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Abstract: The mathematical modeling of the stability problem of nanocomposite cylindrical shells 

is one of the applications of partial differential equations (PDEs). In this study, the stability behavior 

of inhomogeneous nanocomposite cylindrical shells (INH-NCCSs), under combined axial compres-

sion and hydrostatic pressure in the thermal environment, is investigated by means of the first-order 

shear deformation theory (FSDT). The nanocomposite material is modeled as homogeneous and 

heterogeneous and is based on a carbon nanotube (CNT)-reinforced polymer with the linear varia-

tion of the mechanical properties throughout the thickness. In the heterogeneous case, the mechan-

ical properties are modeled as the linear function of the thickness coordinate. The basic equations 

are derived as partial differential equations and solved in a closed form, using the Galerkin proce-

dure, to determine the critical combined loads for the selected structure in thermal environments. 

To test the reliability of the proposed formulation, comparisons with the results obtained by finite 

element and numerical methods in the literature are accompanied by a systematic study aimed at 

testing the sensitivity of the design response to the loading parameters, CNT models, and thermal 

environment. 

Keywords: nanocomposites; inhomogeneity; stability; cylindrical shell; thermal effect; critical com-

bined load 
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1. Introduction 

Cylindrical shells play a key role in many high-tech fields, including aerospace, 

rocket and space technology, shipbuilding and automotive, nuclear reactors, and chemi-

cal engineering. Structural elements used in these areas should always renew themselves 

and new products of modern technology should be used. In this context, polymer-based 

nanocomposites (NCs) are increasingly a�racting the a�ention of engineers and designers 

for stability and optimization problems. Structural elements formed from polymer-based 

nanocomposites have outstanding physical and chemical properties as well as superior 

mechanical properties such as lightness, corrosion resistance, and high specific strength. 
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The operating conditions in the application areas of cylindrical shells expose them to 

the simultaneous action of different loads such as compression forces and external pres-

sures. Research a�empts of buckling response for homogeneous composite cylindrical 

shells subjected to combined loading are relatively old. Some of the most important ones 

among these studies are references [1–7] and they contain many studies in their own pe-

riod. 

The formation of high-resolution microscopes led to the discovery of CNTs during 

the production of fullerenes by arc discharge evaporation in 1991 [8]. It is well known that 

carbon nanotubes, which have a cylindrical structure made of a graphene sheet, have out-

standing mechanical properties such as high tensile strength and high elastic modulus. 

These properties are the reason why carbon nanotubes are considered as an ideal filling 

material for composites used in aerospace structural elements. Besides the outstanding 

electrical and thermal properties of CNTs, their mechanical properties have always at-

tracted the a�ention of researchers and numerous studies have been carried out [9–12]. 

Sometime after CNTs were created, it became known that it was more advantageous to 

use them as a reinforcing element in addition to as a separate structural element. Devel-

opments in modern technology enabled the creation of polymer-, metal-, and ceramic-

based CNTs-reinforced materials starting from 2005, and these materials began to take 

their place in the literature as nanocomposite materials [13–17]. Through a combination 

of many unique properties and exceptional design possibilities, polymer nanocomposites 

have proven themselves as high-performance materials of the twenty-first century and 

have the potential to be used in a wide variety of advanced technologies such as space-

crafts, rockets, submarines, automobiles, and others [18–22]. 

Due to their exceptional load-bearing capacity, nanocomposite cylindrical shells are 

used in various environments and are subjected to combined loads in operation. This 

makes it necessary to perform stability analyses of nanocomposite cylindrical shells sub-

jected to combined loads during design. 

After formulating the buckling problem of functionally graded nanocomposite cylin-

drical shells under separate external pressures in thermal environments in Shen’s study 

[23,24], the buckling problem of nanocomposite cylindrical shells under combined loads 

was investigated by Shen and Xiang [25] using boundary layer theory and a singular per-

turbation procedure. In the literature, in most studies devoted to solving the problem of 

buckling of nanocomposite circular shells, separate action loads were considered, and the 

number of studies is limited due to the difficulties of mathematically modeling the com-

bined loads and solving their problems [26–44]. 

As can be seen from the literature review, the modeling of buckling behavior of struc-

tural elements, consisting of traditional and new generation homogeneous and inhomo-

geneous composites in thermal environments, is generally in the form of PDEs, and ana-

lytical solutions are limited in comparison to numerical solutions. However, analytical 

solutions can help to formulate problems in numerical simulations correctly and to check 

results, as they provide a be�er understanding of the subject qualitatively. One of the most 

dangerous and unpredictable buckling problems of inhomogeneous nanocomposite cy-

lindrical shells subjected to various static loads is under combined loads and their solution 

poses serious challenges due to the extreme operating conditions of modern structural 

members and the high safety and reliability demands placed on them. Besides the inho-

mogeneous nature of nanocomposites, another challenge is the mathematical modeling of 

the thermal environment effect and the incorporation of cylindrical shells under the com-

bined loads into the stability equations. All these difficulties complicate the formulation 

of the problem, the formation of basic relationships, the modeling of governing equations 

in the framework of advanced theories, and the analytical solution. These difficulties, 

which require interdisciplinary knowledge, are among the reasons why the buckling be-

havior of cylindrical shells made of inhomogeneous nanocomposites and subjected to 

combined loads in thermal environments has not been sufficiently investigated in the 

framework of FSDT until now. The aim of this study is to deal with the subject in detail. 
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A systematic study is being conducted to evaluate the sensitivity of the buckling response 

of nanocomposite cylindrical shells under combined loads within FSDT on the geometry, 

distribution, and volume fraction of CNTs used as reinforcement, which may be of great 

interest for design purposes. In addition, the results obtained in the framework of FSDT 

were interpreted in comparison with the results obtained in the framework of the Kirch-

hoff–Love theory (KLT), and the importance of transverse shear strain influences with and 

without thermal environments is revealed. 

The structure of the article is as follows: In Section 2, the mathematical modeling of 

the mechanical properties of nanocomposites in thermal environments is presented and 

the basic equations are derived, in Section 3 the solution method is presented, the para-

metric analysis is included in Section 4, and conclusions are discussed in Section 5. 

2. Mathematical Modeling of the Problem 

2.1. Basic Relationships 

The notes on the inhomogeneous nanocomposite cylindrical shell and its geometry, 

subjected to the combined effect of axial compressive load and hydrostatic pressure, are 

drawn in Figure 1. Geometric parameters such as the length, radius, and thickness of the 

INH-NCCSs are denoted by ,a r , and t , respectively. Suppose the displacements in the 

,x y , and z  directions are ,u v , and w , respectively. 1  and 2  refer to the rotations 

of the mid-surface normal about the y  and x   axes, respectively. Let    be the Airy 

stress function with the forces ( , 1,2)ijN i j   defined by [1,2] 

 
2 2 2

11 22 12 2 2
, , , , .N N N t

x yy x

   
   

   
 (1)

The inhomogeneous nanocomposite cylindrical shell subjected to the compressive 

axial load and external pressures [1,45,46]: 

110 1 220 2 1200.5 , , 0.axN N Pr N P r N       (2)

where 0 ( , 1, 2)ijN i j    are the membrane forces for the condition with zero initial mo-

ments, axN  is the axial compressive load, and ( 1,2)jP j   indicate the uniform external 

pressures. If the external pressures in Figure 1 consider only the lateral pressure, it is 

10, 0axN P    and 2 LP P  , whereas for the hydrostatic pressure, it is assumed that 

0axN   and 1 2 HP P P  . 

Since the material properties of the CNT and matrix are temperature-dependent, the 

effective mechanical properties and thermal expansion coefficients of the nanocomposite 

will be functions of temperature and location. The effective Poisson ratio and density of 

the nanocomposite are considered constant since they are weakly dependent on the tem-

perature change and location. These assumptions allow the expression of the microme-

chanical model of the effective mechanical and thermal properties of INH-NCCSs as fol-

lows [23,24]: 

( , ) 32
11 1 11 ( , ) ( , )

22 22 12 12

( , ) ( , ) ( , ) ( , )
13 12 23 12 12 * 12 *

, , ,

, 1.2 , , .

CN m CN m
Z T CN CN m m

T T Z T CN m Z T CN m
T T T T

Z T Z T Z T Z T CN CN m m CN CN m m

ee V V V V
Y eV Y V Y

Y Y Y G G G

G G G G V V V V     

     

     

 (3)

and 

( , ) ( , ) ( , )11 11
11 22 12 22 12 11

11

, (1 ) (1 ) .
CN CN CN m m m

Z T Z T CN CN CN m m m Z TT T T T
T TCN CN m

T m T

V Y V Y
V V

V Y V Y

 
       


     


 (4) 

in which *
CNV  is the total volume fraction that depends on the density  CN , and the 

mass  CNm  of CNTs and density  m  of the matrix are defined by 
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1

)
* 1 .

CN CN
CN

CN m m
V

m

 

 


 

   
 

 (5)

The symbols used in Equations (3) and (4) are described as 
( , ) ( , ), ( 1, 2, 1, 2,3)Z T Z T
iiT ijTY G i j   and refer to the normal and shear elastic moduli of NCs that 

depend on the nondimensional thickness coordinate and temperature ( , )Z T ; 12  refers 

to the Poisson’s ratio of NCs;   refers to the density of NCs; 
CNV  and 

mV  refer to the 

volume fraction of CNTs and polymer, respectively; 12
CN  and 

m  refer to the volume 

fraction of CNTs and polymer; ,CN CN
iiT ijTY G , and ,m m

T TY G  refer to the normal and shear elastic 

moduli for CNTs and polymer; and (j 1,2,3)je    refer to the efficiency parameters for 

CNTs and 1CN mV V  . Here, 11 22,CN CN
T T  , and m

T  refer to thermal expansion coefficients 

of CNTs and polymer, respectively. It also shows that Young’s modules and thermal ex-

pansion coefficients with their upper index ( , )Z T  depend on the thickness coordinate 

and temperature, indicating that the parameters with sub index T  are dependent only 

on temperature. 

 

Figure 1. Nanocomposite cylindrical shell with different CNT models subjected to the combined 

load. 

Except for the uniform (U) distribution of the CNT distribution in the NCs in the 

thickness direction, three types of models are considered, namely the Λ-, X-, and V-mod-

els, and these can be estimated using the following relation [23,24]: 

 

 

*

*

*

*

for ,

1 2 for ,

4 for X,

1 2 for V.

CN

CN

CN

CN

CN

V U

Z V
V

Z V

Z V




 
 





 (6)

The shapes of uniform and inhomogeneous distributions of CNTs in the thickness 

direction of the polymer matrix, defined by the relation (2), are plo�ed in Figure 2. 

 

Figure 2. Shapes of the uniform and inhomogeneous distributions of CNTs in the thickness direction 

of the polymer matrix. 

2.2. Basic Equations 
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In the framework of FSDT, the constitutive relations for INH-NCCSs in the thermal 

environments can be created as follows [23]: 

( , ) ( , )
11 12

( , ) ( , )
21 22

( , )
66

0

0 .

0 0 0

Z T Z T

xx xx xxT

Z T Z T
yy yy yyT

Z T
xy xy

Y Y

Y Y

Y

  

  

 

      
      

       
      

     

 (7)

and 

( , )
55

( , )
44

0
.

0

Z T
xz xz

Z T
yz yz

Y

Y

 

 

    
     
     

 (8)

where 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
11 11 12 22 21 11 22 22, .Z T Z T Z T Z T Z T Z T Z T Z T

xxT yyTY Y T Y Y T                    (9)

in which ( , , z)ij i, j x y  , ( , )jj j x y  , and ( , , )ij i, j x y z   are the stress and strain tensors 

of INH-NCCSs, respectively; 0T T T    is the symbol indicating the temperature rise 

from some reference temperature 0( )T , in which thermal strains are also absent; and the 

material constants, T  is the temperature and ( , ) , ( , 1 2 6)Z T
ijY i j , ,  are defined as follows: 

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )11 22 21 11 12 22

11 22 12 21

12 21 12 21 12 21 12 21

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
44 23 55 13 66 12

, , ,
1 1 1 1

, , .

Z T Z T Z T Z T
Z T Z T Z T Z T

Z T Z T Z T Z T Z T Z T

Y Y Y Y
Y Y Y Y

Y G Y G Y G

 

       
    

   

  

 (10)

According to the assumptions of FSDT of the Ambartsumian [44], the variation of 

shear stress along the thickness direction can be wri�en as follows: 

1 20, ( , ), ( , ).zz xz yz

df df
x y x y

dz dz
        (11)

where f  refers to the shear stress shape function. 

By combining Equations (6), (7), and (10), one obtains the following: 

2
( , ) 1

12

2
( , ) 2

22

2
( , ) ( , )1 2

0 1 2

.

2

Z T
xx xx

Z T
yy yy

Z T Z T
xyxy

w
e z F

xx

w
e z F

yy

w
z F F
x y y x






 


     
   
        
   
                 

 (12)

where 0, ,xx yy xye e   refer to the strain components at the mid-surface. ( , )
1
Z TF  and ( , )

2
Z TF  

are defined as 

( , ) ( , )
1 2( , ) ( , )

55 440 0

1 1
, .

z z
z T z T

Z T Z T

df df
F dz F dz

dz dzY Y
    (13)

By integrating the stresses across the shell thickness, we can obtain stress resultants 

as follows [1]: 

   
0.5

0.5

, , , ,  d , ( , ).
t

ij i ij ij iz ij

t

N Q M z z i, j x y  


   (14)

Thermal forces and moments ( , , 1,2)T T
ii iiN M i    caused by high temperature are 

found from the following integrals [23–25]: 



Mathematics 2023, 11, 3781 6 of 23 
 

 

 

 

0.5
( , ) ( , ) ( , ) ( , )

11 11 11 11 12 22

0.5

0.5
( , ) ( , ) ( , ) ( , )

22 22 21 11 22 22

0.5

( , ) 1, ,

( , ) 1, .

t
T T Z T Z T Z T Z T

t

t
T T Z T Z T Z T Z T

t

N M Y Y T z dz

N M Y Y T z dz

 

 





    

    





 (15)

Using Equations (7)–(9), (12), and (14) together, the stability and compatibility equa-

tions for INH-NCCSs under combined load can be expressed with four independent pa-

rameters, 1 2,w    , as follows: 

11 12 13 14

21 22 23 24

131 32 33 34

241 42 43 44

0

0
.

0

0

L L L L

L L L L w

L L L L

L L L L





     
     
     
     
     
     

 (16)

where ijL  are differential operators, whose details are described in Appendix A. 

3. Solution Procedure 

The two end edges of the cylindrical shell are simply supported, and these boundary 

conditions are, mathematically, as follows [23,45,46]: 

2

2 112
At 0, 0.x L w M

y


 
    


 (17)

2
2

11

0

2 0.
r

xN d y rt r p


      (18)

where x  is the average axial compressive stress and the closed or periodicity condition 

is expressed as 

2

0

0.
r
v
dy

y







 (19)

The approximation functions are searched as follows [33,47]: 

1 1 2 2 1 2

1 3 1 2 2 4 1 2

sin( ) sin( ), sin( )sin( ),

cos( ) sin( ), sin( ) cos( ).

K x y w K x y

K x y K x y

   

     

  

 
 (20)

where iK   refer to unknown amplitudes, 1

m

a


    and 2

n

r
   , and where m   and n  

are the longitudinal and circumferential wave numbers, respectively, contained in these 

parameters. 

By introducing (20) into Equation (16), and also taking into account (2), then using 

the Galerkin procedure we obtain the following: 

11 12 13 14 1

21 22 23 24 2

331 32 33 34

441 42 43 44

0

0
.

0

0

Q Q Q Q K

Q Q Q Q K

KQ Q Q Q

KQ Q Q Q

     
          
     
     

      

 (21)

The ijQ  contained in the square matrix of (21) refer to the coefficients characterizing 

the INH-NCCSs properties in the thermal environments and the combined load compo-

nents and these are defined in Appendix B. 

When the expansion of the determinant of the square matrix of Equation (21), with 

respect to the fourth row and the first column, is set to zero, the following equation is 

obtained, which provides the analytical expressions determining the critical axial load and 

critical external pressures of the INH-NCCSs in the thermal environments: 



Mathematics 2023, 11, 3781 7 of 23 
 

 

 2 2 2
41 1 1 1 1 2 2 2 43 3 44 40.5 0.axQ N P r P r Q Q             (22)

where cofactors i  are expressed as 

12 13 14 11 13 14 11 12 1311 12 14

1 22 23 24 2 21 23 24 3 21 22 24 4 21 22 23

31 32 3432 33 34 31 33 34 31 32 33

, , , .

Q Q Q Q Q Q Q Q QQ Q Q

Q Q Q Q Q Q Q Q Q Q Q Q

Q Q QQ Q Q Q Q Q Q Q Q

           (23)

From Equation (22) for INH-NCCSs, we obtain the following expressions for the non-

dimensional critical axial load ( axcr
fsdtN ), as 1 2 0P P  , for the nondimensional critical lat-

eral pressure ( Lcr
fsdtP ), as 1 0axN P  ; 

LPP 2
 and for the nondimensional critical hydro-

static pressure ( Hcr
fsdtP ), as 1 20,ax HN P P P   , respectively, in the thermal environments: 

 2 2 2 2
1 2 1 2

, , .
0.5

axcr Lcr Hcr
fsdt fsdt fsdtm m m

N P P
t Y Y r Y r   

  
  


 (24)

where 41 1 43 3 44 4

2

Q Q Q    
 


 and mY  is the modulus of elasticity of the polymer at 

0 300(K)T   (at room temperature). 

For the combined axial load and lateral pressure, or combined axial load and hydro-

static pressure acting on the INH-NCCSs within FSDT in the thermal environments, the 

following relation can be used [1,32,46]: 

1 and 1.L H

axcr Lcr axcr Hcr
fsdt fsdt fsdt fsdt

P PN N

N P N P
     (25)

where 

, , .ax L H
L Hm m m

N P P
N P P

Y t Y Y
    (26)

Under the assumptions LN P  and HN P , in Equation (25), one obtains the fol-

lowing: 

1 1

1 1
and .Lcbcr Hcbcr

fsdt fsdtLcr axcr Hcr axcr
fsdt fsdt fsdt fsdt

P P
P N P N

 
 

   
         
   

 (27)

where 0   is the nondimensional load-proportional parameter. 

From Equations (24) and (27), the values of critical combined loads within classical 

shell theory, Lcbcr
kltP  and Hcbcr

kltP , in the thermal environment, can be found as the influence 

of transverse shear strains is neglected. 

4. Results and Discussion 

4.1. Initial Data 

The comparison and specific numerical results for nanocomposite cylindrical shells 

subjected to two kinds of combined loads are performed in this section. The effective ma-

terial properties of the nanocomposite are defined as follows: PMMA, with the abbrevi-

ated name of poly (methyl methacrylate), whose material properties are 
60.34, 45(1 0.0005 ) 10 / Km m

T T         and 9(3.52 0.0034 ) 10 (Pa)m
TY T    . Here, 

0T T T     in which 0 = 300(K)T  . At reference temperature, that is, at 0 = 300KT  , 
6 945 10 / K, 2.5 10 Pam m m m

T TY Y        . 
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Single-walled carbon nanotubes (SWCNTs), namely (10, 10) SWCNTs, with proper-

ties 129.26nm, 0.68nm, 0.067nm, 0.175CN CN CN CNa r t      , are used as reinforcement. 

The temperature-dependent material properties of (10, 10) SWCNTs are evaluated as [48] 

3 6 2 9 3
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22
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.

88155 10 1.13253 10 ) 10

(5.43874 9.95498 10 3.13525 1 1

/ K,

3.56332 / K0 10 ) 0CN
T

T T

T T T

  

   

   

     

 (28)

The magnitudes of material properties and thermal expansion coefficients for T = 300, 

450, 600, and 750 (K) of (10, 10) SWCNTs using the above equations are presented in Table 

1. 

Table 1. The temperature-dependent material properties of (10, 10) SWCNTs. 

Temperature 

(K) 
11
CN
TY  

(TPa) 

22
CN
TY  

(TPa) 

12
CN
TG  

(TPa) 

11

610 / K

CN
T



 22

610 / K

CN
T



 

300 5.6451 7.0796 2.0665 3.4579 5.1682 

450 5.5461 6.9563 2.3728 4.3758 5.0539 

600 5.4994 6.8984 2.9283 4.6852 4.9535 

750 5.4588 6.8482 3.8325 4.6152 4.8670 

As is known, there are no experiments to determine the values of the efficiency pa-

rameters of nanocomposites. For the current analysis, the CNT efficiency parameters 

( 1,2,3)ie i   represent the Young moduli ( 11 22,Y Y ) and shear modulus ( 12G ) determined 

from the extended mixing rule of nanocomposites, as obtained from molecular dynamics 

simulations by Griebel and Hamaekers [49], and Han and Ellio� [50], and determined by 

matching with similar values. The typical values of CNT efficiency parameters are listed 

in Table 2 

Table 2. Typical values of CNT efficiency parameters. 

 CNT Efficiency Parameters 

*
CNV  1e  2e  3e  

0.12 0.137 1.626 0.715 

0.17 0.142 1.626 1.138 

0.23 0.141 1.585 1.109 

The shear stress shape functions are distributed as 21 4
df

Z
dz

    [47]. The critical 

combined load values of INH-NCCSs in the thermal environments are calculated for dif-

ferent shell characteristics within the KLT and FSDT. 

4.2. Comparative Examples 

Before the parametric analyses, the values of the critical axial/hydrostatic combined 

load of the X-model INH-NCCSs within FSDT for two different load-proportional param-

eters are compared with the results of Shen and Xiang [25] for T = 300 (K). In the compar-

ison, the following geometric data are considered: 0.002m, 0.06mt r  , and 10 3a rt

, which are taken from the study of Shen and Xiang [25] that used higher order shear 

deformation theory. The values corresponding to T = 300 (K) in Table 1 are used as the 
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material properties. According to Table 3, good agreement can be observed between Shen 

and Xiang’s [25] estimates for the critical combined load and our results. 

Table 3. Comparative study of Lcbcr
fsdtP  for INH-NCCSs with the X-model with different load-pro-

portional parameters. 

Lcbcr
fsdtP  (MPa) ( 4crn  ) for X-Model 

 T = 300 (K) T = 400 (K) T =500 (K) 

 750   140   750   140   750   140   

*
CNV

 Shen and Xiang [25] 

0.12 0.112 0.218 0.098 0.191 0.084 0.166 

0.17 0.190 0.370 0.167 0.325 0.143 0.280 

0.28 0.242 0.470 0.213 0.414 0.183 0.358 

*
CNV

 Present study 

0.12 0.110 0.222 0.097 0.196 0.084 0.169 

0.17 0.187 0.379 0.165 0.333 0.142 0.286 

0.28 0.240 0.486 0.211 0.427 0.182 0.368 

The numerical results of the critical lateral pressure, Lcr
fsdtP  (in kPa), for the CNT-rein-

forced PMMA-based cylindrical shell of various lengths are compared with the results 

estimated by the finite element method of Hajoui et al. [26] and the two-stage singular 

perturbation technique of Shen [24] based on the higher order shear deformation theory. 

Other data used in the comparison are: */   30,    2 mm,  0.17CNr Vt h    and T = 300 (K). 

Two CNT pa�ern types are considered, U and X, and the numbers in parentheses indicate 

the circumferential mode numbers. Despite the difference in the solution methods, it is 

seen in Table 4 that the existing solutions are in good agreement with the results obtained 

using the numerical method [24] and finite element method [26]. It should be noted that 

the number of circumferential modes matches exactly those obtained in the comparative 

studies. 

Table 4. Comparative study of Lcr
fsdtP  for PMMA-based nanocomposite cylindrical shells with dif-

ferent CNT models. 

 ( )Lcr
fsdt crP n  

a  Comparative Studies U X 

10 rt  

Present study 775.23 (5) 893.46 (5) 

Shen [24] 776.63 (5) 927.40 (5) 

Hajlaoui et al. [26] 763.46 (5) 886.32 (5) 

10 3rt  

Present study 433.18 (4) 477.97 (4) 

Shen [24] 433.04 (4) 484.05 (4) 

Hajlaoui et al. [26] 438.47 (4) 482.39 (4) 

10 5rt  

Present study 344.02(4) 379.43 (4) 

Shen [24] 343.81 (4) 382.59 (4) 

Hajlaoui et al. [26] 346.77 (4) 381.51 (4) 

4.3. Parametric Analyses 

In what follows, we analyze the sensitivity of the critical combined load to inhomo-

geneous models, the volume fractions of CNT and FSDT formulation, and the change in 

temperature, by considering the ratios 
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0

0

100% , ,
 

 
 
 

Hcbcr HcbcrHcbcr HcbcrHcbcr Hcbcr
T Tklt fsdtINH U

Hcbcr Hcbcr Hcbcr
U klt T

P PP PP P

P P P
. Two of the main parameters affect-

ing the critical combined loads are the load proportional parameter and the temperature 

variation. Since the number of longitudinal waves is equal to one, it is not included in the 

tables and figures. The buckling modes corresponding to the critical combined load values 

in Figures 3–8 are presented in Tables 5 and 6, as well as given in parentheses within the 

figures. The symbol T0 corresponds to the value T = 300 (K). 

The distribution of the nondimensional critical combined loads and the correspond-

ing circumferential wave numbers ( crn ) of four types of polymer-based and CNT-pat-

terned cylindrical shells in thermal environments versus the nondimensional load-pro-

portional parameter ( ) within two theories are shown in Table 5 and Figures 3–6. The 

data used in numerical calculations are considered as: 

*/ 25,  / 1,  0.002m,   0.12CNr t a r t V    . The magnitudes of the nondimensional critical 

combined load and the corresponding circumferential wave numbers of four types of 

CNT-pa�erned cylindrical shells in thermal environments within two theories reduce as 

the   rises. The effect of shear deformations (SDs) on the critical combined load differs 

with the change in temperature. At T = 300 (K), when the   increases from 100 to 500, the 

influence of SDs on Hcbcr
fsdtP   values rises for the U-model, while that influence becomes 

weaker as the   rises up to 900. When the   load-proportional parameter rises from 100 

to 500, the effect of transverse SDs on the Hcbcr
fsdtP  diminishes for the V-model, while that 

influence changes irregularly with the rise in the   up to 900. As the   load-propor-

tional parameter increases from 100 to 500, the influence of SDs on the Hcbcr
fsdtP  values di-

minishes in the Λ-model, while that influence reduces weakly but continuously as the   

increases up to 900. The effect of transverse SDs on the magnitudes of the Hcbcr
fsdtP   de-

creases continuously when it increases from 100 to 900 for the X-model. 

At T = 450 (K), as the load-proportional parameter increases from 100 to 300, the effect 

of transverse SDs on the Hcbcr
fsdtP   increases for U-, V-, and Λ-models, while that effect 

weakens and reduces continuously as    increases up to 900. When the    increases 

from 100 to 500, the influence of transverse SDs on the Hcbcr
fsdtP  rises as   increases from 

100 to 300, while that effect changes irregularly as the   increases up to 900 for the X-

model. 

At T = 600 (K), when the   load-proportional parameter increases from 100 to 300, 

the influence of SDs on the magnitudes of the Hcbcr
fsdtP  increases in the U-model, while that 

influences reduces as the   increases up to 900. When the   increases from 100 to 500, 

the influence of transverse SDs on the Hcbcr
fsdtP  increases for the V- and X-models, while 

that effect changes irregularly as the   increases up to 900. When the  increases from 

100 to 500, the effect of SDs on the Hcbcr
fsdtP  values rises in the Λ -model, while that effect 

decreases as   increases up to 900. 

At T = 750 (K), as the   increases from 100 to 500, the effect of transverse SDs on the
Hcbcr
fsdtP  increases in the U-model, while that effect decreases as the   load ratio increases 

up to 900. As the  increases from 100 to 500, the effect of transverse SDs on Hcbcr
fsdtP  in-

creases for the V-model, while that effect decreases as   increment up to 900. When the 

  increases from 100 to 300, the effect of SDs on Hcbcr
fsdtP  rises for the Λ -model, while that 

influence decreases continuously as the   increases up to 900. For the X-model, the effect 

of transverse SDs on Hcbcr
fsdtP  rises continuously when it increases from 100 to 500, while 

that effect changes irregularly when   increases up to 900. 

Although the increase in temperature changes according to the shape of inhomoge-

neous models on the Hcbcr
fsdtP , that rises the influence of inhomogeneity on the values of the 

critical combined load in all models. For example, at T = 300 (K), as the  increases from 
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100 to 900, the influence of the V-, Λ-, and X-models on the Hcbcr
fsdtP  rises from (−11.21%) to 

(−13.95%), (−17.83%) to (−19.77%), and (+21.62%) to (+23.98%), respectively, while at T = 

750 (K), those effects increase from (−13.08%) to (−16.32%), (−16.72%) to (−19.58%), and 

(+18.54%) to (+21.45%), respectively, considering the transverse shear deformations signif-

icantly reduces the effects of the models (Figures 3 and 4). 

When comparing the influence of temperature on the Hcbcr
fsdtP  at T = 450 (K) and T = 

300 (K), if the   rises from 100 to 900, the influence of temperature on the Hcbcr
fsdtP  shows 

a decrease varying between 1% and 1.7%, according to the shape of pa�erns. When T = 

600 (K) and T0 = 300 (K) are compared, if the   increases from 100 to 900, the temperature 

effect on the Hcbcr
fsdtP  shows a decrease of approximately 2.4% to 3.0%, depending on the 

shape of models. When T = 750 (K) and T = 300 (K) are compared, if the   increases from 

100 to 900, the temperature effect on the Hcbcr
fsdtP  values shows the decrease between ap-

proximately 3.3% and 4.3%, depending on the shape of the models. The most significant 

effect of temperature occurs when   = 100 and T = 300 (K) in the X-model with (−43.58%). 

A consideration of the transverse SDs significantly increases the effect of temperature on 

the Hcbcr
fsdtP . In some cases, the difference in effect of the temperature on the Hcbcr

fsdtP  within 

the framework of the two theories is up to 13% (Figures 5 and 6). 

Table 5. Distribution of Hcbcr
fsdtP and 

Hcbcr
kltP for CNT-reinforced polymer-based cylindrical shells and 

corresponding wave numbers versus the   load-proportional parameter in thermal environments. 

410 ( )Hcbcr
crP n  

  T = 300 (K) 

  U V Λ X 

  KLT FSDT KLT FSDT KLT FSDT KLT FSDT 

100 4.303 (6) 3.792 (6) 3.677 (5) 3.367 (5) 3.388 (5) 3.116 (5) 5.599 (6) 4.612 (6) 

300 2.059 (5) 1.804 (5) 1.720 (5) 1.575 (5) 1.585 (5) 1.458 (5) 2.737 (5) 2.231 (5) 

500 1.344 (5) 1.177 (5) 1.109 (4) 1.020 (4) 1.030 (4) 0.951 (4) 1.786 (5) 1.456 (5) 

700 0.991 (4) 0.870 (4) 0.815 (4) 0.749 (4) 0.756 (4) 0.698 (4) 1.322 (4) 1.079 (4) 

900 0.783 (4) 0.688 (4) 0.644 (4) 0.592 (4) 0.598 (4) 0.552 (4) 1.044 (4) 0.853 (4) 

  T = 450 (K) 

100 3.873 (6) 3.309 (6) 3.247 (6) 2.920 (6) 3.031 (6) 2.738 (5) 5.096 (7) 4.035 (6) 

300 1.882 (5) 1.595 (5) 1.531 (5) 1.373 (5) 1.423 (5) 1.280 (5) 2.542 (5) 1.975 (5) 

500 1.228 (5) 1.041 (5) 0.993 (4) 0.893 (4) 0.929 (5) 0.836 (5) 1.659 (5) 1.289 (5) 

700 0.910 (4) 0.773 (5) 0.729 (4) 0.656 (4) 0.683 (4) 0.616 (4) 1.232 (5) 0.960 (4) 

900 0.719 (4) 0.611 (4) 0.576 (4) 0.518 (4) 0.539 (4) 0.487 (4) 0.975 (4) 0.758 (4) 

  T = 600 (K) 

100 3.453 (7) 2.804 (6) 2.805 (6) 2.435 (6) 2.642 (6) 2.304 (6) 4.544 (7) 3.398 (7) 

300 1.716 (5) 1.374 (5) 1.351 (5) 1.166 (5) 1.269 (5) 1.099 (5) 2.366 (5) 1.697 (5) 

500 1.120 (5) 0.897 (5) 0.882 (5) 0.761 (5) 0.828 (5) 0.717 (5) 1.544 (5) 1.107 (5) 

700 0.831 (5) 0.666 (5) 0.648 (4) 0.561 (4) 0.613 (4) 0.532 (4) 1.146 (5) 0.822 (5) 

900 0.659 (4) 0.529 (4) 0.512 (4) 0.443 (4) 0.484 (4) 0.421 (4) 0.911 (5) 0.653 (4) 

  T = 750 (K) 

100 2.941 (7) 2.195 (7) 2.351 (7) 1.908 (6) 2.253 (7) 1.828 (6) 3.887 (8) 2.602 (7) 

300 1.544 (6) 1.113 (5) 1.171 (5) 0.935 (5) 1.116 (5) 0.895 (5) 2.148 (6) 1.352 (5) 

500 1.013 (5) 0.726 (5) 0.764 (5) 0.610 (5) 0.728 (5) 0.584 (5) 1.430 (5) 0.883 (5) 

700 0.752 (5) 0.539 (5) 0.567 (5) 0.453 (5) 0.541 (5) 0.433 (5) 1.062 (5) 0.656 (5) 

900 0.598 (5) 0.429 (5) 0.448 (4) 0.359 (4) 0.430 (4) 0.345 (5) 0.844 (5) 0.521 (5) 
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Figure 3. Distribution of Hcbcr
fsdtP and 

Hcbcr
kltP  for nanocomposite cylindrical shells with various mod-

els versus the   at T = 300 (K). 

 

Figure 4. Distribution of Hcbcr
fsdtP and 

Hcbcr
kltP  for nanocomposite cylindrical shells with various mod-

els versus the   at T = 750 (K). 
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Figure 5. Distribution 
Hcbcr
kltP  for nanocomposite cylindrical shells with various models versus the 

  for different temperatures. 

 

Figure 6. Distribution of Hcbcr
fsdtP for nanocomposite cylindrical shells with various models versus 

the   for different temperatures. 

The distribution of Hcbcr
fsdtP , Hcbcr

kltP , and corresponding circumferential wave numbers 

of polymer-based cylindrical shells reinforced with the CNT in the thermal environment 

versus the /a r , are shown in Table 6 and Figures 7 and 8. The data used in the numerical 

calculations are considered as: */ 25,  0.002m,  0.12, 500CNr t t V      . Increasing the 

/a r  ratio significantly reduces the values of the critical combined loads based on the KLT 
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and FSDT, and corresponding wave numbers decrease slightly. At a small /a r , the influ-

ence of transverse SDs on the critical combined load is quite large and is more likely to 

damage the structure. 

The increase in the /a r  significantly reduces the effect of transverse shear defor-

mations on the critical combined load at the fixed value of the /r t  (=25). Although the 

effects of SDs on the Hcbcr
fsdtP  in different models decrease when the /a r  rises, the model 

types maintain their sensitivity. The most significant effect on the Hcbcr
fsdtP  of transverse 

SDs effect occurs in the X-model, and the least effect occurs in the Λ- and V-models. In 

addition, increasing the temperature significantly increases the SDs effect, as well as de-

creasing the rate of reduction in the SDs effect, which decreases with the increase in /a r

. For example, at T = 300 (K), the effects of SDs decrease from 41.98% to 4.23%, from 32.35% 

to 2.96%, from 32.33% to 2.36%, and from 52.5% to 7% in the U-, V-, Λ-, and X- models, as 

the /a r increases from 0.5 to 1.5, whereas at T = 750 (K), those influences reduce from 

64.38% to 12.39%, from 54.41% to 8.11%, from 54.39% to 7.64%, and from 73.2% to 18.8%, 

respectively. 

The increase in the /a r  significantly reduces the effect of transverse shear defor-

mations on the Hcbcr
fsdtP . Although the effect of SDs on the Hcbcr

fsdtP  for different designs de-

creases when the /a r  ratio increases, the pa�ern types maintain their sensitivity. It can 

be seen that the most significant SDs effect on the Hcbcr
fsdtP  occurs in the X-model, and the 

least effect occurs in the Λ- and V-models. In addition, increasing the temperature signif-

icantly increases the SDs effect on the Hcbcr
fsdtP , as well as decreasing the rate of reduction 

in the SDs effect, which decreases with the increase in /a r . For example, at T = 300 (K), 

as the /a r   increases from 0.5 to 1.5, the effects of SDs on the Hcbcr
fsdtP   decrease from 

41.98% to 4.23%, from 32.35% to 2.96%, from 32.33% to 2.36%, and from 52.5% to 7% in 

cylindrical shells with the U-, V-, Λ- and X-models, respectively, whereas those effects 

diminish from 64.38% to 12.39%, from 54.41% to 8.11%, from 54.39% to 7.64% and from 

73.2% to 18.8%, for the U-, V-, Λ- and X-models, respectively, at T = 750 (K). 

In the FSDT framework, the pa�ern effects on the Hcbcr
fsdtP  show different behavior 

compared to the KLT, along with a significant decrease. For example, at T = 300 (K) in the 

FSDT framework, as the /a r increases from 0.5 to 1.5, the effect of the V-model on the 
Hcbcr
fsdtP decreases continuously from (−16.52%) to (−5.97%), while the effect of the Λ-model 

increases from (−17.48%) to (−20.18%) and then decreases to (−16%). The influence of the 

X-model increases from (+18.44%) to (+23.86%), when the /a r increases from 0.5 to 0.75, 

then decreases to (+18.5%) at /a r  = 1.5. 

At T = 750 (K), as the /a r  increases from 0.5 to 1 in the V-model, that effect increases 

from (−11.2%) to (−15.98%), then weakens to (−12.89%) at /a r  = 1.5%. When the /a r  

increases from 0.5 to 1.25 in the Λ-model, it increases from (−11.96%) to (−20%), then de-

creases to (−19.5%) at /a r  = 1.5. When the /a r increases from 0.5 to 1.5, the inhomoge-

neity effect increases continuously from (+10.14%) to (+23.08%) for the X-model. 

The effect of the temperature on the critical combined load is more pronounced in 

the FSDT frame compared to the KLT when compared to T = 300 (K). This effect difference 

is quite significant when the /a r  ratio is small, the effect in FSDT is quite pronounced 

compared to KLT, and the difference decreases as the /a r  ratio increases (Figures 7 and 

8). On the other hand, in the KLT framework, an increase in the /a r  significantly in-

creases the temperature effect while, in the FSDT framework, it a�enuates that effect only 

slightly, but also causes its erratic variation. For example, compared with the T = 750 (K) 

case, when the /a r ratio increases from 0.5 to 1.5, the influences rise from (−10.21%) to 

(−37.26%), from (−13.02%) to (−43.84%), from (−12.76%) to (−41.89%), and from (−9.2%) to 

(−31.93%) in the shells with the U-, V-, Λ- and X-models within KLT, respectively. In the 

FSDT framework, as the /a r  ratio increases from 0.5 to 1.5 in the U-, V-, Λ- and X-mod-

els, although the temperature effects change irregularly, the temperature effect on the 
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Hcbcr
fsdtP  decreases from (−44.89%) to (−42.6%) for the U-model, increases from (−41.38%) to 

(−46.83%) for the V-model, increases from (−41.2%) to (−45.03%) for the Λ- model, while 

for the X-model it reduces from (−48.75%) to (−40.56%). 

Table 6. Distribution of critical combined loads and corresponding wave numbers of polymer-based 

cylindrical shells reinforced with the CNT in the thermal environment versus the /a r  within two 

theories. 

410HcbcrP   

  T = 300 (K) 

  U V O X 

/a r  KLT FSDT KLT FSDT KLT FSDT KLT FSDT 

0.50 4.131 (5) 2.397 (5) 2.958 (4) 2.001(5) 2.923 (5) 1.978 (5) 5.977 (6) 2.839 (5) 

0.75 2.033 (5) 1.576(5) 1.566 (5) 1.317(5) 1.491(5) 1.258 (5) 2.837 (5) 1.952 (5) 

1.00 1.344 (5) 1.177 (5) 1.109 (4) 1.020 (4) 1.030(4) 0.951 (4) 1.786 (5) 1.456 (5) 

1.25 1.034 (4) 0.961(4) 0.909 (4) 0.867(4) 0.821(4) 0.787 (4) 1.318 (4) 1.171 (4) 

1.50 0.875 (4) 0.838 (4) 0.812 (4) 0.788(4) 0.721(4) 0.704 (4) 1.071 (4) 0.996 (4) 

/a r  T = 450 (K) 

0.50 3.977 (6) 2.100 (5) 2.815 (5) 1.769(5) 2.786(5) 1.752(5) 5.779(6) 2.443(6) 

0.75 1.914 (5) 1.403 (5) 1.444 (5) 1.168(5) 1.383(5) 1.122(5) 2.702(5) 1.723(5) 

1.00 1.228 (5) 1.041 (5) 0.993 (4) 0.893(4) 0.929(5) 0.836(5) 1.659(5) 1.289(5) 

1.25 0.925 (4) 0.842 (4) 0.792 (4) 0.746 (4) 0.721 (4) 0.682 (4) 1.202 (4) 1.034 (4) 

1.50 0.765 (4) 0.722 (4) 0.692 (4) 0.667 (4) 0.619 (4) 0.600 (4) 0.954 (4) 0.868 (4) 

/a r  T = 600 (K) 

0.50 3.846 (6) 1.753 (6) 2.694 (5) 1.506 (5) 2.671 (6) 1.495 (5) 5.619 (7) 1.994 (6) 

0.75 1.809 (5) 1.211 (5) 1.331 (5) 1.009 (5) 1.286 (5) 0.976 (5) 2.585 (6) 1.465 (5) 

1.00 1.120 (5) 0.897 (5) 0.882 (5) 0.761 (5) 0.828 (5) 0.717 (5) 1.544 (5) 1.107 (5) 

1.25 0.820 (4) 0.720 (4) 0.678 (4) 0.624 (4) 0.624 (4) 0.577 (4) 1.090 (5) 0.889 (4) 

1.50 0.657 (4) 0.606 (4) 0.574 (4) 0.545 (4) 0.519 (4) 0.496 (4) 0.842 (4) 0.738 (4) 

/a r  T = 750 (K) 

0.50 3.709 (7) 1.321 (6) 2.573 (6) 1.173 (5) 2.550 (6) 1.163 (6) 5.427 (9) 1.455 (6) 

0.75 1.700 (6) 0.967 (5) 1.220 (5) 0.816 (5) 1.189 (5) 0.797 (5) 2.454 (6) 1.136 (5) 

1.00 1.013 (5) 0.726 (5) 0.764 (5) 0.610 (5) 0.728 (5) 0.584 (5) 1.430 (5) 0.883 (5) 

1.25 0.710 (5) 0.580 (5) 0.564 (6) 0.494 (4) 0.528 (4) 0.464 (4) 0.967 (5) 0.711 (5) 

1.50 0.549 (4) 0.481 (4) 0.456 (4) 0.419 (4) 0.419 (4) 0.387 (4) 0.729 (4) 0.592 (4) 
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Figure 7. Distribution of 
Hcbcr
kltP  for nanocomposite cylindrical shells with various models in the 

thermal environment versus the /a r . 

 

Figure 8. Distribution of Hcbcr
fsdtP  for nanocomposite cylindrical shells with various models in the 

thermal environment versus the /a r . 

5. Conclusions 

The buckling of INH-NCCSs under combined loads in the thermal environment has 

been investigated comparatively in the framework of FSDT and KLT. The nanocomposite 

cylindrical shell is exposed to the combined effect of hydrostatic pressure and axial com-

pression. The nanocomposite material consists of CNT-reinforced polymer materials. It is 

assumed that the mechanical properties of inhomogeneous nanocomposites vary depend-

ing on the thickness coordinate and temperature; the basic relations are formed on this 
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assumption and the basic equations are derived in the framework of FSDT. The Galerkin 

procedure is used to determine the critical combined load of INH-NCCSs in thermal en-

vironments and the closed-form solution is obtained. After checking the accuracy of the 

proposed formulation, numerical analysis is carried out. The numerical analyses reveal 

the following generalizations: 

(a) The most significant SDs effect on the critical combined load occurs in the X-model, 

and the least effect occurs in the Λ- and V-models. 

(b) The effect of temperature change on the critical combined load is more pronounced 

in the FSDT frame compared to the KLT. 

(c) While the increase in temperature change increases the effect of inhomogeneity on 

the critical combined load values in all models, considering the transverse shear 

strains significantly reduces the effects of the models. 

(d) The influence of transverse SDs on the Hcbcr
fsdtP  changes irregularly for all models as 

the nondimensional load-proportional parameter rises. 

(e) The magnitudes of the nondimensional critical combined load and the corresponding 

circumferential wave numbers of four types of CNT-pa�erned cylindrical shells in 

thermal environments within two theories reduce as the nondimensional load-pro-

portional parameter rises. 

(f) A consideration of the transverse SDs significantly rises the effect of temperature on 

the critical combined load. 

(g) In some cases, the difference of the influence of temperature on the critical combined 

load within the framework of FSDT and KLT is up to 13%. 

(h) Increasing the /a r  ratio significantly reduces the values of nondimensional critical 

combined loads, whereas corresponding wave numbers decrease slightly. 

(i) At the small /a r , the influence of transverse SDs on the Hcbcr
fsdtP  is quite large and is 

more likely to damage the structure. 

(j) The increase in the /a r   significantly reduces the influence of transverse shear 

strains on the critical combined load at the fixed value of the /r t . 

(k) Although the effects of SDs on the Hcbcr
fsdtP  for different models decrease when the 

/a r  rises, the model types maintain their sensitivity. 

(l) Increasing the temperature significantly rises the SDs effect, as well as decreasing the 

rate of reduction in the SDs effect, which decreases with the increase in /a r . 

(m) The influence of the temperature is quite significant when the /a r  ratio is small, the 

effect within FSDT is quite prominent compared to KLT, and the difference reduces 

as the /a r  ratio increases. 
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Abbreviations 

Symbols  

a  Length of cylindrical shell  

(j 1,2,3)je   Efficiency parameters for CNTs 

0, ,xx yy xye e   Strain components at the mid-surface 

f   Shear stress shape function 

( , ) ( 1, 2)z T
jF j   

Parameters including shear moduli and shear shape func-

tion 

1 1

, , , ,i i
ij ij ij ijC D H Q  

Parameters depending on nanocomposite shell 

characteristics  

iK   Unknown amplitudes  

ijL   Differential operators 

m    Longitudinal wave number  

CNm    Mass of the CNT 

ijM , ( 1,2)T
iiM i   Moments and thermal moments, respectively 

n   Circumferential wave number  

crn  
Circumferential wave numbers corresponding to critical 

loads 

ijN , ( 1,2)T
iiN i   Forces and thermal forces, respectively 

0 ( 1, 2)ijN i   
Membrane forces for the condition with zero initial mo-

ments 

axN  Axial compressive load 

axcr
fsdtN  Nondimensional critical axial load within FSDT 

N  Nondimensional axial compressive load 

HcbcrP  Critical combined load 

,L HP P  
Nondimensional lateral and hydrostatic pressures, respec-

tively 

(j 1,2)jP   Uniform external pressures 

LP , HP  Lateral and hydrostatic pressures, respectively 

,Lcr Lcr
fsdt kltP P  

Nondimensional critical lateral pressure within FSDT and 

KLT 

,Hcr Hcr
fsdt kltP P  

Nondimensional critical hydrostatic pressure within FSDT 

and KLT 

,Hcbcr Hcbcr
fsdt kltP P  Nondimensional combined loads within FSDT and KLT 

iQ  Shear forces 

r   Radius of the cylindrical shell  

t   Thickness of the cylindrical shell  

T   Temperature 
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0T  Reference temperature in which thermal strains are absent 

T  Temperature rise  

, ,u v w   Displacements in the ,x y , z directions, respectively  

U,  ,  X,  V  Pa�erns or CNT distribution in the matrix 

*
CNV  Total volume fraction 

CNV , 
mV  Volume fraction of CNTs and polymer matrix, respectively 

( , ) ( , ), ( 1, 2, 1, 2,3)Z T Z T
iiT ijTY G i j   Normal and shear elastic moduli of nanocomposites  

, ( 1, 2, 1, 2,3)CN CN
iiT ijTY G i j   Normal and shear elastic moduli of CNT 

( , ) , ( , 1 2 6)Z T
ijY i j , ,  Parameter containing elastic properties 

,m m
T TY G   Normal and shear elastic moduli of polymer matrix 

,x y , z  Coordinate axes 

11 22,CN CN
T T   Thermal expansion coefficients of CNTs   

m
T   Thermal expansion coefficients of the polymer 

   Nondimensional load-proportional parameter 

( 3,4)j j   Coefficients that depend on the shear stress shape function 

( , )jj j x y  , ( , , )ij i, j x y z   Strain components 

i  Cofactors 

i  
Parameters depending on wave numbers and shell 

properties 

12 21,   Poisson’s ratios of nanocomposites 

12
CN , 

m  Poisson’s ratios of CNTs and polymer, respectively 

  Density of the nanocomposite 

CN , m  Densities of CNT and matrix, respectively 

( , , z)ij i, j x y   Stress components  

x  Average axial compressive load 

  
Parameter including properties of nanocomposite cylindri-

cal shell 

   Airy stress function  

1 , 2   
Rotations of mid-surface normal about y and x  axes, re-

spectively  

Abbreviation   

CNT Carbon nanotube 

KLT Kirchhoff–Love theory 

FSDT First-order shear deformation theory 

INH-NCCSs Inhomogeneous nanocomposite cylindrical shells 

NCs Nanocomposites 
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Pa Pascal, unit of Young’s modulus  

K Kelvin 

SDs Shear deformations 

SWCNTs Single-walled carbon nanotubes 

Appendix A 

Here, ( , 1, 2,..., 4)ijL i j   are differential operators and are defined as follows: 

   

 

   

 

4 4 4 4

11 11 31 12 12 13 14 322 2 4 4 2 2

3 3 3

13 15 35 3 14 18 383 2 2

4 4 4 4

21 21 22 31 22 32 23 244 2 2 2 2 4

3

23 35 25 24 32

, ,

,

, ,

,

L t D D D L D D D
x y x x x y

L D D L D D
xx x y x y

L tD t D D L D D D
y x y x y y

L D D L D
x y

    
       

      

   
    

    

   
      

     


  

 

 

 

   

3 3

8 28 42 3

4 4 4

31 11 12 21 31 224 2 2 4

2 4 4 4

32 23 24 13 32 142 4 2 2 4

3 3 3 3

33 25 15 35 34 28 38 183 2 2 3

2 2

41 422 2

1

,

, ax

D
yx y y

L t C C C C C
y x y x

L C C C C C
r x x x y y

L C C C L C C C
x x y x y y

t
L L N

r x x

  
 

  

   
     
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   
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 
  
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2 2
1

2 43 3 44 42 2
, , .
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P
P r L L

x yx y

    
       

   

 (A1)

where     / 2 / 2 , 3, 4j f t f t j      and the following definitions apply: 

1 1 1 1 1 1 2
11 11 11 12 21 12 11 12 12 22 13 11 13 12 23 11

1 1 2 1 1 1 1 1 1
14 11 14 12 24 12 15 11 15 12 25 15 18 11 18 12 28 18

1 1 1 1 1 1
21 21 11 22 21 22 21 12 22 22 23 21 13 22 23

, ,
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D H C H C D H C H C D H C H C H
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in which 
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1 1 1 1 1 1 1 1

1 1 2 2 2 2

/ 2 /2 /2 /2
( , ) ( , ) ( , ) ( , )

11 11 12 12 21 21 22 22

/2 /2 /2 /2

/2 /2
( , ) ( , ) ( , ) ( , ) ( , )

66 66 15 11 1 18 12 2

/2 /2

d , d d , d ,

d , d , d

h h h h
i i i i i i i iZ T Z T Z T Z T

h h h h

h h
i i i i i iZ T Z T z T Z T z T

h h

H Y z z H Y z Z Y z z H H Y z z

H Y z z H Y F z z H Y F z

   

 

    

  

   

 

2 2 2 2 2 2

2 2

/ 2

/2

/2 /2 /2
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

25 21 1 28 22 2 35 66 1

/2 /2 /2

/2
( , ) ( , )

38 66 2 1 2

/2

,

d , d , d ,

d , 0,1,2; 0,1.

h

h

h h h
i i i i i iZ T z T Z T z T Z T z T

h h h

h
i iZ T z T

h

z

H Y F z z H Y F z z H Y F z z

H Y F z z i i


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

  
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

  
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 (A3)

Appendix B 

( , 1,2,3,4)ijQ i j 
 are given by 

   

   

2 2 4 2 2 4 3 2
11 11 31 1 2 12 1 12 14 32 1 2 13 1 13 15 1 35 1 2 3 1

2 4 2 2 2 2 4
14 18 38 2 1 21 21 2 22 31 1 2 22 32 23 1 2 24 2

2 3 2
23 25 35 1 2 24 28 2 38 1 2 4 2

3
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Q t D D D Q D D D Q D D
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