
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024 73

SpatialSSJP: QoS-Aware Adaptive Approximate
Stream-Static Spatial Join Processor

Isam Mashhour Al Jawarneh , Member, IEEE, Paolo Bellavista , Senior Member, IEEE,
Antonio Corradi , Senior Member, IEEE, Luca Foschini , Senior Member, IEEE,

and Rebecca Montanari , Member, IEEE

Abstract—The widespread adoption of Internet of Things (IoT)
motivated the emergence of mixed workloads in smart cities,
where fast arriving geo-referenced big data streams are joined
with archive tables, aiming at enriching streams with descriptive
attributes that enable insightful analytics. Applications are now
relying on finding, in real-time, to which geographical regions
data streaming tuples belong. This problem requires a computa-
tionally intensive stream-static join for joining a dynamic stream
with a disk-resident static table. In addition, the time-varying
nature of fluctuation in geospatial data arriving online calls for
an approximate solution that can trade-off QoS constraints while
ensuring that the system survives sudden spikes in data loads.
In this paper, we present SpatialSSJP, an adaptive spatial-aware
approximate query processing system that specifically focuses on
stream-static joins in a way that guarantees achieving an agreed set
of Quality-of-Service goals and maintains geo-statistics of stateful
online aggregations over stream-static join results. SpatialSSJP
employs a state-of-art stratified-like sampling design to select well-
balanced representative geospatial data stream samples and serve
them to a stream-static geospatial join operator downstream. We
implemented a prototype atop Spark Structured Streaming. Our
extensive evaluations on big real datasets show that our system
can survive and mitigate harsh join workloads and outperform
state-of-art baselines by significant magnitudes, without risking
rigorous error bounds in terms of the accuracy of the output results.
SpatialSSJP achieves a relative accuracy gain against plain Spark
joins of approximately 10% in worst cases but reaching up to 50%
in best case scenarios.

Index Terms—Algorithms for data and knowledge management,
Data Architecture, Spatial databases and GIS, QoS Data
Management, Spatial Join, Spatial Indexes, Geospatial Analysis,
Apache Spark, Query Processing, Big Data Applications.

ABBREVIATIONS

AQP Approximate Query Processing
CV ‘coefficient of variation’
DSP data stream processing systems (DSP)

Manuscript received 7 May 2022; revised 17 September 2023; accepted
3 November 2023. Date of publication 6 November 2023; date of current
version 27 November 2023. This work was supported in part by the “H2020
SimDOME—Digital Ontology-Based Modelling Environment for Simulation
of Materials” EU Project under Grant 814492, and in part by the OntoTrans EU
Horizon 2020 Project under Grant 862136. Recommended for acceptance by V.
Cardellini. (Corresponding author: Luca Foschini.)

The authors are with the Dipartimento di Informatica – Scienza
e Ingegneria (DISI), University of Bologna, 40136 Bologna, Italy
(e-mail: isam.aljawarneh@studio.unibo.it; paolo.bellavista@unibo.it; anto-
nio.corradi@unibo.it; luca.foschini@unibo.it; rebecca.montanari@unibo.it).

Digital Object Identifier 10.1109/TPDS.2023.3330669

IoT Internet of Things
QoS Quality-of-Service
OOM Out-of-Memory
PID Proportional, Integral, and Derivative
SLA Service Level Agreements
SPE Stream Processing Engine
SpatialSSJP Spatial-aware Stream-Static Join Processor
SE Standard Error

I. INTRODUCTION

NOWADAYS, several businesses massively rely on heavily-
trafficked data streaming pipelines for nourishing their

backdrops to transform raw data into meaningful information.
The abundance of IoT devices almost everywhere, and present
in all aspects of our lives, offers giant amounts of fast arriv-
ing geo-referenced data streams that serve as sources for an
innumerable data-intensive online services. This unprecedented
amount of data normally challenges the capacities of state-of-art
data stream processing systems, especially when confronted
with stringent latency and/or accuracy goals expressed through
Service Level Agreements (SLAs).

In addition, most effective dynamic application scenarios,
such as those recurring in smart cities, require intermixing
various workloads in a mashup fashion [1] by joining data-at-rest
with streaming data to pluck required insights. This operation,
known as stream-static join, where one side of the join is a data
stream, while the other is a static file residing in disk or in fast
memory, is naturally expensive and may easily turn computa-
tionally prohibitive [1], particularly in distributed computing
deployments where cross-network data shuffling is normally
involved.

In this paper, we focus on scenarios where cluster computing
resources are scarce, thus increasing the computation power by
overprovisioning resources is not an option, or even with abun-
dance of computing resources, the reason behind the scarcity
of resources for a specific stream processing application is that
many heavily-trafficked data stream applications could be run-
ning at the same time, leading to several processing tasks being
executed in parallel. The goal is to optimize the utilization of
available distributed computing resources in an adaptive fashion
to enable the join processing of massively arriving georeferenced
data streams. At the same time, our solution aims at keeping
the Stream Processing Engine (SPE) as marginally stable as

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4796-2181
https://orcid.org/0000-0003-0992-7948
https://orcid.org/0000-0002-5107-1023
https://orcid.org/0000-0001-9062-3647
https://orcid.org/0000-0002-3687-0361
mailto:isam.aljawarneh@studio.unibo.it
mailto:paolo.bellavista@unibo.it
mailto:antonio.corradi@unibo.it
mailto:antonio.corradi@unibo.it
mailto:luca.foschini@unibo.it
mailto:rebecca.montanari@unibo.it

74 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

possible. This is possible by employing an Approximate Query
Processing (AQP) solution. System’s stability is guaranteed by
relying on a control loop feedback mechanism controller (i.e.,
PID, will be discussed shortly in Section III.C). It is known in
automatically applying a responsive and accurate correction to
a control function. It can restore the processing capacity to the
desired state with minimal delay by reducing the arriving data
size in a controlled manner.

AQP is the most adopted solution for the online information
overloading problem [2]. This is so because approximate query
responses with rigorous error bounds commonly suffice for
strategic decision making in smart city scenarios [2]. For
example, generating highly accurate interactive heatmaps
from sensors data depending on a geospatially representative
well-balanced sample, which is an operation that depends
on stream-static geospatial join. Despite being approximate,
such a solution is normally adequate for studying the mobility
patterns in a dynamic city. AQP systems normally trade off an
acceptable tiny loss in accuracy for a lower latency. They do so
by operating on a partial subset of the arrival data stream tuples.
In a stream-static join setting, accuracy loss occurs because the
full static table (e.g., representing regions in a city) is joined
with data stream samples, thus from each spatial region being
associated with a result computed only over a sample of the
data. Latency and/or accuracy goals are normally tuned in AQP
systems by an expert user.

However, performing AQP on join results of online geo-
referenced data stream samples is typically subject to undesir-
able degrees of loss in accuracy. This is so because state-of-art
SPEs normally embrace randomness by relying on sampling
designs that are based on simple random sampling [3]. We
consider the AQP on join results because the online aggregation
occurs on reduced data stream samples that are fed to the join
operator downstream in the pipeline.

The oscillating nature of data streams in the currency of
arrival rates and skewness imposes additional challenges that
strain the current geospatial join AQP frameworks. Hence, novel
approaches should be operating in adaptive modes so that they
respond interactively to such fluctuations, aiming always to keep
the pipeline operators alive even in the presence of sudden spikes
in data arrival rates. In other words, proposals should consider
trading off a set of prespecified Quality-of-Service (QoS) goals
such as latency, throughput, and accuracy.

To achieve those, this paper presents SpatialSSJP, an adaptive
QoS-aware distributed approximate geospatial aware stream-
static join processor, specifically tailored for dynamic smart
city workloads. By stream-static geospatial join, we specifi-
cally mean joining geo-referenced arriving data stream tuples
with a disk-resident master table that contains enrichment data.
SpatialSSJP serves a prespecified set of accuracy/latency goals
while processing fast-arriving big geospatial data streams.

More in details, SpatialSSJP encompasses a controller that
allows the user to choose between two antithetical goals,
namely low-latency and high accuracy. We tightly coupled
SpatialSSJP with a spatial-aware sampling method from our
previous work called SAOS [3], which selects geospatially-
representative well-balanced samples from fast arriving

Fig. 1. Hypothetical example: AQP over stream-static join data.

geo-referenced data streams. SAOS is a stratified-like method,
which first stratifies (i.e., divides) the arriving stream in groups
(each group is known as stratum in stratified-sampling designs),
then it places each arriving spatial object in the appropriate group
(stratum) based on location similarity with confounding objects
in the same group. In other terms, geographically nearby objects
end up being placed in the same stratum. By placing SAOS
in the frontstage, the system can reduce the number of tuples
that will be served to the subsequent stream-static join operator,
thus relieving the pressure on the network communication, and
improving the processing responsiveness. However, SAOS in its
stock version receives sampling fractions from the user interac-
tively. By interlacing SpatialSSJP with SAOS in the frontend, a
controller of SpatialSSJP, that is located after the join operator,
will interactively and automatically compute appropriate sam-
pling fractions to admit for a subsequent time interval based on
robust geo-statistical models. Afterwards, it serves the sampling
fractions backward to SAOS for a subsequent sampling round.
The selected sample is then served to the geospatial stream-static
join processor, which, in turn, performs the join operation. It
then sends the intermediate join output to an approximator,
which computes an aggregation result over the join intermediate
result and serves it, together with a rigorous error bound, to
the user in the presentation layer. Since the dataset served to
the approximator is a partial subset of the arriving data stream,
the result calculated by the approximator is an approximation,
and hence is associated with error-bounds. By doing so, Spa-
tialSSJP achieves a set of prespecified QoS goals, either high-
accuracy or low-latency, however trading them off efficiently
when contradicting. Fig. 1 depicts a hypothetical example an-
swering the following query “what is the approximate average
speed of taxis in each region of the city of Shenzhen in China
across time”.

We prototyped SpatialSSJP on top of Spark Structured
Streaming [4] and evaluated it with real-world vehicle mobility
geo-referenced Big Data. Queries included geospatial online
stateful aggregations that incorporate stream-static join oper-
ations within a pipeline. Our results show that SpatialSSJP
survives sudden aggressive spikes in data stream arrival rates
with various combinations of oscillations in the ranges of ‘500K
to 2000K’, ‘500K to 3000K’, ‘500K to 5000K’, ‘500K to
2000K to 1000K’ tuples/second, thus achieving prespecified
latency goals. As compared to a baseline without sampling,

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 75

which instead either does not survive those fluctuations and
easily reaches Out-of-Memory (OOM) exceptions or does not
effectively tradeoff latency with accuracy. Also, SpatialSSJP
with SAOS in the front-stage achieves various accuracy goal
values ranging from stringent (0.01) to more permissive (0.09),
outperforming a baseline that employs a Simple Random Sam-
pling (SRS) in the frontstage. By relying on SpatialSSJP, on
average, the relative gain over Spark-based native counterpart
running online aggregations with join operations and SRS in the
frontstage is at least 10% and tipping up to 50%, given the same
sampling fractions.

We make the following contributions by introducing Spa-
tialSSJP, 1) an adaptive controller for geospatial stream-static
join processing in distributed data stream processing deploy-
ments with limited resources (or abundance of resources utilized
for several tasks in parallel). The controller serves appropriate
sampling rates to a geospatial-aware stratified-like sampler that
maintains the quality of geo-statistics over join results, while
reducing the data size shuffled over the communication network.
We also thereafter transparently incorporated the controller with
a de facto SPE (specifically, Spark Structured Streaming [4]), 2)
a reactive accuracy-aware procedure, which accepts an accuracy
QoS goal and reacts in a way that guarantees achieving the goals
by interactively and regularly serving sampling fractions to a
stratified geospatial sampler so as to satisfy predefined accuracy
goals for approximate geospatial stream-static join calculation,
3) sub-modules that are responsible for incrementally computing
approximate online aggregation geo-statistics (e.g., count, aver-
age) on stream-static geospatial join outputs. By incremental
computation, we mean that the results are gradually building up
based on the previous results from the preceding time periods
without the need to re-evaluate geo-statistics from scratch. To
the best of our knowledge, our framework is unique in the terms
of Big Data stream processing applications in the sense that
it is the first of its kind that successfully incorporates a stable
loop control feedback mechanism to enable controlled AQP on
sampled join results of big geospatial data stream. This has a
significant implication for a consortium of data-informed urban
planning and other relevant smart city applications. This is so
because most smart city applications require joining data that is
georeferenced and fluctuating in size and arrival rates. We are
not aware of any system in the related state-of-the-art that offers
similar functionalities.

The remainder of this paper is organized as follows. We first
briefly summarize the related theoretical backgrounds. There-
after, we briefly recapitulate the design and realization of our
system. In what follows, we show our findings accompanied by
convenient discussions. Thereafter, we discussed some related
literature. The paper closes by summarizing the contributions
and recommending future research.

II. PROBLEM STATEMENT AND BACKGROUND

Decision makers employ tremendous fast-arriving IoT online
data that comes normally from several sources for various kinds
of analytics in real-world application scenarios, e.g., average
speed of vehicles across regions. Such scenarios require joining

IoT geo-referenced data streams with disk-resident data, e.g.,
to specify to which region each vehicle speed measurement
belongs. To meet the user’s expectations in terms of system
quality, SPEs need to well-balance a prespecified set of QoS
goals, most importantly, accuracy versus timeliness. On one
hand, timeliness is essential in reflecting a fresh state of the
system. For example, computing the average speed across re-
gions during a sudden spike in the number of circulating vehicles
needs to be instantaneous to allow for a proper reaction. This
could require sampling/dropping part of the arriving stream
tuples, negatively affecting the accuracy of the ‘average’ statis-
tics. On the other hand, higher accuracy goals require more
data.

In this paper, we focus on geospatial analytics with geospa-
tial join as a pillar factor that dominates the equation towards
achieving accuracy and time constraints.

We particularly aim at addressing questions similar to the
following, how an SPE can produce the average speed of vehicles
across city regions every minute within predefined error-bounds,
over fast arriving geo-referenced mobility data streams that are
characterized by being highly-skewed in densities and fluctu-
ating in arrival rates. To address such a challenge, the system
should be able to specify the amount of data that need to be
discarded while achieving the error-bound and time targets.
Based on dynamic prediction of accuracy, load and latency,
the data stream processing system specifies the amount of data
to sample to meet the objectives of accuracy and latency. A
reasonable baseline to compare with our system is a system
that either does not sample the data, that would thus be unable
to achieve the time-based quality constraint or a system that is
based on random sampling, thus unable to achieve the accuracy
targets.

Mobility data is normally served in a parametrized format
as GPS coordinate streaming tuples (typically longitudes and
latitudes). As such, solving a query similar to the aforementioned
requires joining those tuples (geospatially) with a master table
that contains regions of the city (i.e., neighborhoods in city
administrative terms). This kind of join is known as stream-static
join, where one side of the join is a streaming source, whereas
the other is a static disk-resident relation.

Having all that in mind, stream-static join is a potential opti-
mization candidate. This is so because distributed stream-static
join runs into several challenges that normally do not affect other
computations such as batch-oriented static-static join process-
ing. For instance, data streams normally exhibit peak periods
where loads exceed capacities of computing resources.

A. Spark Structured Streaming and Distributed Geospatial
Join Processing

As a reference system, we consider Apache Spark [5] and a
streaming layer engineered atop of it. Spark is a distributed data
processing system that constitutes a cluster composed of one
master and several workers.

Spark Structured Streaming [4] (hereafter SpSS for short)
is a new layer on top of Spark. Users express queries using a
declarative SQL-like API (in the form of DataFrames [6]). The

76 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

processing model of SpSS depends on micro-batches, meaning
that it processes streams as small batches scheduled to run on
Spark parallel jobs. Users write their queries as if they were
to be executed in a batch mode and SpSS executes them in
a streaming mode. The only difference is that the user must
specify the window size over which the accumulated results
need to be reported on the presentation layer. This is specifically
true for stateful aggregations such as Top-N query types. Stated
another way, within each trigger interval, every micro-batch is
processed independently as it is considered a miniscule version
of subset of batch of data. Aggregation of those micro-batches
then resembles the streaming dimension. SpSS semantics are
based on incrementalization. In doing so, it treats the stream as an
unbounded table, where every arriving tuple is appended to that
unbounded input table. User expresses a batch-like query and
the underlying SpSS engine translates that into an incremental
query scheduled to be executed on the unbounded input table.
Results in the result table are updated based on a batch interval.
SpSS supports SRS and stratified sampling on micro-batches.

Spark normally performs join operations by either repartition-
ing or broadcasting. In cases where one of the relations (tables)
can reside in the fast-memory of all worker computing nodes
(that are forming the computing cluster), the smaller relation
(table that is small enough to fit in memory) is broadcasted to
all workers, in addition to the join operator. This basically offers
local reachability and avoids the cost of shuffling at join query
run time. This is attributed to the fact that every partition in each
worker node will be locally joined with the smaller table. What
remains needed then is combining all local results in the master
node to form the final join result. In cases where the master
table is big and thereby cannot reside in fast-memory, then a
computationally resource-intensive repartition join is required.
Reader are referred to [7] for further information describing the
mechanism of those two kinds of join operations in Spark.

Conventional join algorithms in Spark core implementation
such as sort-merge join are not readily applicable for our
case scenarios. Simply put, they are not designed to perform
geospatial join for multidimensional data [8]. One of the well-
performing algorithms for geospatial join processing is known
as filter-and-refine, which is exploited in a recent Spark-based
geospatial-oriented libraries such as Magellan.1 As a utilitar-
ian example, imagining the Earth fattened out (i.e., a two-
dimensional representation of the earth on the form of longitude
and latitude coordinates, which resembles x/y coordinates in a
cartesian coordinate system). An equal-sized uniform grid net-
work is then imposed on this two-dimensional representation so
that the view consists of equal-sized grid cells covering the Earth.
Each cell has a geocode (e.g., geohash, Google’s S2 and Uber’s
H3). This view constitutes the embedding space (i.e., study area)
where geospatial objects (tuples) are withdrawn from. Each
georeferenced tuple (on the form of parameterized points in
two-dimensional coordinates, typically longitude/latitude) in the
database is hashed with the same geocoding scheme, reducing
its multidimensional representation into a corresponding single-
dimensional geocode. However, this representation is approxi-
mate as it generates some false positives where the coding is

1[Online]. Available: https://github.com/harsha2010/magellan

similar to that of one of the cells in the grid network, while the
tuple falls outside in real geometries. Having this in mind, the
filter-and-refine approach proceeds as follows. It first filters data
based on a quick-and-dirty sieve, where a cheap equi-join is per-
formed on the single-dimensional geocoded data with the grid
cells, which results in false positives. Afterwards, a refinement
step is applied, where a computationally expensive geometrical
operations are performed (e.g., intersects, within) to test which of
the remaining candidates fall in the grid cells in real geometries.
It is worth mentioning that those geocodes are the join keys.
Readers are referred to [1] for detailed information exhibiting
how this method works. Given the forementioned overarching
traits of the filter-and-refine approach, we are adapting it in our
system design in this paper.

B. Geospatial Approximate Query Processing

Approximate Query Processing (AQP) is a computing field
that is concerned with cases where exact solutions are either not
necessarily needed or too expensive to put into action [2]. It de-
pends on serving approximate results with rigorous error-bounds
expressed, for example, in terms of confidence intervals. What
makes AQP significant is the observation that users normally
accept to forego tiny accuracy loss for the sake of a high
speedup gain [2], [9]. In addition, policy makers typically can
make discernibly accurate decisions even while query responses
are not perfectly accurate. For example, interactive heatmaps
are normally used for decision making without being perfectly
accurate.

AQP relies on reducing the input data size using several ap-
proaches such as spatial sampling [3], [10]. To achieve accuracy
targets, sample should be well-representing the population from
where it is withdrawn, taking into considerations the nature
of the data being processed. Spatial information from close-
by measurements is generally not accounted for in classical
sampling theory, thus other sampling designs that are based on
stratification are normally favored as they prove to yield better
estimator values for population target variables.

Our stratified-like sampling method called SAOS (in addition
to its extended version, ex-SAOS) that we have designed in our
previous works [3], [10] is an important contribution for spatial
AQP. SAOS algorithm is analogous to the following heuristic
overview. Imagining the earth in its two-dimensional planar
geometrical space (analogous to a rectangular grid), SAOS first
overlays the study region with a square-shaped grid. Thereafter,
it selects randomly a spatially-proportional unbiased number
of spatial points from each grid cell independently. Arriving
geospatial data stream tuples are multidimensional parametrized
pairs on the form of longitude/latitudes locational pairs. The
system first encodes each tuple with a geocode (specifically geo-
hash, resembling a Minimum Bounding Rectangle (MBR) that
represents the approximate location of the arriving tuple). Those
geocodes correspond to matching geocodes that represent the
embedding space (the space from which tuples are withdrawn).
By simply selecting tuples from each geocode bracket inde-
pendently, SAOS ensures that the same percentage is selected
from each region in the embedding space. This is so because
each region is represented by the covering geocodes. SAOS is a

[Online]. ignorespaces Available: ignorespaces https://github.com/harsha2010/magellan

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 77

stratified-like sampling method, which makes it preferable over
other geospatial methods that are based on random sampling.
This is so because SAOS selects representative input tuples
fairly from each region in real geometries so that no region
is overlooked. It worth mentioning that SAOS is built with
Spark’s ‘filter’ and ‘map’ transformations, where a geocode is
generated for every arriving parametrized georeferenced data
stream tuple using a simple ‘map’ transformation, thereafter
a ‘filter’ transformation is applied to select tuples randomly
based on the sampling rate. Interested readers are referred to
our previous works [3], [10] for further information on SAOS.
Since we rely on a filter-and-refine approach for spatial join in
this paper, then SAOS is a perfect match in combination with
these kinds of geospatial join methods. This is so because SAOS,
by design, selects a fair number of tuples from each grid cell
in the study area. Since each grid cell has a unique geocode,
which is the join key, then SAOS guarantees that no single
join key will be overlooked. This, in turn, guarantees preserving
the geo-statistical properties of the approximation over the join
output.

III. SPATIALSSJP OVERVIEW

SpatialSSJP (short for Spatial-aware Stream-Static Join Pro-
cessor) is a novel adaptive QoS-aware system for performing
distributed geospatial stream-static joins efficiently on massive
amounts of geo-referenced data streams. SpatialSSJP accepts a
georeferenced input data stream consisting of data items arriving
from various mobility IoT sources, which needs to be joined
with disk-resident static enrichment data. It also receives an
expert-guided continuous geospatial aggregation query, which
implicitly includes a geospatial stream-static join operator. In
addition, it receives a query running budget expressed as guar-
antees on either a latency or an accuracy QoS goal. SpatialSSJP
then guarantees that the data stream is processed within the query
running budget. It does so by relying on AQP and operating only
on a partial set of the input tuples from the arriving geospatial
data stream and publishing regularly an approximate incremen-
tal output with rigorous error bounds.

Basically, we have hybridized a novel data rate controller
with our geospatial-aware sampling method SAOS [3]. SAOS
receives the proper sampling rate that is communicated by the
rate controller of SpatialSSJP. It then selects a partial subset of
the arriving data tuples so as to satisfy the query running budget,
then it serves them to the subsequent geospatial stream-static
join operator. Afterwards, SpatialSSJP applies the geospatial
approximate aggregations operators on the join output and
serves incremental results to the user. SAOS assures that the
sample selected is fair and realistically reflects the geospatial
distribution of data in real geometries. The context diagram of
Fig. 2 schematically shows a high-level overview of SpatialSSJP,
which encompasses three main components: stream-static join
processor, rate controller and geospatial approximator.

A. System Model

State-of-art distributed data stream processing systems
(DSPS) are categorized into two types: (i) micro-batch-based

Fig. 2. SpatialSSJP architectural overview.

models, and (ii) record-at-a-time stream processing. Even
though the latter is known to result in lower latencies for several
deployment settings, we avoid employing it in this paper. This
is so because our sampling method is a stratified-like sampling
method, which needs first to stratify the arriving tuples. If
employed to record-at-a-time model, then the so-called reservoir
sampling would be required, to retain the first part of the data that
arrives, then stratify it and apply the stratify-like sampling. This
would introduce extra complexities which would counteract the
benefits of sampling and approximate computing consequently.

Micro-batch data stream processing model processes data
streams in series of small batch tasks, achieving second-scale
end-to-end latencies that are sufficient for smart city scenarios
[11]. An SPS that operates with micro-batching checks regularly
streaming sources, then it executes batch queries on new data ar-
rived after last batch. Continuous processing (record-at-a-time)
models fetch records continuously from streaming data sources,
thus reducing latency to milliseconds and satisfying low-level
latency requirements.

In this paper, we choose to operate on a micro-batching mode
instead of a record-at-a-time model for a very important reason.
Our sampling method is based on stratification. As such, it first
needs to stratify the micro-batch before selecting. Performing
sampling in a record-at-a-time model runs into several com-
plexities that are not confronting micro-batch modes.

B. System Design Assumptions

We have designed SpatialSSJP with the following set of
design assumptions.

The query running budget is set by a domain expert. The
budget is expressed in terms of either required accuracy or
latency. Accuracy running budget is expressed as a value that
equals to the required “margin-of-error” as will be explained
shortly in Section III.D, and latency running budget is expressed
as time in milliseconds, representing the target scheduling de-
lay and processing time. Our system then guarantees that the
received data streams are processed within the specified query
budget boundaries, either accuracy or latency after few batch
intervals depending on the aggressiveness of the spike in the data
arrival rate. Even though achieving the contradicting accuracy
and latency targets would be impossible by any data stream

78 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

processing system, our system strikes a plausible balance be-
tween both whenever achieving both altogether is not possible. It
should be noted that in data streaming environments, depending
on the aggressiveness of the spike in the data arrival rate, it
could be very challenging to achieve latency/accuracy targets
during the first batch interval that witnessed the spike. Our
system instead works stepwise where accuracy improves on a
batch-after-batch basis during the spike (which normally extends
for many batch intervals) until it eventually achieves the required
accuracy/latency targets. In this sense, our system “eventually”
guarantees achieving the prespecified latency/accuracy targets.

In this paper, we consider window-based aggregations. We
specifically focus on tumbling windows, which is a series of
contiguous non-overlapping fixed-sized time intervals, where
an arriving tuple can only be assigned to a single window.
Another type of windows includes sliding windows, where
windows overlap, and a tuple can be assigned to multiple win-
dows. We scope ourselves to tumbling windows in this paper
and consider extending the system so that it supports sliding
windows as a future research work, as sliding windows can
run into more complexities. More in detail, even though sliding
windows are ‘fixed-sized’, in cases where ‘slide duration’ is
smaller than ‘window duration’ input tuples are bound to mul-
tiple windows. This means that stateful aggregation computa-
tions are repeated several times, adding its toll to the running
times.

Also, we consider a deployment setting where a mid-range
business can deploy a Cloud public cluster or in-premises cluster
with only a few computing machines (e.g., on the par of 4 to 6).
Thus, provisioning extra resources is not an option, mainly due
to the cost and budget constraints of the business operations.

It worth mentioning, though, that the current version of the
system supports only stream-static join. Thus, stream-stream
join is not supported. This is so because stream-stream join runs
into challenges that are not normally present in a stream-static
counterpart [12]. To clarify, at any point of time, the view of
both sides of the stream-stream join (the two data streams) is
incomplete, which makes it challenging to find matches between
the two data streams. Any tuple from one of the streams can
potentially match with any upcoming (have-not-yet-arrived)
tuple from the other stream. This has an implication on making
it harder to decide which tuples to drop from each individual
data stream, even with a knowledge of sampling rates. An-
other reason is that we consider cases where the static table
cannot be loaded entirely to main-memory. For example, tables
storing geographical representations on the form of polygons
for a metropolitan city such as NY City in USA are relatively
large. Having said that, we leave the tailoring of our system
so that it supports stream-stream scenarios as a future research
perspective.

C. System Workflow

The main operational design goal of SpatialSSJP is to min-
imize the number of geospatial data stream tuples that need to
be served to a stream-static join operator in DSP systems. In
other terms, the system works on dropping a partial subset of

the arriving geospatial data stream tuples in a way that guaran-
tees obtaining gains in the processing speed without negatively
affecting the geo-statistical accuracy.

To achieve those design goals while responding to a user
query requesting online aggregation over geospatial join outputs,
SpatialSSJP operates as follows. In the upstream, geo-referenced
data is continuously ingested and served at regular time in-
tervals. The first component that data confronts is SAOS in
the front-stage. SAOS is an always-on component waiting for
a signal from the ‘rate controller’ of SpatialSSJP, which is
responsible for deciding upon the correct sampling fraction to
be withdrawn during subsequent batch intervals. It specifically
employs procedures to calculate the correct sampling fraction
that satisfies the user’s query running budget. SAOS in this way
acts as a filter that minimizes the size of the input data stream
that needs to be transferred toward the join processor. Depending
on the sampling fraction, SAOS selects a sample from subse-
quent batch interval and serves it to the pipeline downstream
that is encompassing a ‘stream-static join processor’. The join
processor then runs a parallel job to execute the stream-static
join part of the user’s query on the sample, and then sends an
intermediate result to a ‘geospatial approximator’. Since SAOS
is geospatial-aware, and because it selects a fair number of
tuples for each join key independently, then the intermediate
join output maintains the desired geo-statistical properties. The
geospatial approximator then updates the online aggregations
(expressed as part of the user’s online spatial query) and serves
up-to-time fresh results to the user in the presentation layer. The
system also employs a computational model to calculate the
error-bounds and serve them with the output. Simultaneously,
the ‘join processor’ reports the latest geo-statistics to the rate
controller, which uses them for adaptively computing a new
sampling fraction and feeding it back to SAOS in the front-stage,
and so on and so forth.

D. Design Details

The main operational design goal of SpatialSSJP is to min-
imize the number of geospatial data stream tuples that need to
be served to a stream-static join operator in DSP systems. In
other terms, the system works on dropping a partial subset of
the arriving geospatial data stream tuples in a way that guaran-
tees obtaining gains in the processing speed without negatively
affecting the geo-statistical accuracy.

The main component of our system is the rate controller.
The workflow of the ‘rate controller’ component is listed in
Algorithm 1. An interface at the presentation layer provides the
ability for user to input QoS targets as either a desired latency
or a desired accuracy. Our rate controller is designed so that
it then guarantees that an end-to-end stream-static join (being
part of a DAG) completes running within the prespecified QoS
budget. By doing so, it computes a convenient sampling fraction
relying on one of two procedures depending on the user’s join
QoS goals (latency or accuracy). Despite relying on different
sets of theories, depending on the user’s join query budget,
both procedures compute and serve a sampling fraction back to
SAOS based on the user’s geospatial join requirements, which

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 79

Algorithm 1: rateController Procedure
Input: latency, throughput, OR accuracy (a.k.a. margin of
error) targets
1: Procedure rateController (latThrAccTargets)

2: If (priority = = latency)
3: ratenew = LatencyAwareControler (latencyTarget,

PIDvalues)
4: Elseif (priority = = accuracy)
5: ratenew = AccuracyAwareController(marginOfError)
6: End if
7: Return ratenew
8: End procedure
9: Procedure LatencyAwareController(latencyTarget,

PIDvalues)
/∗ retrieving statistical information from the last batch
interval, specifically, scheduling delay, Processing time,
and number of elements ∗/
10: lastTriggerInformation = retrieveLastTriggerInfo()

/∗ adapted, retrofitted and repurposed from Spark
Streaming [11], [13], but here applied to sampling (instead
of the plain application to backpressure) using SpSS∗/

11: ratenew =
ratelatest − (p.err)− (I. errhist) − (D.errd)

12: End Procedure
13: Procedure AccuracyAwareController (marginOfError

e)
14: ratenew = z2α/2v/e

2
des

15: End Procedure

guarantees completing the join query within the query budget
while serving incremental fresh results.

1) Latency-aware Rate Controller: SpatialSSJP accepts a
latency QoS target as a query budget to run an approximate
online aggregation over a geospatial join query. It then employs
a retrofitted and repurposed version of a well-performing stable
controller from the loop-feedback mechanism theory known
as the PID controller. It computes an error value by simply
subtracting a variable known as a ‘measured process’ variable (or
PV for short) from another variable that is known as a de-
sired setpoint (or SP for short). PID controller then enforces
a correction depending on three terms known as proportional,
integral, and derivative. The process settles the PV variable by
minimizing three error values. In our deployments (similar to the
way it has been applied to Spark Streaming backpressure ver-
sion [11], [13]), the ‘proportional’ term defines how correction
depends on the present error (w.r.t. the latest measurement from
the latest batch interval information). ‘Integral’ term specifies
the way that the correction should react to the accumulation of
historical errors (i.e., accumulated through past batch intervals).
The purpose of this term is to speed up the healing process (i.e.,
the movement towards the desired setpoint SP). The derivative
term specifies how the correction depends on the prediction of
future errors based on error change between two batch intervals
(i.e., the trend).

To our knowledge, by the time we wrote this, backpres-
sure by employing the PID feedback controller has never been

implemented in Spark Structured Streaming [4]. It also has never
been incorporated with a geospatial sampler for appropriately
shedding loads while achieving incremental approximate on-
line aggregation results over geospatial join outputs with high
accuracy and low latency as prespecified in the user’s query
running budget. To resolve this issue, we have retrofitted and
repurposed the stock version of the PID rate controller (the
version that is termed PID rate controller in Spark Streaming
and which has been employed in Spark Streaming [11] for
triggering backpressure [13] effect). Our retrofitted and re-
purposed version is transparently incorporated atop the SpSS
layered stack for triggering a geospatial AQP aggregations over
stream-static join outputs, within the layers of a declarative API
(SQL-like DataFrames API in Spark Structured Streaming [4]).
For computing the three constituent terms that are comprising
the PID (Proportional, Integrative and Derivative terms), we
have exploited an analogous mathematical model-based method
similar to the one that has been employed in the plain Spark
Streaming version. That said, after each batch interval, the new
desirable rate is computed using (1).

ratenew = ratelatest− ((P.err)+ (I. errhist)+ (D.errd))
(1)

where (P.err), (I. errhist) and (D.errd) are the proportional,
integrative, and derivative terms in the PID controller, respec-
tively. The approach through which every term is computed is
adapted from the plain PID application as it appears in [11]. The
novelty of our work in this paper then is the ability to successfully
incorporate the PID controller transparently within the layers of
SpSS for triggering geospatial AQP aggregations over stream-
static join output. Since our latency controller resides one step
after the stream-static join operator, it can efficiently capture the
lateness caused by the fluctuations of the number of tuples that
arrive at the join operator. Thereafter, it sends a signal to the
sampler, informing it about the appropriate sampling fraction
for the next time interval to keep the join operator working in a
stable state, without staggered tardiness.

2) Accuracy-Aware Rate Controller: If the user prioritizes
accuracy as a QoS goal in the ‘online aggregation query over
geospatial joins’, then our rate controller triggers the accuracy-
aware sub-component. This component aims at calculating a
new sampling fraction that will achieve the target error-bound
(normally expressed as a ‘margin of error’ QoS target in the
user geospatial join query budget). We rely on our SAOS spatial
sampling method [3] in the frontstage for selecting a partial
subset from the arriving streaming tuples, which resorts to a
stratified sampling design. As such, we depend on the theory of
stratification [14] for calculating an estimate for an acceptable
sampling fraction based on a ‘margin of error’. We specifically
apply (2).

n = z2α/2v/e
2
des (2)

where edes is the desired error expressed as a QoS goal and zα/2
is the upper α/2 point of normal distribution. We calculate v by
using (3).

v =
H∑

h = 1

n/nh
(Nh/N)2 S2

h (3)

setpoint

80 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

where nh is the sample size at each moment in stratum h. n is
the total sample size (in all strata), Nh is the stratum population
size, S2

h is the variance of stratum h, N is the population size.
All those values are calculated incrementally by our support.

This approach presumes that we have a proper value for v. For
example, as a result of a preceding sampling survey. As this may
not potentially be the case in streaming settings, we otherwise
depend on incremental calculation and loop feedback mecha-
nism in improving the value of v after each batch interval and
feeding it back to the accuracy controller. For a 95% confidence
level, zα/2= 1.96 applies. Thus, we apply (4).

n = 3.84 ∗ (
v/e2des

)
(4)

to calculate the new sample size, where edes is the desired
‘margin of error’ expressed as a QoS goal within the user’s
geospatial join query requirements. Since the accuracy-aware
controller is placed after the stream-static join operator, it can
factor the degradation in geo-statistical accuracy that causes
a lag behind the prespecified user accuracy target, and which
is caused by a probable low size of the input sample that is
served to the geospatial join operator. Based on that, it serves
the new sampling fraction to SAOS to achieve the accuracy
target prespecified in the join query. Since it serves only the
required fraction, it can achieve a plausible balance with the
latency target.

It is then apparent that by combining the two equations, we
obtain a tradeoff equation between latency (incorporated within
the three terms of PID) and ‘margin of error’ (i.e., accuracy or
‘estimation quality’). That is to say (5) applies,

ratenew = ratelatest − ((p.err) + (I. errhist)

+ (D.errd)) = 3.84 ∗ (
v/e2

)
(5)

rendering a closed-form solution that achieves all QoS goals
intractable.

3) Geospatial Stream-Static Join Operator: Geospatial
stream-static join processing is expensive in distributed settings.
This is due to the associated cost of network communication
during data shuffling process. Hence, in Cloud deployments with
limited resources, data needs to be reduced to cut network cost.

SAOS selects a fair number of data stream tuples from each
geocode key independently without overlooking any join key.
The other side of the join is a disk-resident master table that
contains the regions of a geographical study area. Each region
is represented by few keys geocoded with the same hashing
mechanism that is applied for the data stream tuples (geohash
geocoding in our case). As a running example, suppose we have
the following arriving tuples (g1, v1), (g2, v1), (g2, v1), (g1,
v2), (g1, v3) and (g1, v4). The corresponding join pairs in the
disk-resident side are (r1, g1), (r1, g2) covering one region of a
geographical area, where g is the geocode, v is the value associ-
ated to the data stream tuple, and r is the region. If the sampling
fraction is 0.5., SAOS will select 50% from each join key from
the arriving data tuples, say (g1, v1), (g2, v1), (g1, v2). This
means that at most 50% of the arriving tuples will be shuffled,
and the costly inner join will be performed 3 times instead of 6,
resulting in (g1, (r1, v1, v2)) and (g2, (r1, v1)) as the join output.

SAOS specifically operates a step behind the filter stage of the
filter-and-refine geospatial join that we are retrofitting. Then the
refinement is performed over the inner join output. This opera-
tional mechanism constitutes the retrofitted approximate version
of the plain filter-and-refine approach, which we call geospatial
stream-static join operator. The join output will then be served to
the geospatial approximator component in SpatialSSJP, which
is then responsible for computing an approximate incremental
online geospatial aggregation result and serve it interactively to
the presentation layer.

In this paper, our geospatial approximator is a retrofitted
version of an approximator that we have designed in a previ-
ous work [3], where we depend on the theory of stratification
[14] for calculating aggregation geo-statistics such as ‘average’
and ‘count’. The geospatial approximator depends also on the
theory of stratification [14] for calculating the error bounds.
The difference in the current work is that we calculate those
geo-stats over the geospatial join output as opposed to the plain
method from our previous work [3], which otherwise calculates
the geo-stats on the data stream tuples directly. In a more precise
sense, the current geospatial approximator is more appropriate
for stateful online aggregations over geospatial stream-static join
results, thus serving more advanced analytics in urban planning
and smart environments. An example stateful spatial online
aggregation query is the following: “find the average speed in
each region in a city and sort them in descending order”. The
state that needs to be maintained throughout this query is the
average speed in each region key, which changes stepwise as
new streaming data pours into the system. Since the arriving
data streams are big, implementing the solution in a distributed
system guarantees achieving time-based QoS requirements as
each worker node computes the average speed for a few regions
in parallel.

Since the key for the data stream tuples is a single-dimension
geocode, those tuples will be distributed by a hash-driven par-
titioner, so geometrically nearby tuples have more chances to
end up in the same partitions in the underlying distributed DSP
system worker nodes. It worth mentioning that geographically
nearby objects share geocodes (geohash in our case) that have
similar prefixes, hence a hash-based partitioner, typically, will
forward nearby objects to the same partitions of the distributed
DSP system. Consequently, less data shuffling is involved, which
improves the time-based goals of the distributed join. More in
details, each worker node of the deployed computing cluster
will perform part of the stream-static join on a subset of the
selected data sample. Partial results will then be merged by our
approximator in the master node and the result will be served
interactively after each time interval.

IV. PROTOTYPE AND IMPLEMENTATION

A. Implementation Insights and Baselines

We prototyped SpatialSSJP by introducing few tweaks
atop Spark Structured Streaming (SpSS) [4]. SpSS creates
DataFrames from input data stream sources and operates on
them incrementally as new data arrives. DataFrames [6] is the
abstraction for representing structured data in SpSS, which

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 81

offers a user-friendly interface for programmatically expressing
relational queries. We offer an interactive simplified interface,
based on the DataFrames API, to facilitate expressing user’s
approximate geospatial online aggregation queries. Technical
functionalities of SpatialSSJP are transparently incorporated
within the bottom layers of Spark’s codebase. This includes
the sampling, join, rate controller and approximator modules.
To realize this design model, we implemented new functions
atop SpSS to perform the ‘approximate online aggregation’ over
a ‘geospatial stream-static join’ query within the prespecified
query running budget over sampling inputs that are served
by the sampling module on the form of Spark’s micro-batch
DataFrames [6].

Our implementation consists of three main modules, in addi-
tion to SAOS module, which we adapt from our previous work
[3]. The implementation details of SAOS are described in our
previous work [3].

The rate controller module consists of two submodules: la-
tency and accuracy controllers. They are both responsible for
translating the query budget into an appropriate sampling frac-
tion that will be served to the sampling module. We added
two functions over SpSS to compute the sampling fractions
using (1) and (4) that are described in Section III.B. Those
functions include a procedure for triggering the loop feedback
mechanism to regularly re-compute the sampling fractions as a
response to the fluctuations in the data arrival rates as described
in Section III.B.

For the join processor module, we retrofit and repurpose
a geospatial-aware library atop Spark known as Magellan.2

Specifically, the plain implementation depends on the stock
version of the filter-and-refine approach. We implemented a
function onto SpSS to couple SAOS with the filter stage so
that we maintain its geospatial characteristics. Afterwards, the
refinement stage functionality proceeds the operation over the
join filter-stage output, as per the plain implementation.

Additionally, as a baseline to compare with our latency
controller, we have retrofitted a version of geospatial join in
Spark’s Magellan so that it works on geospatial stream-static
join without sampling. Having in mind that basic functions that
perform static-static geospatial join are offered over-the-counter
by the base distribution of Spark’s Magellan. However, further
functions demand extra libraries. We have thus engineered a
layer over Spark’s Magellan so that it performs the desired
functionality transparently.

Our geospatial approximator depends heavily on the incre-
mental computation that is offered by the underlying Spark’s
codebase. However, the stock version does not offer functions for
appropriately approximating geo-statistics. To close this void,
our geospatial approximator module adds novel functions that
compute geo-statistics incrementally.

As a baseline to compare our system against for the case of
the ability in achieving accuracy QoS goal, we transparently in-
corporated a model-based controller on top of Spark Structured
Streaming [4]. The baseline is based on the Simple Random
Sampling (SRS) theory [14] as a pre-join sampling method. It

2[Online]. Available: https://github.com/harsha2010/magellan

computes a new sampling fraction after each batch interval and
feeds it interactively to front-stage SRS-based sampling module
(as opposed to our SAOS sampling module [3]), which precedes
the join operator. SRS does not guarantee fairly selecting distinct
join keys, as some keys are overlooked. In other terms, some
join keys could be underrepresented in the selected sample, thus
resulting in deteriorated geo-statistical properties.

More in detail, for a fair comparison, as we are comparing the
employment of SAOS in the front-stage as a pre-join sampler
against a random sampling design counterpart. We also depend
on the theory of simple random sampling (SRS) [14] for esti-
mating an appropriate sample size based on a target ‘margin of
error’ in cases that SRS is applied instead of SAOS as a pre-join
sampling method. We specifically employ (6),

n = n0/(1 + (n0/N) = 1/ (1/n0 + 1/N) (6)

to calculate the desired sample size, wheren0 is calculated using
(7).

n0 = z2σ2/e2des (7)

We implemented a function onto SpSS to compute the sam-
ple size based on (6), which will be served to the SRS-based
sampling module in the frontstage. The other modules (join,
approximator) then proceed with their operation as described
before.

B. Supported Queries

We support online geospatial aggregation (first proposed by
[15]), where join is part of the query plan. Since we are op-
erating on window semantics, aggregations typically include
some statistic such as an ‘average’ estimator of an attribute value
during each time window [16].

An expert specifies a tolerable error. Those are normally
expert investigators in a geo-statistic study who can specify the
precision needed, expressed often as in (8).

P (|ȳsamp − ȳpop| ≤ edes) = 1− α (8)

where ȳsamp is the estimate of the ‘average’ value using the
sample, ȳpop is the estimate of the ‘average’ using the popu-
lation, and edes is the permitted error (i.e., margin of error).
The investigator normally decides acceptable value for α and
edes. For example, edes = 0.02 and α = 0.05 (equivalent
to a confidence level 95%) are common. This is equivalent to
defining a maximum permitted difference between an estimate
(e.g., ‘average’ or ‘mean’ of a target variable) and a true value,
together with an allowable tiny probability α for the error to
exceed the difference, the goal is then choosing a sample size
that achieves the equation.

C. Quantifying Uncertainty

To quantify the uncertainty associated with applying the ap-
proximate computing instead of the deterministic closed-form
solution, we depend on a set of equations adapted from the theory
of statistics [14].

[Online]. ignorespaces Available: ignorespaces https://github.com/harsha2010/magellan

82 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

For single queries, we rely on ‘coefficient of variation’ (CV)
[14] as a measure of relative variability using (9).

̂CV =
SE

(
ȲSAOS

)

ȲSAOS
(9)

which is then equivalent to the standard error (SE) as a percent-
age of the ‘mean’, where SE(ȲSAOS) is the standard error of
the ‘mean’ estimation on a sample selected by applying SAOS
sampling method. In addition to those, we calculate the gain of
applying SAOS [3] (instead of the baseline, which is the SRS
sampling design) as a pre-join sampling method residing before
the geospatial stream static join operator. We specifically use the
‘design effect’ (abbreviated deff) [14] as in (10),

deff = gainSAOS

=
estimated variance from SAOS

estimated variance from SpSS − based SRS
(10)

which provides a measure of the precision gained or lost by
using a more complicated sampling design instead of an SRS.
Our intention is to factor the effect of choosing the appropriate
sampling design (as a pre-join reduction method) on the accuracy
of the aggregation over the stream-static join. It is true that
all sampling methods reduce the number of data stream tuples
that need to be transferred and shuffled for the geospatial join
to complete. However, they significantly differ in terms of the
accuracy of the approximate over the join output as will be shown
in the results discussion, where our stratified-like design has a
utility in balancing the tradeoff between accuracy and latency.

V. PERFORMANCE EVALUATION AND RESULTS

A. Deployment Settings, Test Cases and Benchmarking

Dataset: For benchmarking, we use two mobility datasets.
The first dataset is the NY City taxicab trips datasets [17], from
which we choose a cohort of six months dataset (around nine
million units) representing data captured through taxi rides for
the first half of 2016. We choose the green taxi trip records,
where a single data point is a JSON payload which include
interesting fields capturing, most importantly, pick-up/drop-off
locations and trip distances. The static data is represented by a
GeoJSON file containing the set of polygons covering NY City
in the USA. The second dataset, we use a vehicle mobility dataset
that consists of around 1155K tuples, representing Electric Taxi
GPS mobility trips for one day in the Chinese city of Shenzhen
[18]. The static table in this dataset is a GeoJSON file containing
the set of polygons covering the Shenzhen city in China.

Usage Model: while the main purpose of parallelizing the
operation of SPEs is to achieve low latency and high throughput,
there are innumerable scenarios in highly dynamic and scalable
applications that require joining fast arriving geo-referenced
data points with static information (i.e., information that is held
in disks). This requirement can be difficult to achieve and can
have a negative impact on the overall performance of the SPE
simply because of the cost incurred by the I/O [19].

An example scenario is the following. NY taxicab trips have
been made publicly available in a format that preserves privacy.
That said, only GPS parametrized longitude/latitude coordinates
are revealed without the titles of the regions to which those
itineraries belong. To complement this, names of regions (i.e.,
neighborhoods or districts in city administrative terms) are
supplemented separately in a disk-resident master table. Zones
are represented as polygons, where each polygon is represented
by multiple points forming the vertices. An online continuous
query may then request to “generate an interactive heatmap
that shows trajectories of NY taxis as they flow around in the
city” aiming to inform some decisions that are related to city
planning. An inherent problem in this case is that since points
are served as multidimensional data on the longitude/latitude
formats, specifying the polygon to which every point belongs
demands applying a costly geospatial stream-static join op-
eration. In a streaming environment, those operations require
joining geo-referenced data stream tuples with stationary master
data. At times, the size of data streams can be exhaustively
massive. This stands as an obstacle on the way to absorb the
whole population by one computer screen (e.g., for generating
heatmaps). It is then sensible to pick slices of the input data and
join them with the static master table, relying then completely
on the geospatial AQP theories. Due to unpredictable nature
of the data stream arrival rates and skewness, it is essential
for DSPs to employ adaptive models that respond interactively
and proactively, aiming at catching up with the data stream
oscillation nature.

Deployment and Experimental Settings: We deploy Spa-
tialSSJP on a Microsoft Azure HDInsight cloud Cluster hosting
Apache Spark (version 2.2.1). Our cluster consisted of 6 NODES
in total (2 Head, analogous to master nodes in Amazon, plus 4
worker nodes). Head specifications are based on (2 x D12 v2),
and workers are based on (4 x D13 v2) specifications. Every
head node hosts 4 CPU cores with 28 GB RAM on each and 200
GB Local SSD memory, and quantities are double those figures
for each worker node.

Metrics: For benchmarking, we evaluate SpatialSSJP using
two metrics: end-to-end latency and accuracy loss. Specifically,
the latency is defined as the time between the arrival of data to the
stream processing system within a time window and the time a
stepwise aggregation result is produced and served to the user in
the presentation layer.; To corroborate results associated with the
ability of the system to achieve the latency targets while trading
off plausibly the accuracy targets, we apply the ‘coefficient of
variation’ (CV) as it appears in (9) of Section IV.C. We also
measure the ‘average number of keys updated’ by using different
methods and align the comparison discussion with the CV values
for each method.

In other terms, the percentage of the deviation of the estimated
‘mean’ from the exact mean value. At various experiments, we
also measure the sampling rates that are required to achieve
the latency or accuracy constraints at each time step (known
hereafter as batch ID).

Testing Scenario: We have designed few recurrent mix work-
load scenarios that necessitate geospatial stream-static join pro-
cessor to be applied as an integral part of the workload. We

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 83

aim at measuring the following, 1) The ability of SpatialSSJP
to meet target latency goals through applying our latency-aware
rate controller. We have applied the same settings to the two
methods, SAOS [3] and SRS-based sampling baseline, which are
operating in front stages ahead of the join operator. Thereafter,
we compare them both. We apply two widely adopted PID value
settings for this scenario. In the first setting, we use values P =
1, I = 1, D = 1. For the second setting, we use values P = 1,
I = 0.6, D = 0.2. By doing so, we were able to measure the
impact a ‘term’ (i.e., P, I or D) is having in the equation. In
other words, the less the ‘term’ value the less significant role
a ‘term’ is playing in specifying the next sampling fraction.
For instance, in the second values setting, we set the term D
to the value 0.2, indicating that we want to avoid playing with
the stability of the system by only moderately (as small as 0.2)
accounting for a future prediction of the data oscillation. In other
words, we account for the trends of future data load slowly. We
apply the same for SAOS and SRS-based sampling. In addition,
we emulate the oscillating trend of data arrival rates (i.e., batch
size) in real scenarios by alternating rates with the following
values. ‘500K to 2000K’, ‘500K to 3000K’, ‘500K to 5000K’,
‘500K to 2000K to 1000K’. In doing so, we can measure the
ability of SpatialSSJP in responding to sudden oscillations in
data arrival rates. We compare our design with a plain spatial
join operator without sampling. 2) SpatialSSJP ability to satisfy
accuracy target by applying the accuracy-aware rate controller.
We fix the arrival rate and change the accuracy target (expressed
as a ‘margin of error’ value) between some stringent value that
equals to 0.01, a ‘middle strictness’ value that is equal to 0.03 and
a permissive value of 0.09. We compare the join operator using
SAOS against the join operator using an SRS-based counterpart.

B. Results Discussion

All results reported in this paper are calculated as the median
(i.e., 50th percentile) of running the system for ten times.

1) The Effect of the Pre-Join Sampling Design on the Ability
of SpatialSSJP to Meet Latency Goal: We compare the effect of
applying various pre-join sampling designs on the ability of the
SpatialSSJP latency controller in catching up with the oscillation
in data arrival rates. Also, we compare our system to a plain
Spark join version where no pre-join sampling is performed.

Fig. 3 shows the ability of our latency-aware controller (part
of SpatialSSJP) in lowering the latency to the minimum (close
to zero). We have applied the PID values that are equal to
(11,1), respectively in this case. Scheduling and processing
delays (processing delay is computed as the difference between
the processing time and the batch interval, which happens to be
equal to ‘1’ second in all experiments that we have performed)
converge initially at a confluence point, where our latency-aware
controller senses that a probable staggered delay is blamed
to a sudden spike in the data batch size (roughly from 500K
to 2000k), thereafter a newly calculated sampling rate that is
roughly equals to 0.03% is served to SAOS pre-join sampler in
the front-stage. A catch up then occurs. Because the oscillation
is relatively high (from 500K to 2000K), the system reaches

Fig. 3. Catch up at PID values 11,1 where SpatialSSJP can meet the latency
target by applying the ‘latency-aware controller’ for reducing the join input
tuples using SAOS where the oscillation is ‘500k to 2000k’. Secondary axis to
the right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas
the main axis to the left compares the batch size (data load) with sampling
fraction at each ‘batch interval’.

Fig. 4. Catch up at PID values that are equal to (10.60.2), using SAOS as a
pre-join sampling method, oscillation is ‘500k to 3000k.

batch interval number ‘5’ without returning to normal opera-
tion, meaning that the accumulated number of extra records is
appropriately considered. Also, the fact that we have set the term
‘D’ to a value that equals ‘1’ to signify that we greatly account
for another future approaching spike, which explains then the
low value of the sampling fraction in batch intervals ‘4’ and ‘5’.

Notice that since we rely on tumbling window semantics (i.e.,
non-overlapping time-based windows), processing time never
comes below the duration of ‘batch interval’.

Fig. 4 shows the effect of changing the PID values to (10.60.2)
respectively (scientifically plausible values). Notice the effect
of a lower ‘D’ term value. We do not account excessively for
a future spike in the data arrival rates. Hence, the sampling
fractions are more permissive.

Similar trends occur for both PID values combinations (‘11,1,’
and ‘10.60.2’) in cases of less aggressive spikes in the arrival
rates. We have specifically tested for a spike from 500k to 2000K
tuples/second.

On the contrary, for testing SpatialSSJP under more stringent
arrival rates, we have tested specifically with a sudden spike
from 500K to 5000K. SpatialSSJP was able to survive that spike
and catch up occurred for both PID combinations (‘11,1’ and
‘10.60.2’).

To further exhibit the elasticity of SpatialSSJP, we have
emulated a fluctuation that spikes suddenly between 500K to

84 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Fig. 5. Catch up at PID values (10.60.2) and oscillation ‘500k-2000K-1000K’
using SAOS as a pre-join sampling method.

Fig. 6. Catch up (SRS) at PID values (10.60.2) and oscillation ‘500k-2000K-
1000K’ using SRS as a pre-join sampling method.

2000K, then slows down to 1000K. Fig. 5 shows the elasticity of
SpatialSSJP, notice the ‘similar discernible pattern’ as the input
rate that the times (scheduling and processing) are following.
Our method can extrapolate unseen sudden spikes in data arrival
rates.

For all settings, processing times fall as a convergence occurs
in such a way that they fall inside the boundaries of batch
intervals (1000 milliseconds in this case). After that stable point
is reached, SpatialSSJP starts to pull more samples in each batch
interval.

As a way of contrast, by employing an SRS-based base-
line pre-join sampling method instead of our SAOS sampling
method, SpatialSSJP was also able to remain alive at all spikes.
However, it hits more Standard Errors (SE) and CVs than SAOS
for same PID combinations, suggesting that the pre-join sam-
pling design has a property that affects accuracy goals. Fig. 6
illustrates an example.

Despite that both pre-join sampling methods SAOS and the
baseline that is based on SRS can cause the stream-static join
operator to survive spikes in streaming data loads under Spa-
tialSSJP, SAOS is preferred against the SRS-based baseline
as a pre-join sampling design. This is attributed to the fact
that SAOS yields better sampling geo-statistics for estimating
target variables over stream-static join outputs as opposed to an
SRS-based baseline counterpart. The CV values of Fig. 7 (for
both datasets, NY City and Shenzhen) show the trend for PID

Fig. 7. Coefficient of Variance (CV) by applying SAOS against SRS-based
baseline, both pre-join sampling methods, feeding samples to the stream-static
join operator of SpatialSSJP. Varying PID values between (11,1) and (10.60.2).
‘sh’ is for ‘Shenzhen’ and ‘NYC’ for NY City.

Fig. 8. High delays imposed by disabling sampling during burst loads, Oscilla-
tion 500K – 2000K. Secondary axis to the right hand-side represents ‘processing
time’ and ‘scheduling delay’, whereas the main access to the left shows the batch
size (input rate).

values that are equal to (11,1) respectively. Similar trend occurs
for the other combination of PID values (10.60.2).

Disabling sampling in fluctuating streaming environments
results in a detrimental effect that causes the DSP system to
become unavailable during spikes in the arrival rates due to
the computationally expensive stream-static geospatial join. We
have tested for an oscillation case of ‘500K to 2000K’ as shown
in Fig. 8. For a more stringent spike (500K to 5000K), applying
no pre-join sampling results in a fatal situation where the system
throws an out-of-memory (OOM) exception. This constitutes the
baseline version of SpSS geospatial stream-static join without a
pre-join sampling and/or a latency controller. Hence, applying
qualified pre-join sampling with feedback-based auto-recovery
in geospatial approximations over joins in data streaming highly
dynamic application scenarios is essential for the DSP system
to survive sudden spikes in data arrival rates, while preserving
the geo-statistical properties of the join output.

Results we have shown in this subsection refer to NY City
datasets for measuring the effect of the pre-join sampling design
on the ability of SpatialSSJP to meet latency goal. We have tested
with the second dataset (Shenzhen dataset), and test results show
the same discernible pattern as that of NY City, despite not shown
in the paper for the lack of space. With Shenzhen data, our system
can meet the latency requirements for all configurations that have
been discussed in this experimental section (i.e., the “oscillating
trend of data arrival rates” and “PID value settings”), showing

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 85

Fig. 9. Design effect of SAOS as a pre-join sampling methods, feeding samples
to the stream static join operator of SpatialSSJP instead of the SRS-based
baseline counterpart. PID values are 10.60.2.

Fig. 10. Accuracy gain by applying SAOS with SpatialSSJP against SRS
baseline. In the legend, ‘moe0.03’ means ‘margin of error’ that equals 0.03,
whereas ‘moe0.01’ means ‘margin of error’ that equals 0.01.

discernible patterns that are similar to what appear in Figs. 3, 4,
5, and 6.

We conclude that by relying on SAOS as a pre-join sampling
method instead of an SRS-based counterpart, we achieve a better
gain (expressed as a ‘design effect’ or ‘deff’ for short) as shown
in Fig. 9. This applies to PID values that are equal to (1, 0.6,
0.2). Similar trend occurs for the other PID values combination.
The figure suggests that by applying SAOS as a pre-join method
instead of SRS, we achieve a better performance, effectively
outperforming SRS by a significant margin. On average, the
relative achievement over SRS is at least 10% and tipping up
to 50%, at times, to suggest that relying on a stream-static pre-
join sampling method (such as SAOS) that is aware of the data
shape (being spatial or geo-referenced) should be preferable over
random designs that are not aware of the spatial characteristics
of data.

2) The Effect of the Pre-Join Sampling Design on Spa-
tialSSJP Ability to Satisfy Accuracy Target: To test the ability
of SpatialSSJP in achieving a prespecified accuracy target (ex-
pressed as a ‘margin of error’ value) for geo-statistical aggre-
gation approximations over geospatial stream-static joins, we
have compared the effect of the pre-join sampling design on
the approximation accuracy. Particularly, we compare relying
on SAOS as a pre-join sampling method against the SRS-based
baseline counterpart. As shown in Fig. 10, on average, a stream-
static join requires sampling fractions when SAOS is the pre-join
sampling method, which are less than those required by the
SRS-based baseline counterpart in order to achieve the same
accuracy target of the approximation result over the join output.
This applies for all ‘margin of error’ values (for example, 0.03

and 0.01 as shown in Fig. 10). As it is clear from Fig. 10, in
stringent cases (where the target ‘margin of error’ equals 0.01),
the approximator over the geospatial join requires more samples,
regardless of which among the pre-join sampling, SAOS or
SRS, is applied. Be that as it may, the approximator always
requires less sampling fractions by relying on SAOS as a pre-join
sampling method as compared to the SRS-based counterpart to
achieve the prespecified accuracy target of the approximation
over the join output.

Referring to (6) that calculates the number of samples by
applying SRS, since N (continuous population at every batch)
is relatively large, n0/N becomes tiny, yielding n ≈ n0. As
such, mostly the same sample size is required for any large
population (be that as it may, one million or even one billion
tuples). This explains the reason behind obtaining almost the
same sampling fraction for subsequent batch intervals (whether
applying SAOS or SRS, the same discernible pattern applies),
which corroborates the formalization herein.

VI. RELATED WORKS

Spatial join is a prohibitively expensive operation which can
render most advanced SPE systems irresponsive during spikes
in data loads [1]. To alleviate this problem, various works in the
relevant literature have designed frameworks for controlling the
arrival rates of data coming from streaming sources.

A. Stream-Stream Join Processing

Most of the methods in the literature concentrate on either
stream-stream [12] or static-static joins for distributed environ-
ments. However, the focus on stream-static join processing is
still largely unexplored [20]. Stream-stream differs from the
stream-static join in that data for both sides of the join in the
former is coming from streaming sources. Also, both sides of
the static-static join are static relations with pre-known data. This
is so because stream-stream join runs into challenges that are not
normally present in a stream-static counterpart. To clarify, at any
point of time, the view of both sides of the stream-stream join
(the two data streams) is incomplete, which makes it challenging
to find matches between the two data streams. Any tuple from
one of the streams can potentially match with any upcoming
(have-not-yet-arrived) tuple from the other stream. This has an
implication on making it harder to decide which tuples to drop
from each individual data stream, even knowing the sampling
rates. Having said that, we leave the tailoring of our system
so that it supports stream-stream scenarios as a future research
perspective.

B. Distributed Stream-Static Spatial Join Processing

Filter-and-refinement approach is an essential technique for
spatial join processing [21]. It first performs MBR-join to return
candidate tuples, then it checks whether those objects satisfy the
spatial join predicate. In addition to Spark’s Magellan, several
other distributed geospatial processing frameworks employ the
filter-and-refinement approach for efficient spatial query pro-
cessing (including the spatial join processing). For example,

86 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Apache Sedona (previously GeoSpark [21]) and LocationSpark
[22]. Simba [23] is a similar system atop Spark that does not
utilize the filter-and-refinement model for spatial join. However,
systems like GeoSpark and LocationSpark utilize tree-based
indexing structures, requiring thus, 10%-40% additional space
for storing the tree node information [24]. In addition, Hadoop-
based systems such as SpatialHadoop [25] store intermediate
results on disk rather than in-memory, resulting then in less
memory utilization as opposed to main-memory frameworks
[24]. What’s more, despite the abundance of works in literature
comparing distributed systems for spatial processing [26], there
is no work that compares the performance of those systems in
data stream settings, to the best of our knowledge.

Indexing data streams on-the-fly constitutes an integral part of
online spatial join. Spatial join techniques can be classified into
two categories: internal memory methods (e.g., z-order curves),
or external memory methods (e.g., tree-based structures that
require hierarchical traversal). Since one side of the join is a
fast-arriving data stream, and because we choose to operate with
micro-batch processing mode, then data streams every batch
interval fit into main-memory. This encouraged us to choose a
join method that is based on filter-and-refinement and z-order
curves (internal memory method for spatial join) as they perform
better than external memory structures (hierarchical tree-based
structures such as R-Trees) on modern parallel hardware [8].

Having said that, we have selected Spark’s Magellan as a
representative code base library to prototype our SpatialSSJP
novel system because spatial join in stream-static join is per-
formed in main-memory, given the fact that we are operating
on a micro-batch mode. Thus, an internal memory technique
such as z-order curves is preferred over counterparts at this
stage. Comparing the performance of stream-static join be-
tween Spark’s Magellan and other similar frameworks seems
interesting, but we consider it outside the scope of this paper,
and we leave it as a future research perspective. We recapit-
ulate also that the focus of this paper is the incorporation of
geospatial approximate query processing mechanisms with a
pipeline containing a stream-static join operator. Thus, we argue
that our framework is seamlessly transferable to plenty of in-
memory distributed spatial data stream processing frameworks,
including Apache Sedona (previously GeoSpark [27]) and
GeoMesa [28].

A significant recent work in static-static join appears in [29],
where the authors have focused on improving spatial join al-
gorithms that involve both relations as static tables (one that
contains spatial points, while the other contains polygons). They
basically have designed a novel multi-level on-the-fly spatial
indexing scheme that has proven efficient in terms of time-based
QoS goals.

C. Approximate Stream-Static Spatial Join Processing

From the approximation side, [30] applies load shedding to
stream-static join. They employ a straightforward formula for
computing the latest batch size, where they shed extra loads if
an amount that is roughly equals to double of a threshold value
is exceeded to prevent accumulating tuples in the buffer. Two

problems are apparent in this design. First, it is not attuned to
the data shapes (the fact that most arriving streaming data is
geo-referenced) because it is shedding data randomly. Second,
the continuous cycle of extra load spilling to (when load exceeds
capacity) and recovering from (when loads slow down) disks
imposes an extra cost that increases the I/O overhead incurred.

As far as we know, only a few studies have given attention to
the micro-batch semantics for optimizing approximate stream-
static joins. As an example, [20] presents a framework termed
DS-join for the join between streaming sources and data-at-rest
(static) using the micro-batch semantics of recent distributed
SPEs. Authors basically focus on distributing join execution in
cases where the static table does not comfortably fit in-memory
of the Spark worker nodes.

Most distributed geospatial DSP systems, SpatialHadoop
[25], HadoopGIS [31] and SpatialSpark [32], are batch-oriented,
which are not designed to work with streams.

To the best of our knowledge, there are no works in literature
that specifically focus on approximate processing (by relying
basically on sampling) in supporting stream-static joins for
spatial workloads. However, few works have applied sampling
for general data streaming workloads in fluctuating dynamic
application settings. For instance, [33] proposes a framework
titled AccStream as an adaptive overload management system
(residing atop Spark Streaming [11]) which samples data tuples
from a general data source. AccStream consists of three compo-
nents: a controller, collector and a receiver that is repurposed and
retrofitted from that of the Spark’s stock version. The job of the
collector is to feed statistical information (such as latency and
accuracy, where accuracy depends on sampling theory) to the
controller. Thereafter, the controller calculates an appropriate
sampling rate. The receiver component is a repurposed and
retrofitted version of the plain receiver in Spark Streaming.
Aiming at achieving the latency goals, they employ a dynamic
and self-tuning learning-based model (i.e., latency model). The
disadvantage, however, is that AccStream is a general-purpose
framework that is not specifically designed to work with spatial
data loads. In addition, the system employs a computationally
expensive method for predicting future spikes, which negatively
affects the system’s long-term stability. This is attributed to the
fact that the method requires computing many statistics that are
not readily accessible through the underlying system codebase,
causing an overhead to accumulate and carry over to subsequent
time windows.

We are not aware of any system from the relevant literature that
accomplishes the goals we achieved by designing SpatialSSJP.

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed and implemented a novel system for
adaptive approximate query processing over geospatial stream-
static join operations. Our system can achieve and plausibly
tradeoff prespecified time-based and estimation-quality QoS
goals. We prototyped our system (that we call SpatialSSJP)
atop Spark Structured Streaming and assessed it against state-
of-art baselines, using big real-world mobility data. Our results
conclude that SpatialSSJP achieves latency and accuracy goals

JAWARNEH et al.: SpatialSSJP: QoS-AWARE ADAPTIVE APPROXIMATE STREAM-STATIC SPATIAL JOIN PROCESSOR 87

defined in the user query requirement as compared to baseline
systems.

Future works include porting the sampling methods to Edge
devices near the data sources, in addition to applying other
prefiltering methods prior to the sampling, aiming to reduce
the join data shuffled across the network. Also, the current
version of SAOS selects the same percentage of tuples from each
region in the embedding space. An interesting future research
perspective is to consider the number of vertices in each region as
a configurable parameter for specifying the percentage for each
region independently. This way, we can choose to select higher
percentage of tuples from areas with less vertices as they require
cheaper point-in-polygon tests as opposed to regions with much
higher number of vertices.

REFERENCES

[1] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. Montanari,
“Efficiently integrating mobility and environment data for climate change
analytics,” in Proc. IEEE 26th Int. Workshop Comput. Aided Model. Des.
Commun. Links Netw., 2021, pp. 1–5.

[2] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. Montanari,
“QoS-aware approximate query processing for smart cities spatial data
streams,” Sensors, vol. 21, no. 12, 2021, Art. no. 4160.

[3] I. M. Al Jawarneh, P. Bellavista, L. Foschini, and R. Montanari, “Spatial-
aware approximate Big Data stream processing,” in Proc. IEEE Glob.
Commun. Conf., 2019, pp. 1–6.

[4] M. Armbrust et al., “Structured streaming: A declarative api for real-time
applications in apache spark,” in Proc. Int. Conf. Manage. Data, Houston,
TX, USA, 2018, pp. 601–613.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX Conf.
Hot Topics Cloud Comput., 2010, Art. no. 95.

[6] M. Armbrust et al., “Spark SQL: Relational data processing in spark,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 1383–1394.

[7] R. T. Whitman, M. B. Park, B. G. Marsh, and E. G. Hoel, “Spatio-temporal
join on apache spark,” in Proc. 25th ACM SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst., 2017, pp. 1–10.

[8] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans. Database
Syst., vol. 32, no. 1, pp. 7–es, 2007.

[9] A. Arasu et al., “Stream: The stanford data stream management system,” in
Data Stream Management. Berlin, Germany: Springer, 2016, pp. 317–336.

[10] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. Montanari,
“Spatially representative online Big Data sampling for smart cities,” in
Proc. IEEE 25th Int. Workshop Comput. Aided Model. Des. Commun.
Links Netw., 2020, pp. 1–6.

[11] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: Fault-tolerant streaming computation at scale,” in Proc. Twenty-
4th ACM Symp. Operating Syst. Princ., 2013, pp. 423–438.

[12] A. Shahvarani and H.-A. Jacobsen, “Distributed stream KNN join,” in
Proc. Int. Conf. Manage. Data, 2021, pp. 1597–1609.

[13] X. Chen, Y. Vigfusson, D. M. Blough, F. Zheng, K.-L. Wu, and L. Hu,
“GOVERNOR: Smoother stream processing through smarter backpres-
sure,” in Proc. IEEE Int. Conf. Autonomic Comput., 2017, pp. 145–154.

[14] S. L. Lohr, Sampling: Design and Analysis. Toronto, ON, Canada: Nelson
Education, 2009.

[15] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 1997, pp. 171–182.

[16] P. Carbone, A. Katsifodimos, and S. Haridi, Stream Window Aggregation
Semantics and Optimization, Berlin, Germany: Springer, 2019.

[17] New York, NY, USA (N.Y.). Taxi and Limousine Commission. New York, NY,
USA City Taxi Trip Data, 2019-02-20 ed. Ann Arbor, MI, USA: Inter-Univ.
Consortium for Political and Social Research [distributor], 2009-2018.

[18] G. Wang, X. Chen, F. Zhang, Y. Wang, and D. Zhang, “Experience:
Understanding long-term evolving patterns of shared electric vehicle
networks,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw., 2019,
pp. 1–12.

[19] R. Derakhshan, A. Sattar, and B. Stantic, “A new operator for efficient
stream-relation join processing in data streaming engines,” in Proc. 22nd
ACM Int. Conf. Inf. Knowl. Manage., 2013, pp. 793–798.

[20] Y.-H. Jeon, K.-H. Lee, and H.-J. Kim, “Distributed join processing between
streaming and stored Big Data under the micro-batch model,” IEEE Access,
vol. 7, pp. 34583–34598, 2019.

[21] J. Yu, Z. Zhang, and M. Sarwat, “GeoSparkViz: A scalable geospatial
data visualization framework in the apache spark ecosystem,” in Proc.
30th Int. Conf. Sci. Stat. Database Manage., Bozen-Bolzano, Italy, 2018,
Art. no. 15, doi: 10.1145/3221269.3223040.

[22] M. Tang, Y. Yu, A. R. Mahmood, Q. M. Malluhi, M. Ouzzani, and W. G.
Aref, “Locationspark: In-memory distributed spatial query processing and
optimization,” Front. Big Data, vol. 3, 2020, Art. no. 30.

[23] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 1071–1085.

[24] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in apache
spark: The geospark perspective and beyond,” GeoInformatica, vol. 23,
no. 1, pp. 37–78, 2019.

[25] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce frame-
work for spatial data,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015,
pp. 1352–1363.

[26] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern
spatial analytics systems?,” Proc. VLDB Endowment, vol. 11, no. 11,
pp. 1661–1673, 2018.

[27] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework
for processing large-scale spatial data,” in Proc. 23rd SIGSPATIAL Int.
Conf. Adv. Geographic Inf. Syst., 2015, pp. 1–4.

[28] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and
M. Ronquest, “Geomesa: A distributed architecture for spatio-temporal
fusion,” in Geospatial Informatics, Fusion, and Motion Video Analytics V,
Bellingham, WA, USA: SPIE, 2015, pp. 128–140.

[29] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. Mon-
tanari, “Efficient QoS-aware spatial join processing for scalable NoSQL
storage frameworks,” IEEE Trans. Netw. Service Manage., vol. 18, no. 2,
pp. 2437–2449, Jun. 2021.

[30] M. A. Naeem, G. Dobbie, C. Lutteroth, and G. Weber, “Skewed distri-
butions in semi-stream joins: How much can caching help?,” Inf. Syst.,
vol. 64, pp. 63–74, 2017.

[31] A. Aji et al., “Hadoop-GIS: A high performance spatial data warehousing
system over MapReduce,” in Proc. VLDB Endowment Int. Conf. Very Large
Data Bases, 2013, pp. 1009–1020.

[32] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in Proc. IEEE 31st Int. Conf. Data Eng. Workshops,
2015, pp. 34–41.

[33] H. Sun, R. Birke, W. Binder, M. Björkqvist, and L. Y. Chen, “AccStream:
Accuracy-aware overload management for stream processing systems,” in
Proc. IEEE Int. Conf. Autonomic Comput., 2017, pp. 39–48.

Isam Mashhour Al Jawarneh (Member, IEEE) re-
ceived the PhD degree in computer science and en-
gineering from the University of Bologna, Italy, in
2020. Since 2020, he had been a postdoctoral research
fellow with the University of Bologna. His research
mainly focuses on spatial data science, in addition
to the design and development of novel Cloud and
Edge-based Big Data management methods, aiming
at synergistically advancing geospatial, time-series,
and contextual aspects.

Paolo Bellavista (Senior Member, IEEE) received
MSc and PhD degrees in computer science en-
gineering from the University of Bologna, Italy,
where he is now a full professor with distributed
and mobile systems. His research interests include
activities span from pervasive wireless computing
to location/context-aware services, from edge cloud
computing to middleware for Industry 4.0 applica-
tions. He is currently the scientific coordinator of
a large H2020 Big Data innovation action called
IoTwins about distributed digital twins for the manu-

facturing industry. He serves on the Editorial Boards of IEEE Communications
Surveys and Tutorials, ACM Computing Surveys, IEEE Transactions on Network
and Service Management, Elsevier Pervasive Mobile Computing, and Elsevier
Journal on Network and Computing Applications, among the others.

https://dx.doi.org/10.1145/3221269.3223040

88 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Antonio Corradi (Senior Member, IEEE) received
the graduate degree from the University of Bologna,
Italy, and the MS degree in electrical engineering
from Cornell University, USA. He is a full profes-
sor of computer engineering with the University of
Bologna. His research interests include distributed
systems, middleware for pervasive and heterogeneous
computing, infrastructure for services, and network
management.

Luca Foschini (Senior Member, IEEE) received the
graduate degree from the University of Bologna, Italy,
and the PhD degree in computer science engineering,
in 2007. He is now an associate professor of computer
engineering with the University of Bologna. His re-
search interests include span from integrated manage-
ment of distributed systems and services to wireless
pervasive computing and scalable context data dis-
tribution infrastructures and context-aware services.
Currently, he is working on mobile crowdsensing and
crowdsourcing and management of Cloud systems for

Smart City environments.

Rebecca Montanari (Member, IEEE) received the
graduate degree from the University of Bologna,
and the PhD degree in computer science engineer-
ing in 2001. She is now a full professor of com-
puter engineering with the University of Bologna.
Her research interests include primarily focuses on
semantic-based middleware supports for service pro-
visioning, context-aware services, security solutions
for pervasive environments, policy-based service
management, and adaptive and scalable middleware
solutions for system and service management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

