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Grassland vertical height 
heterogeneity predicts flower 
and bee diversity: an UAV 
photogrammetric approach
Michele Torresani 1, Duccio Rocchini 2,3*, Giada Ceola 2, Jan Peter Reinier de Vries 4, 
Hannes Feilhauer 5,6,7, Vítězslav Moudrý 3, Harm Bartholomeus 8, Michela Perrone 3, 
Matteo Anderle 9,10, Hannes Andres Gamper 1, Ludovico Chieffallo 2, Enrico Guatelli 11, 
Roberto Cazzolla Gatti 2 & David Kleijn 4

The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem 
functioning, with bees standing out as especially valuable contributors among these insects. Threats 
such as habitat fragmentation, intensive agriculture, and climate change are contributing to the 
decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high 
diversity before investing into more expensive field survey. In this study, the ability of Unoccupied 
Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing 
the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the 
vegetation height heterogeneity (HH) measured by remote sensing information, the higher the 
vegetation vertical complexity and the associated species diversity. In this study, the concept has been 
further developed to understand if vegetation HH can also be considered a proxy for bee diversity 
and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an 
intensive field data campaign (collection of flower and bee diversity and abundance) was carried out 
in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). 
Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique 
“Structure from Motion” (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The 
accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through 
linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an 
Airborne Laser Scanner campaign completed in 2020/2021, yielding an R2 of 0.71. Subsequently, the 
HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices 
(Rao’s Q, Coefficient of Variation, Berger–Parker index, and Simpson’s D index), was correlated with 
the ground-based flower and bee diversity and bee abundance data. The Rao’s Q index was the most 
effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower 
diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were 
not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. 
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Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, 
standardized, and cost-effective inference of flower diversity and habitat quality for bees.

In the last decades, we have witnessed a decrease in plant and insect biodiversity in agricultural landscapes, 
resulting in the loss of benefits for crops and humans28,31. The causes of this can be found in changes of land use 
causing habitat loss and fragmentation27,69,76, increasingly intensive agriculture, and climate change71. All these 
factors have affected the presence of particular niches for different types of insects31. Yet insect pollinators are 
essential for the maintenance of wild plant species, contributing to cultural ecosystem services and agricultural 
yields6,18. They play a crucial role in the long-term sustainability of plant communities, and their loss can lead 
to a decline in plant diversity, altering vegetation composition84. The economic value of insect pollinators is 
immense, with estimates suggesting that they contribute to global food production worth more than 150 billion 
euros per year20,21,54. Therefore, insect pollinators are essential for maintaining the health and productivity of both 
agricultural and natural ecosystems, as well as for ensuring a continued provisioning of ecosystem services30.

Earth observation and remote sensing data have become valuable tools for estimating different aspects of 
biodiversity worldwide63,65. Significant advancements in sensor technology (with increased spatial and spectral 
resolution) and vectors (able to cover large areas with higher revisit frequency) have made remote sensing rapid 
and cost-effective to obtain extensive environmental data at various temporal and spatial scales7. Over the past 
few years, there has been a development of different methods and techniques utilizing remote sensing data to 
assess biodiversity at various spatial levels7. Some of these approaches rely on indirect associations between 
the variability of remotely sensed information and species diversity81,82. Notably, recent investigations have 
specifically concentrated on exploring the link between LiDAR data and species diversity. This approach, called 
“Height Variation Hypothesis” (HVH), states that, in a considered ecosystem, the higher the vegetation height 
heterogeneity (HH) assessed by LiDAR information, the higher the availability of different niches that can host 
more diverse species. Vertical vegetation structure, which encompasses aspects of habitat heterogeneity, plays 
a critical role in supporting biodiversity. It is considered one of the drivers of biodiversity, directly influencing 
species distribution and diversity, population dynamics, and ecological interactions41. By providing a variety 
of microhabitats and vertical niches, the vertical vegetation structure offers opportunities for different species 
to find suitable habitats and resources, promoting species coexistence and enhancing overall biodiversity. It 
contributes to ecosystem stability and resilience, making it a key component in conservation and management 
efforts aimed at preserving and enhancing biodiversity in various ecosystems26. Torresani et al.79,80 tested this 
approach positively in different forested areas using both Airborne Laser Scanning (ALS, where the LiDAR 
sensor is mounted on an aircraft) and space-borne GEDI (Global Ecosystem Dynamics Investigation) LiDAR 
data14,16,34,53 for the assessment of tree species diversity. Tamburlin et al.72 also tested the methodology in forested 
areas using ALS data, showing that the Canopy Height Model (CHM) is the most appropriate LiDAR metric for 
an accurate estimation of vegetation height heterogeneity and inference of species diversity. The approach has 
been used not only to assess vegetation diversity but also to estimate animal diversity, different studies showed 
that the variability in habitat structure has a significant effect on the bird diversity in both agricultural and forest 
ecosystems2,43. However, there is limited research specifically on the correlation between vegetation structure 
and insect diversity, particularly at a fine scale observed in grasslands.

In this paper, we aim to test this approach in a grassland ecosystem to understand if the vegetation grassland 
HH assessed through remote sensing techniques can be considered a proxy for flower diversity and subsequently 
for bee diversity and abundance. As grassland vegetation structures occur at very fine spatial scales, there is a 
need for structural information at a very high spatial resolution. While there have been a few studies40 exploring 
the use of LiDAR for grassland characterization, the limited available evidence introduces uncertainty regarding 
its effectiveness in this context. Furthermore, while ALS data depend on a dedicated aircraft campaign and may 
involve higher costs, operational testing of our hypothesis on Unoccupied Aerial Vehicles (UAVs) data might 
provide a practical and scalable approach. The recently developed technology centered around these new vectors, 
specifically photogrammetry that employs structure-from-motion algorithms, has resulted in the creation of 
highly precise orthomosaics and 3D information across vast areas at a relatively low expense, with spatial resolu-
tions ranging from centimeters to millimeters suitable to derive information on vegetation structure1. Previous 
researches9,10,33,38,77 has demonstrated that UAV imagery can be utilized to gauge vegetation attributes, including 
diversity, species, and plant species distribution, as well as to map and track invasive species. In this context, our 
prior study77 established, in the same study area, a positive correlation between flower cover, estimated through 
UAV images, and bee diversity, further emphasizing the versatility of UAV technology in understanding and 
quantifying key ecological relationships.

The aim of this study is to test whether we can estimate flower diversity and bee abundance and diversity by 
testing the Height Variation Hypothesis in as highly dense and fine structured ecosystem such as grasslands by 
using 3D information derived with photogrammetric analysis using UAV RGB (true-colored) images at high 
spatial resolution (Fig. 1). Specifically, we assessed the HH with four different heterogeneity indices (Rao’s Q, 
Coefficient of Variation—CV—, Berger–Parker index and Simpson’s D index) using CHM data derived from 
UAV photogrammetric analysis previously validated with local ALS data. Successively, we correlated the derived 
HH with field-derived flower and bee diversity (species richness) and abundance. Finally, we investigated the 
influence of varying spatial resolutions (10 cm, 25 cm, and 50 cm) on the observed relationships. Our study 
focuses on grasslands located in the southeastern region of the Netherlands, which exhibit a range of manage-
ment intensities, resulting in varying degrees of flower cover.
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Materials and methods
Study areas
The study areas (approximately 70 km2 with elevations ranging from 70 to 171 m asl) are located in the southeast 
of the Netherlands, near the village of Gulpen (Fig. 2). Thirty grasslands representing a range of land use intensi-
ties, from nutrient-poor, biodiversity-rich semi-natural grasslands to intensively fertilized areas, were chosen in 
order to test the proposed approach. Management of the grasslands included mowing (16 sites), grazing (10 sites) 

Figure 1.   A graphical summary of the main expectations of this study. Grassland ecosystems with high HH 
(assessed through CHM derived by UAV photogrammetric images) with a complex vertical structure (seen 
from the side in the upper figure and from above in the lower figure) and high environmental heterogeneity are 
expected to have a high flower diversity and high bee diversity and abundance (figure on the left). On the other 
hand, grassland areas with low HH might have lower flower diversity and bee diversity and abundance (figure 
on the right).

Figure 2.   The study areas located in the Southeast of the Netherlands. The 30 transects within each study area 
are indicated by yellow dots (Basemap: Google Earth map as of August 2022).
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and mixed regimes (4 sites), ranging in intensity from one to five uses per year (details in Appendix Table 1). 
Data collection for this study took place before the first cut but extensive grazing (<2 LSU/ha) had occurred at 
most grazed plots. Percent herb cover ranged from 0.1% to 69%, with the most dominant species in terms of 
flower cover being Ranunculus repens, R. acris and R. bulbosus, Leucanthemum vulgare, Trifolium pratense, Bellis 
perennis and Taraxacum sp. (all >5% of the total flower area over all transects). The study areas are part of the 
experimental biodiversity area network of the EU Showcase project https://​showc​ase-​proje​ct.​eu/. By selecting 
semi-natural, extensively utilized, and intensely managed grasslands from diverse regions, we reduced spatial 
clustering of distinct grassland types.

Field data
Collection
In each study area, a transect measuring 150 m by 1 m was established and divided into three equal sections of 
50 m. These transects were visibly marked with Ground Control Points (GCP) plates that could be identified by 
UAV imagery. GCP were positioned from the edge to the center of the grassland, covering differences in elevation 
heterogeneity within the grassland helping successively to find our sampling locations on the images. To ensure 
a sampling of distinct bee populations, adjacent transects were generally separated by distances greater than 500 
m56. Previous studies56 have shown that, although large-bodied bees like bumblebees can forage at distances of a 
few kilometers, their primary foraging distances are shorter, typically ranging between 250 m and 550 m. Smaller 
wild bees tend to forage even closer to their nests. Along each transect, surveys were conducted for both bees and 
flowers. Transect walks, a standard method for studying plant-pollinator associations, were used to count both 
wild bees and honeybee (Apis mellifera)83. The transects were surveyed by two observers who counted all bees 
within a meter in front of them while slowly walking along the transect for 15 min, excluding the time required 
for handling caught specimens. Species were identified using identification keys specific to Dutch Apidae17,46,47. 
While distinctive species could be identified in the field, other specimens were collected and identified in the 
laboratory using stereo-microscopes and, in some cases, expert consultation. Subsequent to the bee surveys, 
flower surveys were conducted in each transect at which the number of flowers within the 150 m x 1 m transect 
was counted per species70. Hence, only flowering species richness was recorded and abundance was measured 
in terms of flowering. Flower surveys were generally conducted on the same day as the bee surveys, but due to 
logistical constraints, some grasslands were surveyed one or two days before or after the bee surveys (details in 
Appendix Table 1). The surveys were conducted between May 12th and 31st, 2021, from 10 a.m. to 5 p.m., under 
favorable weather conditions, which included dry conditions, more than 50% sunlight, temperatures of at least 
15 degrees Celsius, and wind speeds below 2 Beaufort.

Ground‑based diversity indices
The ground-based flower diversity was calculated using the species richness, namely the number of different 
flower species per transect. Also for the characterization of bee diversity, we relied on species richness. Bee 
abundance was defined as the total number of bees counted along each transect.

UAV Data Acquisition and Data Processing
The UAV data were acquired simultaneously with the field survey between May 12th and 31st, 2021. A RGB 
Zenmuse X5 camera (16.0 MP, 17.3 x 13.0 mm sensor) with an integrated RTK GPS was carried by the UAV 
“DJI Matrice 210 RTK”. To simplify the production of the final point cloud and the digital elevation model, the 
images were taken at an overlapping rate of 80%. All flights were conducted at a height of approximately 20 m 
above the ground. The average spatial resolution of the resulting UAV images is 0.5 cm.

The Agisoft Metashape Professional Edition software was used to analyze and process the UAV images fol-
lowing three main procedural stages: image alignment, dense point cloud creation, and inference of the digital 
elevation model. In the first step, set with “high” accuracy, the software extracted features within the images and 
matched them to produce a sparse 3D point cloud. At this stage, the software automatically detected the precise 
features of the GCP and extracted the GPS coordinates for each of them. We maintained the “high” accuracy 
setting during the construction of the dense point cloud, which was subsequently exported as a LAS file. The 
mean point density for all 30 areas was 700 points/m2 while the vertical resolution was around 15 mm. The 
Digital Surface Model (DSM) was derived at different spatial resolutions (10 cm, 25 cm, and 50 cm) using the 
“dsmtin” algorithm of the “rasterize_canopy” function of the R package “lidR”68. This algorithm uses the Delaunay 
triangulation method to connect the points in the point cloud, forming a network of non-overlapping triangles. 
The resulting triangular irregular network (TIN) represents the surface, and rasterization is then applied to 
convert this TIN into a gridded DSM, providing a comprehensive representation of the terrain and vegetation 
structure. The Digital Terrain Model (DTM) was derived using the same function but with a prior filtering of 
the point cloud, selecting the lowest points every 50 cm. Finally, the CHM was derived by taking the difference 
between the DSM and DTM. The decision to set the finest spatial resolution at 10 cm was primarily driven by 
computational considerations.

Heterogeneity index
HH was calculated using the CHM at different spatial resolutions (10 cm, 25 cm, and 50 cm) with four different 
heterogeneity indices: Rao’s Q index, the CV, the Berger–Parker index, and the Simpson’s D index64.

The Rao’s Q index, originally developed by Rao55, was later recommended by Botta–Dukát5 as a functional 
diversity index in ecology. Subsequently, Rocchini et al.62 introduced this measure as a heterogeneity index for 
remote sensing data, employing the following Eq. (1):

https://showcase-project.eu/
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where:
Q = Rao’s Q index, used in remote sensing application
pi = pj = 1/N = relative abundance of pixel i, j in a selected area (i.e. in our case, raster over the transects) 

composed of N pixels
dij = distance/dissimilarity between pixel i and j ( dij = dji and dii = 0)
We determined dij as the Euclidean distance using a solitary layer (CHM raster).
The CV, widely employed as a measure of heterogeneity in various ecological studies22,35, is calculated using 

the following Eq. (2):

where:
CV= Coefficient of Variation
SD= Standard Deviation of the pixel values within a selected area
x = mean of the pixel values within a selected area
The Berger–Parker index is often used as a heterogeneity index in ecological studies and also with remote 

sensing data, it provides a measure of species/pixel dominance within a given community/data-set86. It has been 
calculated using the following Eq. (3):

where:
BP is the Berger–Parker heterogeneity index
- nmax is the abundance of the most dominant pixel value in the data-set
- N is the total abundance of all pixels in the data-set.
The Simpson’s D index is a diversity assessment measure frequently employed in ecology13,33. It can also serve 

as a heterogeneity measure with remote sensing data, relying solely on the relative abundance of pixels within 
the specific area64. It is calculated as (Eq. 4):

where: D = Simpson index. n= total number of pixel’s value. pi = relative abundance of a pixel value in a CHM 
raster plot.

Validation of the UAV DTM and CHM
DSM and DTM with a spatial resolution of 50 cm derived from local Li-DAR data collected as part of an national 
ALS LiDAR campaign carried out between 2020 and 2022 (AHN4 data-set, freely available for download here: 
https://geotiles.nl/) were used to validate the UAV digital models. AHN datasets are systematically gathered every 
few years for all of the Netherlands, by multiple operators and sensors, where the exact specifications may vary 
over time and space. AHN4 pointclouds have a vertical resolution of 13 mm and a density of 10-14 point/m2. 
In our study area, the LiDAR flight for AHN4 was conducted on February 18th, 2021. During this season, the 
grassland vegetation is very low, resulting in the DSM and DTM having equal elevations, effectively yielding a 
CHM value of zero. For this reason, we decided to validate the UAV-DTM with the LiDAR-DTM using 10 ran-
dom points within each study area (300 points in total). Additionally, we validated the CHM over multi-annual 
visible vegetation-patch (e.g., small shrubs) that could be visible in both the UAV-CHM and LiDAR-CHM. We 
randomly selected a point over each multi-annual visible vegetation for each study area (29 points in total) and 
correlated the digital models using linear regression.

For both the DTM and CHM, the coefficient of determination ( R2 ) was used to estimate the goodness of fit 
of the model, while the P value was used to measure its statistical significance.

Workflow
The approach proposed in this study is summarized in Fig. 3. Firstly (point 1), we validated the UAV DTM and 
CHM with DTM and CHM derived from the local ALS data. Then (point 2), for each transect, we estimated 
HHs using the UAV CHM data at different spatial resolutions (10 cm, 25 cm, and 50 cm) with four different 
heterogeneity indices (Rao’s Q index, CV, Berger–Parker index and Simpson’s D index). Subsequently, we per-
formed linear regression analyses to correlate the HHs with the ground-based flower and bee diversity and bee 
abundance. The coefficient of determination ( R2 ) was used to estimate the goodness of fit of the model, while 
the P value was used to measure its statistical significance.

Results
The validation of the DTM derived from UAV photogrammetry with local ALS DTM LiDAR data (AHN4 data-
set) at a spatial resolution of 50 cm is shown in Fig. 4. The linear regression analysis yielded a positive relation-
ship and strong correlation between the two variables. The correlation between the two variables is significant 

(1)Q =

N∑

i,j=1

dij × pi × pj

(2)CV = (SD/x)× 100

(3)BP =

nmax

N

(4)D =

n∑

i=1

p2i
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(p-value < 0.05), with a goodness of fit of 0.98. The UAV-derived DTM tends to be higher than the LiDAR DTM 
with a systematic average offset of 44 m (calculated as the difference of the mean’s datasets).

The validation of the CHM derived from UAV photogrammetry with local ALS CHM LiDAR data (AHN4 
data-set) at a spatial resolution of 50 cm is shown in Fig. 5. Similar to the DTM, the linear regression analysis 
shows a positive relationship, and the UAV CHM tends to overestimate the LiDAR CHM with an offset of 1002 m. 
This offset may be attributed to various factors, including seasonality differences (LiDAR data were collected in 
February during the leaf-off season, while photogrammetric data were acquired in early spring in May), data 
processing (methodological distinction arises from the inability to directly calculate the DTM with photogram-
metry that was derived from the DSM) and differences in the used processing algorithms employed for DTM 
and DSM assessment. Despite the presence of this offset, the correlation between the two variables remains 
statistically significant (p-value < 0.05), and the linear model exhibits a commendable goodness of fit at 0.71.

Figure 6 shows a study area with two different vegetation structure. In the middle of the figure is shown a 
stripe of grass characterized by a higher vegetation structure complexity and high HH while on the side grassland 
with low HH. Sub-figure A shows the RGB image, sub-figure B the CHM derived from the photogrammetric 
point cloud showed in sub-figure C.

The correlation between the flower diversity and calculated HH with different heterogeneity indices (Rao’s 
Q index, CV, Berger–Parker, and Simpson’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived from UAV 

Figure 3.   The image shows the workflow of the proposed approach.

Figure 4.   The validation of the DTM derived from UAV photogrammetry with the local LiDAR DTM AHN4 is 
shown with the blue line.
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photogrammetry is shown in Fig. 7. All the correlations are positive and significant, except when the HH was 
calculated with the Berger–Parker index using a CHM of 10 cm and 50 cm. The highest R2 values were obtain 
when the HH was calculated with the Rao’s Q index. In this case, the coefficient of determination range between 
0.41 (UAV CHM spatial resolution of 10 cm) and 0.44 (UAV CHM spatial resolution of 25 cm).

Figure 8 shows the correlation between the bee abundance and the HH calculated with different heterogeneity 
indices (Rao’s Q index, CV, Berger–Parker, and Simpson’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived 
from UAV photogrammetry. In this case, the correlations are all positive, and significant only when the HH was 
calculated with the Rao’s Q and Simpson’s D indices. Generally, the R2 values are lower than the ones derived 
from the correlation between HH and flower diversity. Higher R2 are associated with HH calculated using the 
Rao’s Q index. The coefficient of determination ranges between 0.31 (UAV CHM spatial resolution of 25 cm) 
and 0.34 (UAV CHM spatial resolution of 50 cm).

Finally, the correlation between bee diversity and HH calculated with different heterogeneity indices (Rao’s 
Q index, CV, Berger–Parker, and Simpson’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived from UAV 
photogrammetry is shown in Fig. 9. Also in this case, positive correlations persist, with the Rao’s Q index yielding 
the highest R2 values, while the Simpson’s D index shows a comparatively modest correlation with HH. They are 
significant, except when the HH was calculated with the Berger–Parker index (with CHM at 10 cm and 50 cm).

Discussion
This paper introduces a new approach to estimate flower diversity, which can be used as an indicator of bee 
abundance and diversity in grassland ecosystems. Our study builds upon previous studies77 that identified UAV 
images, analyzed through various machine learning algorithms, as a reliable proxy for bee diversity and abun-
dance. However, with this innovative HVH approach, we delve deeper into unraveling the intricate relationship 
between grassland structural heterogeneity and its impact on bee diversity. The method utilizes UAV RGB 
images to create a 3D model of the vegetation structure through photogrammetric analysis. By applying differ-
ent heterogeneity indices, we derived information on vegetation HH, which showed a positive correlation with 
ground-based measures of flower diversity, bee diversity, and bee abundance. These findings serve as a proof of 
concept, demonstrating the potential of UAV imagery to accurately evaluate the habitat structure as a crucial 

Figure 5.   Validation of the CHM derived from UAV photogrammetry with the local LiDAR CHM AHN4.

Figure 6.   Two transects (in red) characterized by different height heterogeneity. Sub-figure A shows a CHM 
of a transect characterized by high height heterogeneity (heterogeneous CHM ranging from 0 to 0.3 m), while 
sub-figure B shows a transect with low height heterogeneity (homogeneous CHM with values ranging from 0 m 
to 0.1 m).
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Figure 7.   Correlation between the ground-based flower diversity and the HH calculated with the four 
heterogeneity indices (Rao’s Q, CV, Berger–Parker and Simpson’s D) derived from UAV CHM at 10 cm, 25 cm 
and 50 cm.

Figure 8.   Correlation between ground-based bee abundance and HH calculated with the four heterogeneity 
indices (Rao’s Q, CV, Berger–Parker, and Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.
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element of grassland habitat quality for bees. The findings of this study provide valuable insights into the use of 
UAV imagery and HH in estimating biodiversity at a local scale, specifically in grassland ecosystems. The results 
indicate that vegetation height heterogeneity, as measured through UAV-derived CHMs, can serve as a proxy for 
flower diversity and, consequently, bee diversity and abundance.

Height Variation Hypothesis in grassland ecosystem: Advantages, Contrasts, and Ecological 
Implications
The proposed approach relies on the theory behind the HVH which, unlike its counterpart (the Spectral Varia-
tion Hypothesis -SVH-), offers several significant advantages. Being based on vertical structural heterogeneity, 
the HVH is not susceptible to certain factors such as the spectral resolution of the optical images45,60, by noise 
introduced by the soil properties which can negatively affect the accuracy of biodiversity assessments22 and by 
the atmospheric conditions such as haze, aerosols, and cloud cover61.

This study provides a novel application of the HVH with UAV images in grasslands. The results indicate the 
potential of photogrammetric analysis for biodiversity assessment in grasslands, contributing to the under-
standing of vegetation structure and its relationship with biodiversity. As shown in other studies50,85, the high-
resolution cameras mounted to UAVs allow capturing of detailed images, enabling the assessment of fine-scale 
heterogeneity of intensively and extensively managed grasslands. The proposed approach highlights the capability 
of UAVs to assess grassland vegetation structure and heterogeneity, providing detailed information about the 
vertical complexity and variability of the vegetation, critical information for understanding ecosystem dynamics, 
biodiversity, and habitat suitability for various organisms50.

Other approaches have been developed to assess these aspects by using UAV data; recent studies for exam-
ple focused on the evaluation of flower abundance as a proxy for diversity and abundance of bees11,77. These 
approaches often rely on machine learning algorithms, which necessitate meticulously curated and representative 
training data-sets that, due to their time-consuming and resource-intensive nature, can potentially hinder scal-
ability and applicability in certain contexts8. Moreover, the representativeness of the training data-set is critical 
to ensure the generalizability of the algorithm’s performance. These challenges can impede the scalability and 
applicability of machine learning-based approaches under conditions, where there are no comprehensive and 
diverse training data-sets74. Furthermore, machine learning algorithms may exhibit limitations in their ability 
to capture the full complexity of ecological dynamics. They rely on patterns and associations learned from the 
training data-sets, which may not encompass the entirety of the intricate relationships within an ecosystem. 
Consequently, the predictive power of machine learning models may be limited when confronted with novel or 
complex ecological scenarios that deviate from the patterns represented in the training data-set48.

The findings obtained by our analytical approach hold significant relevance for ecological studies for mul-
tiple reasons. Understanding the vertical complexity and variability of grassland vegetation provides insights 
also into habitat heterogeneity and resource availability for various organisms, including plants, insects, birds, 
and small mammals3,24,49. Different species have specific habitat preferences and requirements based on their 

Figure 9.   Correlation between ground-based bee diversity and HH calculated with the four heterogeneity 
indices (Rao’s Q, CV, Berger–Parker, and Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.
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vertical distribution within the grassland. Assessing grassland structure helps to understand the composition, 
distribution, and abundance of species within the ecosystem52. It would be intriguing to explore whether there 
exists a correlation between grassland structure and the various ecosystem processes and services such as nutrient 
cycling, carbon storage, water infiltration, and energy fluxes. If such a correlation is found, our approach could be 
utilized to achieve more precise mapping of these significant ecosystem services, surpassing the current methods 
employed. Additionally, the information on grassland structure can be integrated with other environmental data, 
such as soil properties and landscape features, to gain a more holistic understanding of the ecological dynamics 
and drivers in grassland ecosystems67. Furthermore, the proposed approach could be used to assess changes 
in grassland structure as a results of land management practices, ecological succession, and of the impacts of 
disturbances such as grazing, fire, or land-use changes. Monitoring and understanding these structural changes 
are essential for effective conservation and management of grassland ecosystems15,25,32.

UAVs in Bee Habitat Monitoring: Challenges and Prospects
UAV-based methods have emerged as promising tools for monitoring habitat quality for bee pollinator com-
munities, primarily due to their affordability23. These methods allow different operators, including researchers, 
farmers, and ecologists, to acquire high spatial resolution data from various sensors simultaneously, covering 
extensive areas within a short time of data collection. Furthermore, the “on-demand” approach facilitated by 
UAVs enables capturing specific stages of vegetation phenology, such as flowering time, particularly in regions 
characterized by high cloud cover12,44. These capabilities provide valuable insights into the temporal dynamics 
of plant-pollinator interactions. However, despite their potential, several challenges must be addressed before 
UAV-based methods can be routinely deployed at large spatial scales. Challenges arising may involve issues 
related to data processing, sensor calibration, image analysis algorithms, and the development of standardized 
protocols to ensure data comparability and reliability. Addressing these challenges paves the way for a vision-
ary application, where UAVs, equipped with advanced sensors, facilitate large-scale macroecological studies. 
This approach enables real-time data acquisition, enhancing our understanding of spatial patterns, biodiversity 
dynamics, and ecosystem processes across diverse landscapes.

The impact of the spatial resolution of UAV data on the correlation between grassland structural metrics (such 
as HH) and flower and bee diversity, as well as bee abundance was investigated in this study. Based on our results, 
the spatial resolution of UAV data does not play a critical role in the correlations between vegetation assess-
ment variables (such as flower diversity, bee abundance, and bee diversity) and HH calculated using different 
heterogeneity indices. The correlations between these variables remain positive and significant across different 
spatial resolutions (10 cm, 25 cm, and 50 cm) derived from UAV photogrammetry. This finding aligns with the 
results reported in several other studies examining the influence of spatial resolution on vegetation assessment 
using UAV imagery. For instance,37 demonstrated that species classification in a heterogeneous grassland using 
high spatial resolution UAV imagery was not significantly affected by spatial resolution. Similarly, the impact 
of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on UAV 
hyperspectral images was found to be limited36. Different studies11,29 highlighted that the use of micro-UAV 
with relatively low spatial resolution still provide valuable information for assessing vegetation structure and 
for long-term monitoring purposes. On the other hand, it is important to note that the relationship between 
the high spatial resolution of optical remote sensing data and its correlation with ground-based ecological data 
is a complex matter42. Different studies60,66,77 have shown that higher spatial resolution can lead to higher cor-
relations with ground-based data. It is recognized that images with coarse spatial resolution may integrate the 
spectral signature of various vegetation elements, making it challenging to identify boundaries between spatial 
entities and potentially resulting in mixed signals at the pixel scale19,45. These results imply that drone flights can 
also be conducted at higher altitudes and thus cover larger areas in a single flight (at a lower spatial resolution), 
enabling more efficient data collection.

Insights from Heterogeneity Indices
Regarding the evaluation of the use of different heterogeneity indices, our results demonstrated the usefulness 
of the Rao’s Q index in assessing the vegetation HH across areas of intensive and extensive grassland manage-
ment. This heterogeneity index, widely used as a spectral heterogeneity index in studies on SVH39,51,62,75 offers the 
advantage of coupling both the relative abundance and the pixel values (as quantified by the Euclidean distance 
between the pixel values)78, thus capturing the complete structural information derived from the heterogeneity 
of the photogrammetric outcomes. This index, when applied with a single layer or raster as in our study, can 
effectively serve as a proxy for heterogeneity by narrowing it down to variance using half of the squared Euclidean 
distance (1/2 d2ij ) (for further details on the mathematical characteristics of Rao’s Q, we refer to57–59,62). On the 
other hand, other indices evaluated in our work, proved rather inefficient in assessing HH: the CV rely only on 
the distance between the pixel values while the Simpson’s D and the Berger–Parker index rely solely on the relative 
abundance of CHM pixels within a specific raster or an area of interest62; given the exceptional precision of our 
photogrammetric point cloud, approximately 15 mm, the likelihood of distinct pixels sharing identical values is 
for this reason significantly minimized. Consequently, they fail to adequately characterize the entire heterogene-
ity of vegetation heights, which depend on both the actual values of vegetation height and their distribution and 
relative frequency. One concern in this study revolves around the utilization of the CHM as the sole metric for 
assessing the HH, without considering other metrics or additional digital layers, such as optical data that might 
be related to vegetation structure. The decision to focus solely on the CHM had two main reasons. Firstly, the 
primary objective of this study was to investigate the feasibility of utilizing RGB UAV images to assess vegetation 
structure complexity for estimating HH and flower and bee diversity and bee abundance. Secondly, choice was 
guided by the findings of Tamburlin et al.72, who, testing the HVH with LiDAR data, evaluated various LiDAR 
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metrics (such as entropy and standard deviation of point cloud distribution, percentage of returns above mean 
height) for HH estimation and demonstrated that the CHM was the most effective metric to characterize veg-
etation HH.

Another concern that could arise is related to the accuracy of the UAV derived CHM. While the CHMs 
derived from UAV photogrammetry showed a robust correlation with local CHM LiDAR data, there may still be 
some differences in accuracy and precision. We acknowledge that photogrammetry techniques may not capture 
true ground points accurately, especially in areas with dense and short grass. One possible way to enhance the 
precision of our approach could be the utilization of LiDAR technology mounted on UAVs that can provide more 
precise and detailed measurements of vegetation structure and topography4, offering valuable information on 
floral resources and bee foraging habitats. However, it is worth noting that LiDAR-equipped UAVs are currently 
considered expensive, which can limit their widespread use. Furthermore recent studies indicate that these sys-
tems may not necessarily exhibit significantly improved performance in acquiring accurate DSMs within closed 
vegetation canopies73. It is important to clarify that our primary interest lies in assessing the vertical variation 
within the point cloud rather than obtaining absolute values for ground surface measurements. To address this 
concern, we employed a methodology focused on analyzing the amount of variation in vertical points rather than 
relying on precise ground measurements, allowing to evaluate the relative differences in elevation values between 
different areas, which can still provide valuable insights into the landscape dynamics and terrain characteristics.

Conclusions
This study demonstrates the potential of UAV imagery and the HVH concept for estimating biodiversity at a local 
scale in grassland ecosystems. The results suggest that vegetation HH, as assessed through UAV-derived CHMs, 
can serve as a reliable proxy for flower diversity, bee diversity, and abundance. The use of UAVs, with the ability 
to assess species diversity and provide information on grassland structure, offers a cost-effective and standard-
ized approach to monitor and manage grassland ecosystems, providing valuable information for conservation 
efforts and advancing ecological research. While our study serves as an initial application, further analysis in 
diverse grassland areas using various heterogeneity indices is necessary to establish the generalizability of the 
approach. Additionally, this approach could be extended to assess biodiversity not only of bees but also of other 
insects such as spiders or butterflies. Further analysis could focus on integrating optical information, such as 
flower cover estimation, or spectral variability data, with structural information from UAVs enhancing the depth 
of biodiversity characterization. We propose that ecologists, botanists, and farmers can employ our approach, 
utilizing UAV images and photogrammetric analysis in order to assess habitat heterogeneity, as a preliminary 
analysis for the estimation of bee diversity and abundance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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