in the “testing set”. Observe that the same datapoints are
shared across all values of H, both for training and for testing. Then we compute
the predictive mean squared error (pMSE) on the testing set, i.e.

∑m
i=1(yi− ŷi)2/m,

where m is the size of the testing set and ŷi is the mean of the posterior predictive
density of the response corresponding to covariate xi. The average cross validation
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M1 M2 CK-SSM
H 5 10 15 5 10 15 5 10 15

LPML -92619 -92444 -92441 -97998 -97836 -97828 -98751 -98752 -98755
WAIC 185238 184888 184882 195996 195672 195656 197502 197504 197505

Table 3: LPML and WAIC for various choices of H under M1, M2 and CK-SSM.

error ± one standard deviation is equal to 5468 ± 952, 5474 ± 850 and 5477 ± 956
for H = 5, 10, 15 respectively.

We have also considered the case H = 1, i.e. when all M1, M2 and CK-SSM
models are equivalent to a standard Gaussian linear regression. In this case, the
predictive performance is much worse (LMPL and WAIC are approximately equal
to −1.3 × 105 and 2.6 × 105 respectively), hence showing that a richer model with
explicit modeling of the spatial dependence structure is needed to obtain better
predictive performances. Moreover, removing covariates bathrooms and bedrooms,
correlated with accommodates, resulted in slightly worse predictive performance for
all models tested; for instance, M1 showed a decrease in LMPL of 2.5%, while for
M2 the decrease was around 1% across all values of H. Summing up, for the reasons
above, including parsimony of the model, in the rest of the section, we consider only
model M1 when H = 5.

Figure 7(b) reports 95% posterior credibility intervals for the regression param-
eters. All the covariates, except for host is superhost, seem to be significant, if
we assume hard shrinkage as a criterion for significance, i.e. the marginal credi-
bility interval does not include 0. It is interesting to observe how the coefficients
associated to number of reviews and instant bookable are negative. This might
indicate that hosts that receive many reviews and many reservations tend to lower
their prices in order be more attractive. On the other hand, as one would ex-
pect, all the other coefficients are positive, the one furthest right being associated to
accommodates, i.e. the number of guests that can be hosted. In Figure 7(c) we show
the density estimates in the four neighborhoods highlighted in Figure 7(a). Each plot
shows three density estimates, corresponding to different values of the covariates. In
this case, the covariates were set to the empirical median except for accommodates,
number of bedrooms, number of bathrooms. Since the marginal sample correla-
tion between these three covariates is not negligible as mentioned in Section 7.1,
we have fixed all their values simultaneously equal to 5%, 50% and 95% empiri-
cal quantiles, respectively. For instance, in each panel of Figure 7(c), the top lines
correspond to density estimates for a vector of covariates in which accommodates,
number of bedrooms, number of bathrooms are fixed to their 5% sample quantile,
respectively. It is clear from Figure 7(c) that the predictive densities in blue (first
panel from the left) and in yellow are similar, as well as the lines in green and in
red. However there are evident differences when comparing for instance the yellow
densities (second panel from the left) with the green ones (third panel from the left);
indeed the green densities give substantial mass to the right tail, especially to values
greater than 200 euros, while the yellow densities do not. This behavior agrees with
the marginal posterior of ρ, that is strongly concentrated near 1 (E(ρ|data) = 0.993):
in fact, the blue and yellow neighborhoods, as well as the red and green ones, are
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Figure 7: (a): Map of the city of Amsterdam with neighborhoods Bijlmer-Centrum
in blue, Gaasperdam - Driemond in orange, Oostelijk Havengebied - Indische Buurt
in green and Watergraafsmeer in red. (b): 95% credibility intervals of the marginal
posterior of the regression parameter β. (c): Predictive densities for different neigh-
borhoods, the colors match the ones of the map. In each plot, three lines repre-
sent three different values of the covariates accommodates, number of bedrooms,
number of bathrooms) that take range in the first, second and third quantile, while
the other numerical covariates are fixed to the empirical median.

connected in the graph. However, blue and yellow predictive densities are different
from the green and red estimates, since the neighborhoods belong to different con-
nected components in the graph. As expected, in all the neighborhoods the listings
price increases as the accommodates, number of bedrooms, number of bathrooms

increase as well. Finally, for a new listing y? with associated covariates x?, Table 6,
Appendix D, reports the posterior predictive probability P (y? > 200 | x?, i), assum-
ing that the new listing belongs to either one of the four neighborhoods and that
the covariates x? are equal to values as in Figure 7(c).

To conclude, we believe that a new lessor could benefit from our analysis because
Airbnb makes available only a handful of covariates which might not be suited to
fully characterize the “right” nightly price for a listing. For instance, we expect
that the presence of a balcony or garden might lead to higher prices. Hence, when
deciding the price for a listing, the lessor could look at the predictive distribution
from our model given the covariates and neighborhood of their house, and choose
to place the listing in the right or left tail of the predictive distribution considering
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additional information not included in our model.

8 Discussion

In this work, we have considered the problem of the joint estimation of spatially
dependent densities in the context of repeated areal measurements. We have pre-
sented a finite mixture model to represent the density in each area; assuming that
all the mixtures share the same set of atoms, the spatial dependency has been intro-
duced through a novel joint distribution for I vectors in the simplex as a prior for
the mixture weights. This distribution, that we termed logisticMCAR, was built as
a logistic transformation of a specification of the multivariate CAR model. When
compared to alternatives proposed in the literature, the logisticMCAR distribution
showed to have a higher degree of interpretability, as we were able to derive the
analytic expression for the expected values of ratios of components and their covari-
ances, via the Aitchison geometry. Moreover, we also showed as the logisticMCAR
can be used to accurately model sparse mixtures.

Posterior simulation has been carried out by means of a Gibbs sampler scheme.
In particular the update of the mixture weights was performed by introducing a data
augmentation scheme based on the Pólya-Gamma identity, which avoids the tedious
tuning of the proposal distribution.

In the simulation studies and the real application included in this paper, our
model has shown to be able to represent a wide range of different behaviors. In
particular, we argue that when different connected graph components are present,
and heterogeneous behavior is observed across these components, our model should
be preferred as it does not force the densities in different graph component to behave
too similarly. Moreover, as in the case of the Airbnb Amsterdam application, our
model can be easily extended to include additional covariate information. Although
not our target here, a sub-product of the approach is the prior induced on the
partition of the subjects in the sample, which in this case, has a spatial connotation;
relations with spatial product partition models (Page and Quintana, 2016) could be
further investigated.

Another point that we did not address here, and will be focus of future study,
is an extension to models where the graph G is not fixed, and should be learned by
the data (and the prior). In particular, we aim at considering boundary detection
problems, i.e. when the proximity matrix G is unknown, but its elements depend
on dissimilarity metrics available for each pair of neighboring areas. This is an
extremely interesting problem, widely studied in the context of one single response
per area; see, for instance Lu et al. (2007) and Lee and Mitchell (2012). However
preliminary investigation showed how the non-identifiability of overfitted mixtures
might produce erroneous results. Possible extensions of our model to account for
boundary detection might then include either a prior on the number of components
or a repulsive prior distribution on the atoms, or both, to reduce the impact of
non-identifiability.
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A Proofs

Proof of Proposition 1
From equation (4) we have that

E [w̃i | w̃−i] =
ρ
∑

j∈Ui w̃j + (1− ρ)m̃i

ρ|Ui|+ 1− ρ =
ρ
∑

j∈Ui alr(wj) + (1− ρ)alr(mi)

ρ|Ui|+ 1− ρ

=
1

ρ|Ui|+ 1− ρ

(
log

∏
j∈Ui w

ρ
j1m

1−ρ
i1∏

j∈Ui w
ρ
jHm

1−ρ
iH

, . . . , log

∏
j∈Ui w

ρ
jH−1m

1−ρ
iH−1∏

j∈Ui w
ρ
jHm

1−ρ
iH

)

=
1

ρ|Ui|+ 1− ρ

(∑
j∈Ui

log(wρj1m
1−ρ
i1 ), . . . ,

∑
j∈Ui

log(wρjH−1m
1−ρ
iH−1)

)
−
∑
j∈Ui

log(wρjHm
1−ρ
iH )

where the last subtraction is meant elementwise. Hence we have that

E
[
log

wil
wik
| w−i

]
= E [w̃il − w̃ik | w−i]

=
1

ρ |Ui|+ 1− ρ

(∑
j∈Ui

log(wρjlm
1−ρ
il )−

∑
j∈Ui

log(wρjkm
1−ρ
ik )

)

= log

((
mil

mik

)1−ρ ∏
j∈Ui

(
wjl
wjk

)ρ) 1
ρ|Ui|+1−ρ

which proves the proposition.

Proof of Proposition 2
The (marginal) joint distribution of two different components of w̃i, w̃j, with i, j =
1, . . . , I, i 6= j can be easily derived from (5):(

w̃il
w̃jm

)
∼ N2

(
0,

[
AiiΣll AijΣlm

AjiΣml AjjΣmm

])
l,m = 1, . . . , H − 1

Hence, we compute the covariance of the log ratios of different components as

Cov

(
log

wil
wim

, log
wjl
wjm

)
= Cov (w̃il − w̃im, w̃jl − w̃jm)

= Cov (w̃il, w̃jl) + Cov (w̃il, w̃jm) + +Cov (w̃im, w̃jl) + Cov (w̃im, w̃jm)

= Aij (Σll − 2Σlm + Σmm)

whereas, for the last component,

Cov

(
log

wil
wiH

, log
wjl
wjH

)
= Cov (w̃il, w̃jl) = AijΣll
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which proves the formula in the proposition.
It is possible to rearrange the indices 1, . . . , I in order for (F −ρG) to be a block

diagonal matrix, where each block corresponds to a connected graph component
according to the neighboring structure; this will not affect the joint law. By the
properties of strictly diagonally dominated matrices, the same pattern of blocks is
preserved in the inverse matrix A. Hence Aij = 0 if i and j belong to two non-
connected graph components, proving the proposition.

B MC simulations from the logisticMCAR distri-

bution

In Section 3 we have pointed out that the theoretical analysis of the logisticMCAR
distribution is limited by its analytic intractability. Here we compute covariances
between different components of the vectors of weights and Euclidean distances be-
tween the vectors themselves through Monte Carlo simulation. Specifically, we sim-
ulate from (5) and then obtain draws from the logisticMCAR distribution through
the transformation alr−1.

In particular, we fix I = 5, H = 3, m̃i = 0 for all i and the covariance matrix Σ

Σ =

[
1 Σ12

Σ12 1

]
where Σ12 denotes the covariance, but also the correlation since Σ11 = Σ22 = 1,
between w̃i1 and w̃i2. We fix the proximity matrix G such that g12 = g13 = g23 = 1
and g45 = 1. This corresponds assuming that areal units/nodes 1, 2 and 3 are
connected to each other, and 4 and 5 are connected to each other, though separated
from the others.
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Figure 8: Pairwise covariance values of the components of w2 = (w21, w22, w23) as
a function of the correlation parameter Σ12. The horizontal red line indicates the
value 0.

Figure 8 shows the covariance between the three components ofw2 = (w21, w22, w23)
as a function of the correlation parameter Σ12 in the matrix Σ in (5), having sim-
ulated N = 10, 000 MC draws. Note that, unlike the finite-dimensional Dirichlet
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distribution, the logistic-normal distribution may have positive covariance among
the components.
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Figure 9: Pairwise covariance values between components of w1 and w3, as a func-
tion of the correlation parameter Σ12, for different values of ρ, when (w1, . . . ,w5)
has the logisticMCAR distribution. The horizontal red line indicates the value 0.

Figure 9 instead shows the covariance between all the possible pairs (w1j, w3m)
for j,m = 1, 2, 3, for different values of the parameter ρ. The covariances between
corresponding entries, i.e. (w1j, w2j j = 1, 2, 3) is always positive, as expected since
the spatial correlation parameter ρ is always fixed to a positive value. The marginal
prior for w1,w3 is exchangeable, since nodes 1 and 3 belong to the same connected
component in G. This explains the symmetries in Figure 9.

In order to measure the association induced by our logisticMCAR prior, we sim-
ulate the distances (Euclidean) of two vectors drawn from the joint distribution.
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min q0.25 q0.5 q0.75 max
d12 4× 10−4 0.10 0.18 0.27 0.86
d15 0.01 0.33 0.55 0.77 1.36
dγ 0.007 0.31 0.52 0.71 1.36

Table 4: Summary statistics of the marginal distributions of the distances d12, d15, dγ,
estimated from the MC samples; qα denotes the α-quantile.

In particular, we simulated N = 10, 000 draws from the full joint logisticMCAR
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Figure 10: Histogram of MC draws from the marginal distributions of d12 (orange)
and d15 (light blue) on the left and from the marginal distribution of dγ on the right.

distribution of (w1, . . . ,w5) with parameters as above, fixing Σ12 = 0.5, and com-
puted the Euclidean distances d12 = ||w1 −w2|| and d15 = ||w1 −w5||. As w1 and
w2 belong to the same connected graph component while w5 belongs to another
component, we expect w1 and w2 to be more similar than w1 and w5 belonging to
separate components. Hence the distance d12 should be smaller than d15. Moreover,
for comparison, we also simulated N = 10, 000 draws from the joint distribution of
two independent finite-dimensional Dirichlet random variables, i.e.

(γ1,γ2)i
iid∼ Dir(1)×Dir(1) i = 1, . . . N

and computed their Euclidean distance as well, that we denote by dγ. Figure 10
reports the histograms of the marginal distributions of d12, d15 on the left and dγ on
the right. It is clear that d12 is substantially smaller than d15, as expected. Moreover,
by comparing d15 and dγ, we see that their marginal distributions are very similar.
See also the summary statistics of these marginal distributions in Table 4.

For more insight, we report a subsample of size N = 20 of the MC simulated
values from the marginal distributions of (w1,w2) and (γ1,γ2), plotted on the two
dimensional projection of the simplex S3 in Figure 11. Each pair is denoted by two
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points inside the triangle and a line connecting them. It is clear that simulated
values from L(w1,w2)i are much closer each other than those from L(γ1,γ2).
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Figure 11: Plots of N = 20 MC draws from the logisticMCAR distribution (left)
and of N = 20 MC draws from Dir(1) × Dir(1) (right). Each draws is represented
with two dots (the values of the two random vectors) together with a colored line
connecting them for visual purposes. Different colors correspond to independent
draws.

C The Gibbs sampler

Proof of Equations (20) - (21)
We start by writing the full conditional distribution (18) as follows:

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ) ∝ N (w̃ih | µ∗ih,Σ∗ih)
(

eηih

1 + eηih

)Nih ( 1

1 + eηih

)Ni−Nih
∝ N (w̃ih | µ∗ih,Σ∗ih)

(eηih)Nih

(1 + eηih)Ni

∝ N (w̃ih | µ∗ih,Σ∗ih) e(Nih−Ni/2)ηih

∫ ∞
0

e−ωihη
2
ih/2p(ωih)dωih

where ωih ∼ PG(Ni, 0). We now include the latent variable ωih and derive the
conditional distribution of w̃ih, conditioning also to ωih. We have

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) ∝ N (w̃ih | µ∗ih,Σ∗ih) e(Nih−Ni/2)ηihe−ωihη
2
ih/2

∝ e−
E
2
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where

E =
(w̃ih − µ∗ih)2

Σ∗ih
− (2Nih −Ni)(w̃ih − Cih) + ωih(w̃ih − Cih)2

∝ w̃2
ih

(
1

Σ∗ih
+ ωih

)
− 2w̃ih

(
µ∗ih
Σ∗ih

+Nih −Ni/2 + ωihCih

)
∝
(

1

Σ∗ih
+ ωih

)(
w̃2
ih − 2w̃ih

(
µ∗ih
Σ∗ih

+Nih −Ni/2 + ωihCih

)(
1

Σ∗ih
+ ωih

)−1
)

Thus
L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) ∼ N (µ̂ih, Σ̂ih)

where

µ̂ih =

(
µ∗ih
Σ∗h

+Nih −Ni/2 + ωihCih

)(
1

Σ∗h
+ ωih

)−1

Σ̂ih =

(
1

Σ∗h
+ ωih

)−1

For the full conditional of ωih instead, it is sufficient to apply Theorem 1 in Polson
et al. (2013) with ψ = ηih to obtain that the law of ωih, conditional to w̃i is a Pólya-
Gamma distribution, i.e. the density of ωih can be expressed as in Equation (19),
with parameters b = Ni, c = w̃ih − log

∑
k 6=h exp(w̃ik).

Detailed description of the Gibbs sampler
The state of the MCMC sampler is made of τ = (τ1, . . . , τH), (w̃1, . . . , w̃I), where
w̃i = alr(wi), {sij}ij and m̃C1 , . . . m̃Ck . The Gibbs sampler is obtained repeatedly
sampling from the following conditional distributions:

• For any i = 1, . . . , I and j = 1, . . . , Ni, independently update the cluster
allocation variables from

p(sij = h | rest) ∝ alr−1(w̃ih) k(yij | τh) h = 1, . . . , H

• Independently update the atoms of the mixture from

L(τh | rest) ∝ P0(τh)
∏

ij:sij=h

k(yij | τh) h = 1, . . . , H

• Sample Σ from
L(Σ | rest) ∝ L(w̃ | rest)L(Σ)

We show that the full conditional of Σ is still an inverse-Wishart distribution.
To see this, write the right hand side as follows

L(Σ | rest) ∝ |(F − ρG)−1 ⊗ Σ|−1/2 exp

(
−1

2
(w̃ − m̃)T

(
(F − ρG)⊗ Σ−1

)
(w̃ − m̃)

)
× |Σ|−(ν+(H−1)+1)/2 exp

(
−1

2
tr(V Σ−1)

)
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Now |(F −ρG)−1⊗Σ| = |(F −ρG)−1|H−1×|Σ|I , so that the degrees of freedom
in the full conditional are νp = ν + I. Working on the exponent, write the
quadratic form involving the Kronecker product as follows

(w̃−m̃)T
(
(F − ρG)⊗ Σ−1

)
(w̃−m̃) =

I∑
i,j=1

(F−ρG)ij(w̃i−m̃i)
TΣ−1(w̃j−m̃j)

By exploiting multiple times the linearity of the trace operator and its cyclic
property, the scale matrix Vp can be seen to equal

Vp =
I∑

i,j=1

(F − ρG)ij(w̃j − m̃j)(w̃i − m̃i)
T + V

and we conclude that Σ | rest ∼ Inv-Wishart(νp, Vp)

• Sample ρ from its full conditional:

L(ρ | rest) ∝ π(ρ)N (vec(w̃1, . . . , w̃I) | 0, (F − ρG)−1 ⊗ Σ)

This distribution does not have a closed form analytic expression because the
support of ρ is (0, 1) and hence we resort to a Metropolis Hastings step. The
proposal distribution is a truncated normal (with support on (0, 1)) centered
in the current value of ρ with standard deviation 0.1. Sampling from the trun-
cated normal is performed by rejection sampling, whereas the computation of
the acceptance rate for the Metropolis Hastings step is obtained by exploiting
the law of the matrix normal distribution, which does not require to factorize
the matrix (F − ρG)−1 ⊗Σ. To improve the mixing of the chain, we resort to
an Adaptive Metropolis Hastings move as in Roberts and Rosenthal (2009) to
automatically tune variance of the normal proposal distribution.

• For each i = 1, . . . , I and each h = 1, . . . H, independently sample w̃ih as
follows:

– Sample the latent variable ωih from

L(ωih | w̃i) = PG(Ni, ηih) = PG

(
Ni, w̃ih − log

∑
k 6=h

ew̃ik

)

– Sample the transformed weight w̃ih from

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) = N(µ̂ih, Σ̂ih).

• for each connected component m of the graph we sample from

L(m̃Cm | rest) = N (mCm ,ΛCm)

For ease of notation, we show how to obtain expression of mCm and ΛCm in the
case where is only one connected component in the graph. However the general
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update can be straightforwardly recovered since m̃C1 , . . . m̃Ck corresponding to
connected components in the graph are conditionally independent a priori. In
case of one single connected component in the graph, we rewrite (5), letting
all the m̃is to be equal to m̃1, as

w̃ ∼ NI(H−1)

(
1I ⊗ IH−1m̃1,

(
(F − ρG)⊗ Σ−1

)−1
)

where 1I is the vector of ones of length I and IH−1 is the (H − 1) × (H − 1)
identity matrix. Then if Λ := diag(σ2, . . . , σ2) and writing I∗ = 1I ⊗ IH−1,
Q = (F − ρG)⊗ Σ−1, we can write the full conditional of m̃1 as follows:

L(m̃1 | rest) ∝ exp

(
− 0.5

(
w̃ − I∗m̃1)TQ(w̃ − I∗m̃1)T + m̃T

1 Λ−1m̃1

))
∝ exp

(
− 0.5m̃T

1

(
I∗TQI∗

)
m̃+ m̃T

1 Λ−1m̃1 +−2m̃T
1

(
I∗TQw̃

))
This is the kernel of a multivariate normal distribution with covariance matrix
ΛC =

(
I∗TQI∗ + Λ−1

)−1
and mean mC = ΛC

(
I∗TQw̃

)
.

• If there are covariates in the modelM1 as in Section 7, the full-conditional of
the regression coefficients β is given by

L(β | rest) = Nd
(
(Σ−1 +XTV X)−1(XTV (y − µ)), (Σ−1 +XTV X)−1

)
where V is an N × N diagonal matrix and N =

∑
Ni. Denoting by c =

(c1, . . . , cN), the vectorization of the sequence of latent vectors s1, . . . , sI in
(12)-(13), then one has Vk,k = σ2

ck
. The formula above can be derived by

standard posterior updates in the Bayesian linear regression, when the mixture
model (7)-(11) is the model for the “regression error”.

In case of model M2, as in Section 7, the full-conditional of each regression co-
efficients ((µh,βh), σ

2
h) is straightforwardly computed from standard Bayesian

linear regression, considering only observations that are allocated to compo-
nent h. In particular, if we denote by yh the vector of {yij : sij = h}, by Xh

the matrix with rows {xij : sij = h}, and by nh the size of yh, then we have

σ2
h | rest ∼ IG(aph, bph)

(µh, βh) | σ2
h, rest ∼ N (µph,∆ph)

where
∆ph = XT

hXh + 10Id+1

µph = ∆−1
phX

T
h yh

aph = 2 + nh/2

bph = 2 +
1

2
(yThyh − µTph∆phµph)
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D Additional plots and tables

• Figure 12 shows the total variation distance for (w1,w2) and (w1,w4) under
the logisticMCAR and the prior in Jo et al. (2017) with parameters as in
Section 4.3. Observe how the distance between (w1,w2) decreases as the
sparsity increases under both priors. This is expected since areas 1 and 2
are neighbors. However, the distance between (w1,w4) increases with sparsity
under the logisticMCAR but decreases under CK-SSM. Hence, under CK-SSM,
forcing sparsity in the mixture model results in imposing similar behaviors to
different connected components.

• Figure 13 shows draws from the prior mixture density corresponding to param-
eters sampled from the prior under the logisticMCAR and CK-SSM, having
fixed the atoms to have means µ1 = −5, µ2 = −3.33, . . . , µ6 = 5 and equal
variances 0.252 and remaining hyperparameters as in Section 4.3. It is clear
that the logisticMCAR prior allows great variety among disconnected compo-
nents as well as across different independent samples. Instead, CK-SSM shows
that only the first 2/3 components have a nonzero weight, so that the densities
across different areas and coming from independent samples are also similar.

• Table 5 shows the Hellinger distance between the true density and the estimate
under the three models under comparison in Section 6.1 for the three simulated
scenarios in Table 1 for 100 repeatedly simulated datasets. We average these
values over the simulated datasets, also considering ± one empirical standard
deviation of the 100 values obtained.

• Figure 14 shows errors, measured with the Hellinger distance, under our model
(spmix) and the HDP-mixture model (hdp) for each simulation, averaged over
the areas, for I = 4, 64, 256, in Section 6.2.

• Figure 15 displays empirical correlations among the predictors and, in the
last column, between predictors and the response for the Airbnb Amsterdam
dataset in Section 7.

• Figure 16 shows the scatterplots of the response price versus numerical predic-
tors and boxplots for categorical predictors for the Airbnb Amsterdam dataset
in Section 7.

• Figure 17 shows the predictive densities in area Bijlmer-Centrum, correspond-
ing to different covariate specifications: all the covariates are fixed to their
empirical median except for reviews scores rating, which assumes values
equal to the empirical quartiles q0.05, q0.5, q0.95. It is clear that the three den-
sities overlap almost perfectly. There are two reasons for this. First, the the
empirical distribution of this covariate is it is highly concentrated around high
values, as people tend to give mostly positive reviews. Second, the coefficient
associated to this covariate, despite significant, has a very small absolute value.

• Table 6 shows the posterior predictive probability P (y? > 200 | x?, i) for the
same neighborhoods and values of x? considered in Figure 7 (c).
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Figure 12: Total variation distances between the vectors (w1,w2) and (w1,w4)
under the logisticMCAR distribution (first row) and the CK-SSM(second row). Each
plot shows the boxplots of 1,000 independents simulations, for different values of the
sparsity-tuning parameters (sparsity is increasing from left to right in each plot). The
remaining hyperparameters and the adjacency matrix are as discussed in Section 4.3.
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Figure 13: Samples from the prior distribution with H = 6 under the logisticMCAR
(first row, with η = 5.0) and CK-SSM in Jo et al. (2017) (second row, with b =
0.5, a = 1.0). The remaining hyperparameters and the adjacency matrix are as
discussed in Section 4.3. Each plot shows the mixture density in one particular area
and different line types / colors represent independent draws from the prior. Here
the means of the mixture model are fixed as µ1 = −5, µ2 = −3.33, . . . , µ6 = 5 and
the variances are all equal to 0.252.
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Model 1 2 3 4 5 6
Scenario I SPMIX 0.06± 0.01 0.06± 0.01 0.06± 0.01 0.06± 0.01 0.09± 0.01 0.09± 0.01

HDP 0.03± 0.01 0.03± 0.01 0.06± 0.01 0.06± 0.01 0.09± 0.01 0.09± 0.01
CK-SSM 0.44± 0.06 0.44± 0.06 0.53± 0.03 0.53± 0.03 0.44± 0.03 0.44± 0.03

Scenario II SPMIX 0.08± 0.01 0.11± 0.02 0.07± 0.01 0.08± 0.03 0.11± 0.00 0.11± 0.03
HDP 0.04± 0.01 0.19± 0.02 0.09± 0.01 0.24± 0.03 0.10± 0.00 0.27± 0.03

CK-SSM 0.44± 0.06 0.43± 0.06 0.53± 0.03 0.53± 0.03 0.45± 0.05 0.45± 0.05
Scenario III SPMIX 0.20± 0.07 0.20± 0.07 0.16± 0.06 0.16± 0.06 0.11± 0.05 0.11± 0.05

HDP 0.12± 0.07 0.12± 0.07 0.21± 0.06 0.21± 0.06 0.13± 0.05 0.13± 0.05
CK-SSM 0.42± 0.06 0.42± 0.06 0.59± 0.03 0.59± 0.03 0.38± 0.07 0.38± 0.07

Table 5: Hellinger distances between the true densities and the estimated ones,
aggregated over 100 simulated datasets with ± one standard deviation for the sim-
ulated data in Section 6.1

Figure 14: Boxplots of the Hellinger distance between true density (22) and esti-
mated one under our model (spmix) and the HDP-mixture model (hdp) for each
simulation, averaged over the areas, for I = 16, 64, 256, , in logarithmic scale, in
Section 6.2.

Figure 15: Correlation matrix between numerical predictors and response for Airbnb
Amsterdam
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Figure 16: Scatterplots and boxplots of the nightly price versus predictors for Airbnb
Amsterdam. Numerical predictors have been standardized.

0 250

q0.75

q0.5

q0.25

Figure 17: Predictive density for a new listing in Bijlmer-Centrum with
all numerical covariates fixed to the empirical median of the dataset except
reviews scores rating that ranges in the values q0.25, q0.5, q0.75, where qα denotes
the empirical quantile of order α. Each line corresponds to one of these values, from
top to bottom.
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Bijlmer
Centrum

Gaasperdam
Driemond

Oostelijk Havengebied
Indische Buurt

Watergraafsmeer

q0.05 0.02 0.01 0.05 0.05
q0.50 0.02 0.01 0.06 0.06
q0.95 0.06 0.05 0.26 0.27

Table 6: Posterior posterior predictive probability P (yij > 200) for the same neigh-
borhoods and covariate choices as in Figure 7.
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models using Pólya–Gamma latent variables.” Journal of the American statistical
Association, 108(504), 1339–1349.

Pyrcz, M. J. and Deutsch, C. V. (2014). Geostatistical reservoir modeling . Oxford

41

https://www.jstatsoft.org/v55/i13/


university press.

Ren, L., Du, L., Carin, L., and Dunson, D. (2011). “Logistic stick-breaking process.”
Journal of Machine Learning Research, 12(Jan), 203–239.

Richardson, S. and Green, P. J. (1997). “On Bayesian analysis of mixtures with
an unknown number of components (with discussion).” Journal of the Royal
Statistical Society: series B (statistical methodology), 59(4), 731–792.

Roberts, G. O. and Rosenthal, J. S. (2009). “Examples of adaptive MCMC.” Journal
of Computational and Graphical Statistics , 18(2), 349–367.

Rodriguez, A. and Dunson, D. B. (2011). “Nonparametric Bayesian models through
probit stick-breaking processes.” Bayesian analysis , 6(1), 145–178.

Stan Development Team (2018). “Stan Modeling Language Users Guide and Refer-
ence Manual.”
URL http://mc-stan.org

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). “Hierarchical
Dirichlet Processes.” Journal of the American Statistical Association, 101(476),
1566–1581.

Van Der Zee, R. (2016). “The ‘Airbnb effect’: Is it real, and what is it doing to a
city like Amsterdam.” The Guardian, 6 October 2016.

Velázquez, E., Mart́ınez, I., Getzin, S., Moloney, K. A., and Wiegand, T. (2016). “An
evaluation of the state of spatial point pattern analysis in ecology.” Ecography ,
39(11), 1042–1055.

Wachsmuth, D. and Weisler, A. (2018). “Airbnb and the rent gap: Gentrifica-
tion through the sharing economy.” Environment and Planning A: Economy and
Space, 50(6), 1147–1170.

Watanabe, S. (2013). “A widely applicable Bayesian information criterion.” Journal
of Machine Learning Research, 14(Mar), 867–897.

Webster, R. and Oliver, M. A. (2007). Geostatistics for environmental scientists .
John Wiley & Sons.

Zhou, Z., Matteson, D. S., Woodard, D. B., Henderson, S. G., and Micheas, A. C.
(2015). “A spatio-temporal point process model for ambulance demand.” Journal
of the American Statistical Association, 110(509), 6–15.

42

http://mc-stan.org

