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Abstract 

Machine learning (ML) methods for the structural health monitoring (SHM) of composite 

structures rely on sufficient domain knowledge as they typically demand to extract damage-

sensitive features from raw data before training the ML model. In practice, prior knowledge 

is not available in most cases. Deep learning (DL) methods, on the other hand, can obtain 

higher-level features from raw input data and have proven superior in several applications. 

This paper proposes a Convolutional Neural Network (CNN) based approach for the 

delamination prediction in CFRP double cantilever beam (DCB) specimens using raw local 

array strain measurements via distributed optical fiber sensors. The conventional CNN 

architecture is modified to perform regression, as the delamination size is a continuous value. 

1D and 2D CNN architectures are deployed and compared and different techniques are 

exploited to encode 1D spatial strain pattern series as 2D images. Raw strain patterns 

collected during static testing are used to train the CNNs, while testing is performed on 

unseen raw fatigue strain patterns, showing the CNN ability to automatically extract 

discriminative features from the non-pre-processed static strain pattern-based signals that 

generalize to raw fatigue signals as well. This strategy has the potential to reduce fatigue 

testing expenditures while also shortening the time required to gather training data.  

Keywords: Convolutional Neural Network, B. delamination, B. fatigue, A. prepreg  

1. Introduction 

Carbon fibre reinforced plastics (CFRP) are increasingly used in several industries as an 

alternative to conventional metallic alloys, due to their specific strength and stiffness, making 

them suitable for a wide range of applications where weight savings are crucial to the overall 

performance [1]. Although CFRP have numerous advantages over conventional alloys, they 

also suffer from a few major disadvantages, as their damage initiation and propagation 

mechanisms are more difficult to predict compared to metallic materials [2]. These failure 

mechanisms are known to initiate at the level of the constituents (e.g., matrix microcracks, 

delaminations, fiber breakage, etc.) and can grow to an extent that compromises the structure 

integrity.  



Among failure modes, delamination is possibly the major and most frequent, crucially 

affecting the strength, stiffness, stability, and usable service life of laminated composites, 

eventually leading to catastrophic failure of the composite structures [3]. For these reasons, 

the delamination monitoring of composite laminates is of prime importance and structural 

health monitoring (SHM) approaches have been developed in order to replace the traditional 

nondestructive testing (NDT) based maintenance strategies [4,5], fostering the transition to 

condition-based maintenance philosophies. Although SHM methods have been successfully 

applied in both metallic and composite structures, the latter present additional challenges, as 

the material heterogeneity, together with the incomplete knowledge about the principles 

underlying the multivariate damage evolution and interaction processes, leads to uncertainty 

in the assessment of current and future material properties.  

SHM methods are typically grouped into two categories, i.e., model-based approaches and 

data-driven approaches [6]. Model-based approaches tend to be more accurate if the damaged 

system response can be modeled precisely, requiring prior knowledge about the physics of 

the system, which is often not available in practice. On the other hand, data-driven 

approaches rely on historical data and AI methods to quantify the damage state of the 

structure, and do not require prior expertise about the system underlying physics. The 

abundance of data engendered by the advances in information and sensing technology has 

promoted the development of data-driven algorithms, and good results have been obtained.  

Among AI techniques, machine learning (ML) is the most acknowledged [7]. Conventional 

ML techniques, however, require considerable domain knowledge as they demand to extract 

damage-sensitive features from the raw data before training the ML model. Deep learning 

(DL) methods have overcome this shortcoming, as they allow data to be used in their raw 

form, automatically learning from data using a general-purpose learning procedure [8]. 

Recently, DL methods such as convolutional neural networks (CNN) and recurrent neural 

networks (RNN) have been successfully applied to the SHM of civil structures [9,10], 

especially to automatically process image data, as structural damage is typically visible. The 

same concept has been applied to composite materials; for instance, Fotouhi et al. [11] used 

a comprehensive image-based data set including common microscale damage mechanisms, 

such as matrix cracking and fiber breakage, and macroscale damage mechanisms such as 

impact and erosion to train a CNN, achieving a classification accuracy level of 87% - 96% 

for identifying the damage severity and types. In addition to image data, time-series data are 

widely used for damage detection, often transforming the raw time-series data into frequency 

spectra or spatial time-frequency spectra [12–14]; however, 1D CNNs have been recently 

proposed to operate directly on time series and immediately achieved the state-of-the-art 

performance levels in several applications [15].  

Despite DL methods have proven superior to conventional ML methods in several 

applications, they have only been used in a few studies with composite materials for SHM 

applications [16]. For instance, Tabian et al. developed a passive sensing CNN based 

framework for impact detection [17]; time domain signals corresponding to distinct sensors 

are gathered together and transformed into 2D images prior being fed to the CNNs, 

performing impact localization (the structure is divided into subregions) and impact 

categorization (energy level, 3 energy classes), achieving a 95% accuracy. Similarly, Damm 

at al. [18] and Jung et al. [19] developed CNN-based impact damage assessment frameworks. 

Khan et al. [12] proposed a CNN based approach for the classification and prediction of in-

plane and through-the-thickness delaminations in smart composite laminates using structural 



vibration measurements. Time domain transient signals are transformed into spectrograms 

via the short time Fourier transform (STFT). The CNN distinguishes between the damaged 

and undamaged states, and classifies the damage scenario (i.e., the delamination location) 

with an overall classification accuracy of 90.1%. Yu et al. used an addressable conducting 

network (ACN) and deep learning-ANN for damage detection in CFRP specimens, achieving 

a detection accuracy rate of about 95% [20].  

In the literature, a vast range of techniques have been proposed for the delamination 

assessment in laminated composites [21], among which strain-based methods have been 

proven to be adequate and present some practical advantages over other techniques, also 

thanks to the recent advances in fiber optic sensing technologies [22–31]. For instance, 

several studies have shown the possibility of embedding the optical fiber (OF) within the 

composite laminate [22,24,26,32,33], and the introduction of distributed OF sensors has 

fostered their deployment in many SHM applications [22,23,34].  

To the authors knowledge, published conventional data-driven SHM approaches require 

some sort of preprocessing of the raw data to extract relevant features for the delamination 

assessment, implying that expert’s knowledge is essential. On the other hand, DL approaches 

do not require any preprocessing of the raw data; however, DL methods for the delamination 

assessment, such as CNNs, typically require the delamination to be described by a finite 

number of states to make its classification possible, rather than allowing the delamination 

state to be a continuous variable.  

One of the requirements for data-driven approaches is the availability of training data; 

generating a training dataset for the delamination fatigue assessment would imply running 

several run-to-failure fatigue tests to gather the training data, requiring considerable 

resources and preventing the use of data-driven approaches in most cases. Therefore, in this 

paper a DL approach is proposed that can address the above-mentioned challenges and 

limitations. Strain-based CNN architectures for the delamination prediction are developed 

that do not require any pre-processing of the input strain patterns. The CNN conventional 

architecture is modified to perform regression rather than classification, as the delamination 

size is a continuous variable. Double cantilever beam (DCB) specimens are tested under 

static and fatigue loading. Distributed OF sensors are placed on the top-surfaces of the 

specimens to collect local strain patterns during delamination propagation. Raw static test 

strain field array measurements at fixed times are fed to 1D and 2D CNNs for training, and 

different techniques are exploited to encode 1D spatial strain pattern series as 2D images 

(e.g., continuous wavelet transform, Gramian angular field, Markov Transition Field). 

Finally, the CNNs testing is performed on raw strain field array measurements collected from 

fatigue tests, showing that the CNNs can extract relevant features from static strain patterns 

that also generalize to unseen fatigue strain patterns. This approach can be extended to more 

complex structures, potentially saving fatigue testing related costs and cutting the time 

needed to generate training data.  

The paper is organized as follows: Section 2 (Experimental details) provides a description of 

the experimental set up and testing procedures, including a detailed characterization of the 

strain patterns. Section 3 (Delamination sizing by deep learning and distributed strain 

measurements) discusses the system-level operation principle of the CNN and passive 

sensing-based methodology for delamination assessment, especially on how the sensing data 

can be prepared and used for the planned task, outlining the proposed methodology for the 



local assessment of delaminations from strain field response measurements. Section 4 

(Results and discussion) illustrates the obtained results by comparing the outcomes of the 

proposed DL approaches. Section 5 (Conclusions) outlines the contribution of the current 

work, including a discussion of potential future work. 

2. Experimental details 

2.1. Materials and fabrication 

The DCB specimens were manufactured by laminating 24 plies of 300x300 mm carbon fiber 

unidirectional prepreg named HexPly® 8552 (Epoxy matrix and AS4 12K carbon fibres); 

the stacking sequence is [024] and the panel was cured inside an autoclave according to 

recommendation from Hexcel. A 0.012 mm thick Teflon™ film was inserted at the midplane 

of the laminate for crack initiation so that the initial starting crack length was approximately 

50 mm. Based on ASTM D5528 standard [35], strips 25 mm wide were cut from the plate 

using a water-cooled diamond saw, while piano hinges were bonded to the either side of the 

specimens; the specimen relevant dimensions are shown in Figure 1. During tests, a 9 

Megapixel camera with 50 mm-focal-length lens was placed at the side of the clamped 

specimen to monitor the delamination length on one of the edges. The edge surfaces of each 

specimen were covered with thin white paint in order to enhance the white-black contrast of 

cracked and uncracked regions (Figure 2). One edge of each test article was marked in 1mm 

intervals to obtain visual edge measurements using a synchronized camera system. The 

camera was synchronized with the testing machine and with the interrogator (ODiSI-B 

system from Luna Innovations Inc.). The OF sensor – single mode Ormocer coated low bend 

loss 125 μm fiber commercialized by FBGS Technologies GmbH (Jena, Germany) with 

LC/APC connector – was bonded on the top surface of each specimen using a cyanoacrylate 

adhesive, where three equally spaced fiber passes were used to assess the delamination front 

(see Figure 1 and Figure 3) offering a spatial resolution of 1.25 mm along the bonded OF.  



 

Figure 1: Experimental procedure setup.  

 

 

Figure 2: Specimen edge during testing. 

 

 

Figure 3: Specimens OF sensor placement. 

 



2.2. Static test 

Five DCB specimens were clevis-mounted in a Zwick - 20 kN test frame with a 20 kN load 

cell and loaded at a displacement rate of 1 mm/min. Based on ASTM D5528 standard [35], 

precracking was performed before running the test. Baseline data were acquired prior to 

testing to calibrate the interrogator; the sampling frequency was set to 0.5 Hz.  

2.3. Fatigue test 

Four DCB specimens were clevis-mounted in a MTS - 10 kN Elastomer hydraulic test frame 

with a 10 kN load cell and load-control fatigue tested. A schematic representation of the 

applied loading profile, containing the repetitive cyclic loading blocks and the tensile 

loading-unloading ramps, is shown in Figure 4. Precracking was performed before running 

the test to accelerate the delamination onset. Constant amplitude of sinusoidal waves, with a 

maximum load equal to the 80% of the precracking load, load ratio 0.1 and frequency 5 Hz 

were applied, while the tensile loading and unloading ramps were applied before and after 

every 500 cycles to trigger the measurements (Figure 4); baseline data were acquired prior 

to testing to calibrate the interrogator.  

 

Figure 4: Fatigue test loading pattern. 

2.4. Strain characterization of the DCB specimen 

The strain profile along the length of the DCB specimen can be predicted under the 

assumptions that the DCB arms act as if they were Euler-Bernoulli beams clamped at the 

crack tip and the interface material is infinitely stiff and perfectly brittle [36]. These 

assumptions lead to a triangle-like strain shape where two regions can be defined: i) bending 

strain region from the arm free-end up to the delamination front and ii) zero-strain region 

ahead of the delamination front. Region 1 is due to the separation of the DCB arms; the strain 

increases linearly due to the bending moment reaching its maximum value in correspondence 

of the crack tip. Beyond the crack tip, the magnitude of the strain jumps immediately to zero, 

leading to region 2 (null-strain region). In practice, the arms of the DCB, rather than being 

clamped, actually rotate at the crack tip [37]; this, along with fiber bridging [38,39], explains 

why a perturbed strain region in correspondence of the crack tip process zone is observed 

[40], which is defined as region 3, as shown in Figure 5, where the three segments’ strain 

patterns are also illustrated, along with the regions. The experimental strain distribution for 

three different crack lengths (i.e., at different times) is shown in Figure 6. As expected, the 

strain peak moves accordingly to the crack front location and can be used for a rough 

estimation of the crack front position. Region 3, i.e., the region in correspondence of the 

crack tip process zone, can be approximately 10 mm in length, and sometimes is hard to 

identify where the boundary between regions locate, making the delamination tip location 

via the peak detection unreliable (see Figure 5 and Figure 6).  



The experimental strain distribution for the fatigue tests is shown in Figure 7 considering 

different delamination lengths; note that the shape of the strain pattern is generally different 

with respect to the static strain patterns and, as for the static test strain patterns, it is not 

obvious to locate the delamination front by peak detection. Even if loading mode is 

substantially the same (except for the fact that during fatigue testing the load is repeated 

cyclically), the phenomena driving the delamination propagation are different [41], mainly 

affecting the process zone. For instance, the amount of fiber bridging is different under quasi-

static and fatigue loading [26,38], being less in fatigue loading as compared to quasi-static 

loading. Therefore, as fiber bridging has been shown to affect the strain field [26,27], we 

expect to observe different strain patterns depending on the test type.  

The real crack length (i.e., the ground truth) is observed by visual inspection of the specimen 

edge images. However, this procedure has a few shortcomings: i) it assumes that the crack 

front is perfectly straight, ii) it is often difficult to identify the crack tip, despite the edge has 

been painted in white, iii) checking all the images is time consuming [42]. To overcome these 

drawbacks a calibration method has been adopted as shown in the ASTM 5528 standard [35] 

and as suggested by Hojo et al. [43,44] and illustrated by Sans et al. [45], generating a least 

squares plot of the cube root of compliance, 𝐶
1

3⁄ , as a function of delamination length, 𝑎𝑐. 

The compliance, 𝐶, is the ratio of the load point displacement to the applied load, 𝛿 𝑃⁄ . The 

values used to generate this plot should be the load and displacements corresponding to the 

visually observed delamination lengths on the edge. Note that only a subset of the observed 

propagation values is used; the missing values can be extrapolated after the least squares plot 

has been generated. The delamination front shape has been visually analyzed after testing the 

specimens, showing that the delamination front is fairly straight; actually, it is possible to 

theoretically demonstrate that the [0𝑛] unidirectional layup has the smallest energy release 

rate (ERR) variation across the delamination front, minimizing the delamination front 

curvature [46]. Additionally, calculations show that the ERR is constant in the interior of the 

specimens and rapidly approaches zero at the point where the delamination tip intersects the 

edge free surface [47]. Therefore, the three OF loops are likely to produce similar strain 

patterns and that the same true delamination size (observed from the specimen edge) can be 

associated to all three of them. Equivalently, we can imagine decoupling the OF triplets, 

virtually tripling the number of specimens. 

 

 

Figure 5: Strain pattern along the 3 segments for specimen 1 (for a 72mm delamination length). 

 



 

Figure 6: Static testing strain patterns along the 3 segments for specimen1 at different times 

(different crack lengths) (100, 250, 400th time steps). 

 

 

Figure 7: Fatigue testing strain patterns along the 3 segments for specimen1 at different times 

(different crack lengths) (100, 250, 400th time steps). 

 

3. Delamination sizing by deep learning and distributed strain 

measurements 

Several SHM approaches targeting delamination detection, sizing and location have been 

published, all requiring domain expertise and preprocessing of the raw data in order to extract 

relevant features for the delamination assessment [28–30,48]. Delamination sizing for a DCB 

specimen having distributed OF sensors along its arms, i.e., the identification of the 

delamination front, could be performed by simply detecting the peak of the strain pattern 

(i.e., the minimum strain relative to each OF segment), as, in principle, the strain reaches its 

maximum absolute value in correspondence of the delamination tip. However, as explained 

above, the process zone makes it difficult to accurately locate the delamination front, as the 

strain field in correspondence of the crack tip is generally perturbed [32]. The task is made 

even more difficult if we consider that the goal is to predict the delamination size given the 

fatigue strain patterns, whereas the training data is generated via static tests, as this requires 

that some general features are extracted from the static strain patterns (see the methodology 



scheme in Figure 8). Therefore, a DL approach is proposed to automatically extract the strain 

pattern features that can better locate the delamination tip.  

The major advantage of DL methods over traditional ML methods is their ability to 

autonomously extract discriminative features from raw data [8]. Among DL methods, CNNs 

have proven to be a very efficient and effective artificial neural network (ANN) structure for 

image recognition and classification [8], as their architecture is specifically developed to take 

advantage of the fact that the input consists of images. CNNs layers are typically organized 

in 3 dimensions (width, height, and depth), and four operations are sequentially carried out: 

1) convolution, 2) nonlinear transformation, 3) pooling, 4) classification/regression. These 

operations are performed in three layers: the convolutional layer, the pooling layer and the 

fully connected layer. The convolutional layer extracts features from the input image by 

sliding a filter or kernel over the input image. Note that filters in the above example are 

random filters. In practice, a CNN learns to adjust the weights of filters such that the last 

layer of the network can predict classes/perform regression with the maximum accuracy [49]. 

This is done during training procedure. The convolution operation is followed by a non-linear 

operation, such as Rectified Linear Unit (ReLU), to introduce non-linearity in CNN, as most 

of the real-world data that is used for the learning of CNN is non-linear. The major goal of a 

pooling layer is to reduce the dimensionality of feature maps. The convolutional and pooling 

layers transform the input image into a high-level feature map that is employed by the fully 

connected layer (output layer) for the classification of the input image/regression to some 

output variables. Full convolutional neural network architectures are formed by stacking the 

convolutional, pooling, and fully connected layers together. A detailed description of CNNs 

can be found in refs. [50,51]. 

CNNs have been modelled and created specifically for 2D signals and their application is not 

straightforward for 1D signals, needing a 1D to 2D conversion. Different conversion 

techniques have been utilized to convert 1D signals into 2D signals, typically posing a high 

computational complexity and training dataset size requirements [13,14]. To overcome such 

drawbacks a modified version of the 2D CNN, called 1D CNN, has been recently developed 

to directly operate on 1D signals such as time series and has become popular with a state-of-

the-art performance in various signal processing applications [11].  

In the present work, both 2D and 1D CNN architectures are deployed to assess the 

delamination size based on the collected strain pattern measurements. OF strain patterns are 

1D and can be treated as time series, replacing time with space (OF length coordinate); 

therefore, 1D to 2D conversion techniques are used to feed the 2D CNN, while no 

preprocessing is required for the 1D CNN architecture. Three different techniques have been 

used to transform time-series into image-like representations: i) Gramian Angular Field, ii) 

Markov Transition Field and iii) Scalogram (continuous wavelet transform or CWT). The 

fundamental building blocks for the 2D CNN architecture are shown in Figure 9, along with 

the data pipeline; the same is done for the 1D CNN in Figure 10. For instance, in Figure 9 

the single strain pattern is collected from the specimen and preprocessed before being fed to 

the 2D CNN, i.e., scaled and then transformed into a single channel 2D image (matrix of 

pixels). After being transformed (in Figure 9 the Gramian angular field transform is shown), 

the 2D image is scaled again and then fed to the CNN, where a series of layers perform 

sequentially the convolution and pooling operations, transforming the input image into a 

high-level feature map. This feature map is converted into a 1D array (i.e., flattening 

operation), becoming the input for the fully connected layers, ending with the single output 



node that is responsible for the delamination size prediction. In Figure 10 the strain pattern 

is scaled and then fed directly to the 1D CNN; the convolution and pooling operations are 

sequentially carried out along the 1D array, producing arrays of features that are concatenated 

(flattening) to produce one single array that is fed to the fully connected layers, ending in the 

single output node.  

 

 

Figure 8: Methodology schematic representation. 

 

 

 

 

Figure 9: 2D CNN pipeline. 



 

 

Figure 10: 1D CNN pipeline. 

 

 

Figure 11: Training data pipeline.  

 

3.1. Training and validation of predictive CNN-based models 

To prepare the dataset required to train the CNNs, a total of 5 DCB specimens have been 

statically tested. Note that each specimen has 3 OF loops (Figure 1), each accounting for 140 

measuring points along its length, while the number of time observations, i.e., the number of 



crack length sizes at which strain measurements are collected, is not fixed and typically 

depends on the test setup. As mentioned in the previous sections, we can imagine that each 

OF loop identifies a different specimen, tripling the overall number of specimens, as the 

delamination front has been acknowledged to be straight in the monitored area. Therefore, 

for the i-th OF segment (𝑖 = 1,2,3) corresponding to the j-th specimen (𝑗 = 1, … ,5) a matrix 

𝑺𝑖
𝑗
 is obtained: 

 

𝑺𝑖
𝑗

= [
휀𝑡=0

𝑥=0 ⋯ 휀𝑡=0
𝑥=140

⋮ ⋱ ⋮
휀𝑡=𝑇

𝑥=0 ⋯ 휀𝑡=𝑇
𝑥=140

] (1) 

 

where rows represent the i-th OF segment strain pattern at the inspection times (𝑥 =
0, … ,140), while columns show the strain time series of the measurement points. Clearly, for 

each input matrix 𝑺𝑖
𝑗
 a corresponding output vector 𝒂𝑐

𝑗
 is associated, where the observed 

crack lengths at the inspection times are collected: 

 

𝒂𝑐
𝑗

= [

𝑎𝑐,𝑡=0

⋮
𝑎𝑐,𝑡=𝑇

] (2) 

 

Note that the output vector 𝒂𝑐
𝑗
 is independent of the OF segment, as we assume that the crack 

front is straight in the observed area, as also shown by tested specimens’ post-mortem 

analysis. The training dataset 𝚻 is obtained by gathering all the input and output data from 

all the 5 DCB specimens: 

 

𝚻 = [

𝑺𝑖=0
𝑗=0

; 𝒂𝑐
𝑗=0

⋮

𝑺𝑖=3
𝑗=5

; 𝒂𝑐
𝑗=5

] (3) 

 

In practice, each row of the dataset 𝚻 represents a strain pattern (input) and its relative 

delamination length (output); in total 6110 examples (i.e., rows) are collected. Note that the 

rows of the dataset 𝚻 are randomly shuffled before training the CNNs. The CNN model is 

thus expected to take as input a strain pattern (OF loop) [휀𝑡
𝑥=0, … , 휀𝑡

𝑥=140] ∈ ℝ140 at the 

inspection time 𝑡, providing as output the estimate for the actual delamination size 𝑎𝑐,𝑡 ∈ ℝ. 

The training dataset is partitioned in order to keep part of the data to validate the model during 

training; specifically, 20% of the training data is used for validation (Table 3 summarizes the 

training, validation and test set size). Figure 11 illustrates the training/validation data pipeline 

(neglecting the 1D to 2D conversion that is needed for 2D CNNs): 3 OF segments (each 

segment is represented by a 140 elements array) are collected at each inspection time for each 

specimen (note that the number of inspection times might differ from specimen to specimen). 

When dealing with 2D CNNs, the arrays collecting the OF strain patterns are transformed 

into matrices (1D to 2D conversion), as shown in Figure 9. 



In order to reduce the variance of the CNNs predictions, an “ensemble” approach is 

leveraged. In practice, a collection of networks with the same configuration and different 

initial random weights is trained on different subsets (randomly sampled) of the training 

dataset. Each model is then used to make a prediction and the actual prediction is calculated 

as the average of the predictions [53,54]. Each CNN ensemble is constituted of 10 CNN 

trained models. 

3.2.2D CNN architecture 

This section discusses the architecture of the 2D CNN. The Pyhton Keras API is used to build 

the DL models illustrated in the present work (built on top of Tensorflow). Figure 9 shows 

the 2D CNN architecture fundamental building blocks and data pipeline. The architecture is 

based on the general architectural principles of the Visual Geometry Group (VGG) model 

(featured by very small 3x3 convolution filters) [55] and consists of 2 VGG-based blocks, 

each comprising 2 convolutional layers and one pooling layer, for automatically extracting 

discriminative features from the static strain patterns, including a dropout stage (fixed 

dropout rate) [56], followed by a fully connected layer and a ReLU layer (see Table 1 for the 

detailed architecture of the proposed 2D CNN). The weights are initialized randomly, and 

the Adam optimizer is used (learning rate is set to 0.0001). A batch size of 64 is used, and 

the training consists of 30 epochs. A detailed description of the hyperparameters listed in 

Table 1 can be found in ref. [49]. Tuning the hyperparameters – as well as the architecture – 

would surely enhance the performance, but it is not the primary objective of the present work 

(for instance, in ref. [19] the optimal values of the CNN hyperparameters were derived based 

on Bayesian optimization). Another consideration is computational efficiency; the 

architecture is somehow limited by available computational resources. The training with the 

actual CNN architecture can be done in less than 8 hours on a laptop with a 4 cores Intel i7-

6700HQ (2.6 GHz) CPU and a 32GB RAM. Exploring the deep network structures and 

parameters will be addressed in future work. 

 

Layer name Layer description Output shape Trainable 

Parameters 

Input 140x140 single channel image 140x140  

Convolution 1 Kernel size: 3x3, strides: 1, Number of 

filters: 32, ReLU, batch normalization 

140x140x32 320 

Convolution 2 Kernel size: 3x3, strides: 1, Number of 

filters: 32, ReLU, batch normalization 

140x140x32 9248 

MaxPooling  Max Pooling Filter size: 2×2, strides: 2 70x70x32 0 

Dropout  20% dropout 70x70x32 0 

Convolution 1 Kernel size: 20x1, strides: 1, Number of 

filters: 64, ReLU, batch normalization 

70x70x64 18496 

Convolution 2 Kernel size: 20x1, strides: 1, Number of 

filters: 64, ReLU, batch normalization 

70x70x64 36928 

MaxPooling  Max Pooling Filter size: 2×2, strides: 2 35x35x64 0 

Dropout  20% dropout 35x35x64 0 

Flatten  78400 0 

Fully connected 

ReLU 

 128 10035328 

Dropout  20% dropout 128 0 



Fully connected 

ReLU 

 1 129 

 
Table 1: 2D CNN architecture and hyperparameters 

 

3.3. 1D CNN architecture 

This section discusses the architecture of the 1D CNN. Figure 10 shows the 1D CNN 

architecture fundamental building blocks and data pipeline. The employed 1D CNN 

architecture consists of 2 blocks, each comprising 2 convolutional layers and one pooling 

layer for automatically extracting discriminative features from the static strain patterns. A 

dropout stage (increasing dropout rate) is added to each block in order to reduce overfitting 

and improve generalization [56]. Finally, a fully connected layer and a ReLU layer are used 

to predict the delamination size based on features extracted in the convolutional and pooling 

layers (see Table 2 for the detailed architecture of the proposed 1D CNN). The weights are 

initialized randomly, and the Adam optimizer is used (learning rate is set to 0.0001). A batch 

size of 64 is used, and the training consists of 30 epochs. Details concerning the 1D CNN 

architecture can be found in ref. [15]. As for the 2D CNN, the hyperparameters have not been 

tuned, and the architecture is based on the 2D CNN architecture layout (2 blocks where 

convolution and pooling operations are sequentially performed).  

 

Layer name Layer description Output 

shape 

Trainable 

Parameters 

Input 140x1 single channel strain pattern 140x1  

Convolution 1 Kernel size: 20x1, strides: 1, Number of 

filters: 32, ReLU 

121x32 672 

Convolution 2 Kernel size: 20x1, strides: 1, Number of 

filters: 32, ReLU 

102x32 20512 

MaxPooling  Max Pooling Filter size: 2×1, strides: 2 51x32 0 

Dropout  20% dropout 51x32 0 

Convolution 1 Kernel size: 20x1, strides: 1, Number of 

filters: 64, ReLU 

32x64 41024 

Convolution 2 Kernel size: 20x1, strides: 1, Number of 

filters: 64, ReLU 

13x64 81984 

MaxPooling  Max Pooling Filter size: 2×1, strides: 2 6x64 0 

Dropout  40% dropout 6x64 0 

Flatten  384x1 0 

Fully connected 

ReLU 

 128 6160 

Fully connected 

ReLU 

 1 129 

 

Table 2: 1D CNN architecture and hyperparameters 

 

3.4. 1D signal to 2D conversion 

Convolutional layers basically mimic the cells in the human visual cortex and are thus 

developed primarily for 2D signals such as images and video frames [57]. Inspired by the 



success of DL methods in computer vision, several studies have proposed to transform time-

series into image-like representations, leading to promising results [13,14]. Three different 

techniques are here leveraged to encode 1D strain patterns into images, namely i) continuous 

wavelet transform (CWT), ii) Gramian angular field (GAF), iii) Markov transition field 

(MTF). Details concerning the mentioned techniques can be found in Refs. [13,14], while 

the hyperparameter settings for the selected encodings are described in the following. The 

pyts Python package for time series classification has been used for the GAF and MTF 

transforms [58]. 

The GAF transform is only defined for input arrays 𝑋 = (𝑥1, … , 𝑥𝑁) that satisfy the following 

constraint: 𝑥𝑖 ∈ [−1,1], thus requiring the scaling of the strain patterns as proposed by Wang 

and Oates [13]: 

 

�̃�𝑖 =
(𝑥𝑖 − 𝑚𝑎𝑥(𝑋) + (𝑥𝑖 − 𝑚𝑖𝑛(𝑋)))

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)
 

(4) 

 

Alternatively, Garcia et al. [14] proposed to scale the training samples based on the full 

training dataset in order to keep the relationships and differences between the samples 

scaling, requiring that the 𝑚𝑎𝑥(𝑋) and 𝑚𝑖𝑛(𝑋) values are replaced with an upper (𝑈𝐵) and 

lower bound (𝐿𝐵) based on the training set distribution. If the test set contains values 

exceeding these bounds, the values are clipped to the bound. As we assume that it is not 

necessary to keep the quantitative relationships and differences between the strain pattern 

samples, we followed the scaling in eq. (4), not requiring the setting of any bound. The strain 

patterns have thus been scaled accordingly, regardless of the transform technique.  

The MTF requires that a discretization of the strain patterns is performed based on 𝑄 + 1 bin 

edges, i.e., 𝑄 bins. The discretization of the time series plays a crucial role in the amount of 

information kept or lost by the transformation [13,14]. The number of bins has been set to 5, 

while their width has been set so that all bins in each sample have the same number of points.  

For the scalogram, a CWT with a Morlet wavelet was utilized via the PyWavelets Python 

package for wavelet analysis [59]. 

2D encodings have been also scaled prior being fed to the CNNs, so that each element 𝑥𝑖,𝑖 

satisfies the following: 𝑥𝑖,𝑖 ∈ [0,1]. Encoding examples for a representative strain pattern are 

shown in Figure 12. 

 

 



 

Figure 12: 1D signal (strain pattern) image encodings: Gramian angular field (GAF), Markov 

transition field (MTF) and continuous wavelet transform (CWT).  
 

 

4. Results and discussion  

The CNNs architectures (1D and 2D) developed in the previous sections are employed to 

predict the delamination size of fatigue loaded DCB specimens based on their OF strain 

patterns. The bagging ensemble learning approach is followed to increase the predictive 

performance by combining the predictions from multiple models; in practice, for each CNN 

architecture 10 CNNs are trained on different random subsets of the training dataset and the 

predictions are averaged. Each DCB specimen has 3 OF loops spanning the specimen width 

and delamination size predictions are based upon one single OF strain pattern, assuming that 

the delamination front is straight, thus making one strain pattern sufficient for the 

delamination size estimation. The training dataset, which is generated by storing strain 

patterns along with the relative observed delamination size from the static delamination 

growth tests, comprises 6110 examples, and is partitioned into training and validation subsets 

with a 4 to 1 ratio, respectively (see Table 3). Strain patterns have been resized to comprise 

140 strain samples each, discretizing the DCB arms surface strain field, and their image 

encodings are 140x140 matrices; strain patterns have also been rescaled prior training/testing 

as shown in eq. (4). The CNNs goal is thus to learn relevant features from the raw static strain 

patterns (or their 2D counterparts) that could also generalize to unseen fatigue strain patterns 

for estimation of the delamination size. This strategy could be extended to more complex 

structures, avoiding the need to run time consuming fatigue test. The test dataset comprises 

4 specimens which were fatigue loaded; 3 specimens were tested under load control, while 

the remaining one was tested under displacement control. In total, 8762 strain patterns were 

collected during fatigue testing (see Table 3).  

The 1D CNN committee predictive performance is shown in Figure 13 (left), where the mean 

absolute error (MAE) is provided for each OF segment during the fatigue delamination 

propagation. The delamination size is predicted with a MAE which is lower than 5mm, 

except for the specimen #4, where the segments 1 and 3 display a much higher MAE. This is 

due to the poor quality of the relative measurements, which might be due to the imperfect 

bonding between the OFs and the specimen. Note that the specimen with the lowest MAE is 

specimen #2, which was loaded in displacement control (slower delamination growth rate 

and lower noise level). Figure 13 (right) shows the relative frequency of the prediction 



residuals, providing an insight in the prediction error distribution; the mean is equal to -2.2 

mm while the standard deviation is equal to 2.4 mm. 

The 2D CNN committee predictive performance is shown in Figure 14, following the same 

scheme as for the 1D CNN. The MAE is again provided for each OF segment in Figure 14 

(left). The plot follows closely the results of the 1D CNN. The GAF-based CNN generally 

performs better than the MTF and CWT-based CNNs, also outperforming the 1D CNN in 

terms of accuracy. The main differences of the different time-series to image encodings are 

mostly in their ability to better discriminate the features that also generalize to the unseen 

fatigue strain patterns. Figure 14 (right) shows the residuals relative frequency for each 

transform technique; overall results, also including the 1D CNN, are summarized in Table 4.  

The predictive performance of the illustrated CNN architectures shows that the proposed 

approach is able to: i) accurately predict the delamination size based on one single strain 

pattern, ii) automatically extract relevant features from static strain patterns that generalize 

well to unseen strain patterns. Although in the current work only DCB coupons specimens 

have been tested, the proposed approach could be extended to assess more complex 

structures, also considering other types of damages affecting the strain field of the laminate. 

 

Training set size Validation set size Test set size 

4888 1222 8762 
Table 3: CNNs training/validation/test set sizes 

 

 1D CNN 2D CNN 

- GAF MTF CWT 

𝜇 [𝑚𝑚] -2.2 0.47 -3.12 -2.54 

𝜎 [𝑚𝑚] 2.3 2.82 5.85 3.16 
 

Table 4: Mean and std. dev. of the prediction error for the CNN models 

 

 

 

(a) (b) 

Figure 13: 1D CNN prediction MAE on the test set (a) and residuals relative frequency (b). 

 



 

 

(a) (b) 

Figure 14: 2D CNN prediction MAE on the test set (a) and residuals relative frequency (b). 

 

5. Conclusions 

Delamination monitoring is a vital step towards the SHM of laminated composite structures, 

and the advent of DL methods is fostering the application of data-driven approaches due to 

their ability to automatically extract relevant features from raw data. In this paper, a CNN-

based approach that can perform delamination sizing by analyzing strain patterns collected 

from composite DCB specimens under fatigue loading is proposed. To obtain the data to train 

the CNNs, 6110 strain patterns are extracted from delamination growth static tests, while 

fatigue strain patterns are used only for testing. Strain patterns are obtained via distributed 

optical fiber sensors bonded to the DCB arm top surfaces; each specimen is equipped with 

three OF loops spanning the specimen width, sampling the strain field with a resolution of 

1.25 mm. Static strain patterns can thus be regarded as surrogate signals replacing the fatigue 

strain patterns, enabling a more efficient approach to the generation of training data for the 

delamination monitoring of composite structures. Static strain patterns are observed to 

qualitatively differ from fatigue strain patterns; however, it is assumed that their information 

content concerning delamination sizing generalize also to unseen situations. The strain 

patterns have been scaled prior training/testing to ensure that only the qualitative features of 

the signals are relevant to the delamination sizing, removing the load magnitude influence. 

1D and 2D CNN architectures have been deployed for the delamination size estimation, 

yielding similar and very reasonable average positional estimation errors of -2.2 mm and 0.47 

mm respectively. 

The training data set for the delamination sizing has been prepared via 5 static delamination 

growth tests, while the test data set has been populated by fatigue testing 4 specimens. The 

1D CNN has been trained with raw strain patterns, only requiring the scaling of the input, 

whereas the 2D CNN required the encoding of the strain patterns into images. Specifically, 

three different techniques have been utilized to transform 1D signals into 2D signals, namely 

the Gramian angular field, the Markov transition field and the continuous wavelet transform, 

all delivering reasonable results in terms of accuracy. 



It is believed that the CNN-based methodology proposed in this study can be successfully 

applied to analyze more complex composite structures to monitor the delamination growth 

based on strain observations, also proving the ability of the CNNs to extract relevant features 

that generalize to unseen situations. The results presented in this paper are meant to foster 

the deployment of DL within the SHM of composite structures by enabling real-time 

structural damage monitoring. Important future work will involve the application of the 

proposed method to more complex structures, also including the possibility of using different 

sensing technologies. We are also quite interested in how different loading scenarios might 

affect the predictions, also investigating different CNNs architectures. 
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