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IMPOSSIBILITY RESULTS ON STABILITY
OF PHYLOGENETIC CONSENSUS METHODS

EMANUELE DELUCCHI, LINARD HOESSLY, AND GIOVANNI PAOLINI

Abstract. We answer two questions raised by Bryant, Francis and Steel in their
work on consensus methods in phylogenetics. Consensus methods apply to every
practical instance where it is desired to aggregate a set of given phylogenetic trees
(say, gene evolution trees) into a resulting, “consensus” tree (say, a species tree).
Various stability criteria have been explored in this context, seeking to model
desirable consistency properties of consensus methods as the experimental data
are updated (e.g., more taxa, or more trees, are mapped). However, such stability
conditions can be incompatible with some basic regularity properties that are
widely accepted to be essential in any meaningful consensus method. Here, we
prove that such an incompatibility does arise in the case of extension stability
on binary trees and in the case of associative stability. Our methods combine
general theoretical considerations with the use of computer programs tailored to
the given stability requirements.

Context. The problem of merging the information carried by a set of phyloge-
netic trees into a resultant (“consensus”) tree is standard and well-studied. For
instance, this problem arises as one tries to combine many gene trees in order to
reconstruct a common species phylogeny, or when aggregating a set of estimates
resulting from the application of different clustering algorithms to the same ge-
nomic data set. More generally, consensus methods have wide applications in
biology [9] as well as in other sciences, for example, social choice theory [3].

This variety of applications has motivated a general axiomatic study of consen-
sus methods. In biology, the field was pioneered by McMorris and collaborators,
see [8] for a survey. Here, one of the research threads is the study of “stability
conditions” for consensus functions, which encode the requirement that a consen-
sus method should be consistent under “restriction” of all input trees to a subset
of taxa, see for example [4]. For example, when computed on the branching
structures induced on a specific subset of the taxa, the consensus method should
output the branching structure induced by the consensus tree computed from the
full data. A main question is whether such stability conditions are compatible
with “Pareto-type” properties, where one requires that if some partial feature is
shared among all trees we want to aggregate, then this feature should be present
in the consensus tree as well.

Motivation and aim. Our paper is motivated by two questions asked in a recent
work of Bryant, Francis and Steel [6], who followed up on [19]. In their paper, they
carry out a detailed feasibility analysis of stability conditions that express “future-
proofing” of phylogenetic trees, that is, consistency of consensus methods with
respect to increase of experimental evidence. (For example, an increase of the set
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of taxa or an increase of the size of the set of trees from which the consensus is
to be drawn.) Let us explain intuitively the four properties of consensus methods
on which, following [6], we will focus (for precise definitions see Section 1).

Regularity properties ensure that the output does not depend on the nam-
ing of taxa nor on the order of the trees. Moreover, if all input trees are
equal, then the consensus tree should also be equal to the input trees.
Extension stability requires that, if the input data is updated by including
a new taxon in each tree, the branching structure among the “original”
taxa is preserved in the updated consensus tree.
Associative stability allows, among other things, to reduce the computa-
tion of the consensus tree to a series of consensus problems between pairs
of trees.

As is usual, these properties are considered together with a Pareto-type property
which, again following [6], we take to be Pareto on rooted triples. This means
that if all input trees display the same nontrivial branching order when restricted
to a specific triple of taxa, then the consensus tree must display the same branch-
ing order when restricted to the same taxa.

Bryant, Francis, and Steel conclude by stating two main open questions about
the existence of consensus methods [6, Concluding comments]. The first question
asks whether there exist regular consensus methods that are extension stable
when the input data are restricted to binary trees. The second question asks
whether there exist regular consensus methods that are Pareto on rooted triples
and associatively stable. We answer both questions in the negative.

Our proof consists in a reduction to a problem of integer linear programming
(ILP), which we then solve. ILP has been used in the past in order to compute
consensus trees, see [11]; however, ours seems to be the first application of ILP to
a (non)existence proof in phylogenetics.

1. Background

1.1. Phylogenetic trees. Our setup mostly follows [18], and in particular we re-
strict our attention to rooted phylogenetic trees. We fix a set (say, of taxa) X and
write RP(X) for the set of rooted phylogenetic trees on the leaf set X. A cluster of
a tree is any set of leaves that consists of all descendants of a particular vertex of
the given tree. The set of clusters of a tree forms a hierarchy (We call hierarchy any
family of subsets of a given set such that any two elements in the family intersect
trivially, that is, their intersection is either empty or equal to one of the two sets).
For every hierarchy on a set X that contains X itself and all singleton sets, but
does not contain the empty set, there is a unique phylogenetic tree whose clus-
ters form the given hierarchy. In particular, two trees have the same associated
hierarchy if and only if they are equivalent.

We say a tree T ′ ∈ RP(X) refines a tree T ∈ RP(X), and write T � T ′, if the
hierarchy of T is contained in that of T ′ (this means that every cluster of T is also
a cluster of T ′). This defines a partially ordered set (RP(X),�) whose maximal
elements are given by the binary trees and whose unique minimal element is the
“star” tree, where every leaf is adjacent to the root (the hierarchy of the star tree
consists only of the singletons and X itself). Given a tree T ∈ RP(X) and a subset
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T :

1 2 3 4 5 6

T |{2,3,6}:

2 3 6

T |{1,2,3,5}:

1 2 3 5

Figure 1. A tree T on the set of taxa X = {1, 2, 3, 4, 5, 6} and its
restrictions T |Y for Y = {2, 3, 6} and Y = {1, 2, 3, 5}.

Y ⊂ X, the restriction of T to Y is the tree T |Y ∈ RP(Y) obtained by restricting
T to the leaves in Y (see Figure 1). If |Y| = 3 and T |Y is binary, we say that the
rooted triple T |Y is displayed by T . Notice that any rooted phylogenetic tree is fully
determined by its set of rooted triples.

1.2. Consensus functions and consensus methods.

Definition 1.1. Let X be a finite set of taxa and k ∈N a natural number. A profile
of trees is an element (T1, · · · , Tk) ∈ RP(X)k.

(1) A k-consensus function on X is a function

ϕkX : RP(X)k → RP(X).

(2) A consensus function on X is a function

ϕX : ∪k>1RP(X)
k → RP(X).

(3) A k-consensus method is a function that, for every set Y of taxa, associates
with any profile (T1, · · · , Tk) ∈ RP(Y)k a tree ϕkY(T1, · · · , Tk) ∈ RP(Y). We
consider such a method as a set of functions ϕkY , one for every Y, and
denote it simply by ϕk.

(4) A consensus method is a function that, for every set of taxa Y and any k ∈N,
associates with any profile (T1, · · · , Tk) ∈ RP(Y)k a tree inϕY(T1, · · · , Tk) ∈
RP(Y). We consider such a method as a set of k-consensus methods ϕk,
one for every k, and denote it by ϕ.

We will at times need to consider (k-)consensus methods where the only al-
lowed sets of taxa are the subsets of a given finite set X: in this case, we will speak
of a (k-)consensus method on X.

To summarize the terminology set-up: “functions” are rules that apply only to
a fixed set of taxa, while “methods” do not have this restriction. The length of an
input profile is not restricted, unless a prefix is added (as in "k-consensus").

Remark 1.2 (Related definitions in the literature). Our use of the term “consen-
sus method” conforms to [5, 6], whereas the term “consensus function on X”
matches [18]. However, the terminology is not completely consistent throughout
the literature: in particular, we remark on some instances where the objects we
introduced in Definition 1.1 appear under different names. In Day and McMor-
ris’ book [8], our k-consensus functions on X and consensus functions on X are
called consensus rules and complete consensus rules, respectively. In addition,
the “supertrees” treated in [19] are analogues of consensus methods where one
does not require the leaf sets of all trees in a profile to coincide.
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1.3. Axiomatic requirements for consensus methods. We now recall some gen-
eral axioms for consensus methods. We follow [6] and call a consensus method
ϕ regular if it satisfies the following three axioms:

(1) Unanimity. The value of ϕ on any profile consisting of a k-fold repetition
of a single tree T is T itself.

(2) Anonymity. Changing the order of the trees in a profile does not affect
the value of ϕ on it.

(3) Neutrality. Changing the labels on the leaves of the trees in a profile
simply relabels the leaves of the consensus tree in the same way.

Furthermore we say that a consensus method ϕ on a set X of taxa is Pareto
on rooted triples if the following condition is satisfied for all Y ⊆ X and all trees
T1, . . . , Tk ∈ RP(X), T ′ ∈ RP(Y):

if T ′ � Ti|Y for all i = 1, . . .k, then T ′ � ϕkX(T1, . . . , Tk)|Y .

An equivalent rephrasing in more colloquial terminology is that any rooted triple
that is displayed by a set of trees must be displayed by their consensus tree as
well.

1.4. Examples. In the following we mention a few consensus methods that have
appeared in the literature, witnessing the existence of methods that do satisfy
several combinations of the above-mentioned properties. In order to describe
them precisely, we will make use of the characterization of trees by means of
hierarchies of clusters, see above. For more examples of consensus methods we
refer to [5, 8, 18]. An overview is given in [5, Figure 2].

A first class of consensus methods determines the hierarchy of clusters of the
consensus tree based on the frequency of appearance of those clusters in the input
trees. Majority rule, which is probably the most widely used consensus method
in practice, returns the tree determined by the hierarchy of all clusters that appear
in more than half of the input trees. Strict consensus returns the tree given by
the clusters that appear in every input tree, while loose consensus returns the
tree defined by the set of all clusters that appear in at least one input tree and are
compatible with the other input trees.

A second type of examples is of recursive nature. The idea is to associate
to each profile of trees P = (T1, · · · , Tk) ∈ RP(X) a partition Π(P) of X whose
blocks will form the maximal clusters of the returned consensus tree. (A block of
a partition is simply one of its elements, that is, a subset of X.) Then, for every
block B of Π(P), one computes the partition Π(P|B) associated with the profile
restricted to B, and so forth recursively. The union of the blocks of all partitions
is then the hierarchy of the consensus tree. Adams consensus [1] defines Π(P)
as the set of nonempty intersections of the maximal clusters of the trees in P. In
Aho consensus [2] (which is called local consensus in [5]) the partition Π(P) is
the set of the connected components of the graph with vertex set X and where a
pair of vertices {a,b} ⊆ X is joined by an edge if there is some c ∈ X for which the
rooted triple defined by the hierarchy {{a,b}, {a}, {b}, {c}} is displayed by all trees
in P.

All these consensus methods are regular. Aho consensus and Adams consen-
sus are Pareto on rooted triples. As we will discuss later on, strict consensus is
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associatively stable (see Definition 2.6), whereas majority consensus, loose con-
sensus, Aho consensus, and Adams consensus are not [6].

2. Results and methodology

2.1. Extension stability. This section focuses on consensus methods that satisfy
the following condition, defined in [19] and meant to encode the fact that a con-
sensus should behave consistently with respect to passing to subsets of taxa.

Definition 2.1. Fix a positive integer k, and let {ϕkY }∅6=Y⊆X be a k-consensus
method on a set X of taxa. This k-consensus method on X is called extension
stable if, for all nonempty subsets Y ⊆ X′ ⊆ X and every profile (T1, . . . , Tk) ∈
RP(X′),

ϕkY(T1|Y , . . . , Tk|Y) � ϕkX′(T1, . . . , Tk)|Y .

A k-consensus method ϕk is extension stable if, for all X, the k-consensus method
{ϕkY }∅6=Y⊆X on X is extension stable. A consensus method ϕ is extension stable if
for all k > 1 the k-consensus method ϕk is extension stable.

One of the main results of [6] is that no regular 2-consensus method is exten-
sion stable. In the same paper, the feasibility of different relaxations of extension
stability was discussed. The first question left open in [6] is about extension sta-
bility under the restriction of the domain of consensus methods to binary trees.
More precisely, fix a set X of taxa and let RBP(X) ⊆ RP(X) denote the subset of
all rooted binary phylogenetic trees – that is, the phylogenetic trees on X where
every internal vertex has exactly two children.

Definition 2.2. A k-consensus method ϕk∗ on X (resp. k-consensus method ϕk,
consensus method ϕ) is extension stable on binary trees if the method obtained
by restricting each ϕk∗ (resp. ϕk, ϕ) to the set of binary phylogenetic trees is
extension stable (in the sense of Definition 2.1, replacing RP(X′) with RBP(X′)).

Question 2.3 ([6]). Is there a regular consensus method that is extension stable
on binary trees?

Theorem 2.4. There is no regular extension stable k-consensus method among profiles
of binary trees on more than 4 taxa, for any even profile size k. In particular, there is no
regular and extension stable consensus method on profiles of binary trees.

The gist of the proof is a verification by means of a computer program that
there is no extension stable 2-consensus method on sets of 5 taxa. We will give
the details of the computation in the Appendix. The sufficiency of this verification
depends on the following, easily checked fact.

Remark 2.5. For every positive even integer k, any k-consensus function ϕkX on a
set X of taxa induces a 2-consensus function ϕ2

X on X by setting

ϕ2
X(T1, T2) := ϕ

k
X(T1, . . . , T1︸ ︷︷ ︸
k/2 times

, T2, . . . , T2︸ ︷︷ ︸
k/2 times

).

Regularity and extension stability of ϕkX are inherited by ϕ2
X.
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2.2. Associative stability.

Definition 2.6 ([6]). Let ϕ denote a consensus method on a set of taxa X. We
say that ϕ is associatively stable if the following equality is satisfied for all
T1, . . . , Tk ∈ RP(X):

ϕkX(T1, . . . , Tk) = ϕ2
X(ϕ

k−1
X (T1, . . . , Tk−1), Tk).

In [6] it is noted that Adams consensus is associatively stable when restricted
to trees of height 2, but not for trees of height 4, and that Aho consensus is not
associatively stable even for trees of height 2. (The height of a rooted tree is the
maximum distance between the root and any leaf.) On the other hand, associative
stability is satisfied by some elementary methods such as strict consensus, which,
however, fails to be Pareto on rooted triples. This motivates the following.

Question 2.7 ([6]). Is there a regular consensus method that satisfies associative
stability and is Pareto on rooted triples?

Theorem 2.8. There exists no regular, associatively stable consensus method that is
Pareto on rooted triples.

As was already remarked in [6], if ϕ is a regular and associatively stable con-
sensus method on a set of taxa X, then ϕ2

X is a commutative, idempotent and
associative binary operation on RP(X). Thus it is enough to prove that such a
binary operation does not exist.

Lemma 2.9. There exists no regular, associative 2-consensus function which is Pareto on
rooted triples for any set of 5 or more taxa.

Remark 2.10. The only regular and associatively stable consensus method on 3 and
4 taxa, which is Pareto on rooted triples, is Adams consensus. This is discussed
in the Appendix.

The proof of Lemma 2.9 rests on a computational check of the case of 5 taxa
(see Appendix). From there, the full generality follows via the following lemma.

Lemma 2.11. Fix a positive integer k and a set of taxa X. Every regular k-consensus
function on X which is Pareto on rooted triples and associatively stable induces a k-
consensus function on every subset of X which is also regular, Pareto on rooted triples,
and associatively stable.

Proof. Fix a subset Y ⊆ X and an enumeration x1, . . . , xl of the set X \ Y. Given
any tree T ∈ RP(Y), define a tree TX ∈ RP(X) as in Figure 2. Notice that, for all
T1, T2 ∈ RP(Y),

TX1 = TX2 if and only if T1 = T2. (1)
Now, given a consensus method ϕ on X we can define a consensus method ψY
on Y by setting, for every positive integer k,

ψkY(T1, . . . , Tk) := ϕkX(T
X
1 , . . . , TXk )|Y .

We immediately observe that regularity of ϕ implies regularity of ψ. If ϕkX is
Pareto on rooted triples, then

ϕkX(T
X
1 , . . . , TXk ) = (ψkY(T1, . . . , Tk))X.
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TX :=

x1

T

. . .

. . .

xl

Figure 2.

If in addition ϕ is associatively stable, we can use this equation in order to write,
for every T1, . . . , Tk ∈ RP(Y),

ψ2
Y(ψ

k−1
Y (T1, . . . , Tk−1), Tk)X = ϕ2

X(ψ
k−1
Y (T1, . . . , Tk−1)

X, TXk )

= ϕ2
X(ϕ

k−1
X (TX1 , . . . , TXk−1), T

X
k )

= ϕkX(T
X
1 , . . . , TXk ) = ψ

k
Y(T1, . . . , Tk)X.

In view of Equation (1), this proves associative stability of ψ. �

3. Concluding discussion

We have answered the two main questions left open in [6], about extension sta-
bility and associative stability of consensus methods on phylogenetic trees. On
the one hand, we have proved that, under widely accepted regularity require-
ments, there cannot exist any consensus method that is stable under addition of
taxa, even when the input trees are required to be binary (Theorem 2.4). We thus
strengthen the result of Bryant, Francis and Steel. The meaning of this theorem
is that, no matter which method is used in order to extract a consensus from a
profile of binary trees, the branching structure in the consensus tree is not guar-
anteed to hold once the set of available taxa is enlarged – even if the “augmented”
input trees agree with the original profile when restricted to the previously avail-
able taxa. Our other main result, Theorem 2.8, states that there is no associatively
stable consensus method that satisfies some common regularity and Pareto-type
properties. This means that, when enlarging the set of trees from which consen-
sus is extracted, it may not be enough to compute the consensus between the
new trees and the “old” consensus tree, and thus one is forced to carry out the
computation anew, starting from the complete profile of trees. In fact, as pointed
out in [6], there do exist consensus methods that satisfy associative stability: such
methods however fail to simultaneously possess both basic regularity and Pareto
properties. In this light, our result can be interpreted by saying that those basic
properties are intrinsically complex – and, in particular, the substantial compu-
tational advantage that is granted by associative stability is “too much to hope
for”.

We note that our considerations about rooted phylogenetic trees have impli-
cations for other types of data structures. First, our impossibility results apply
also to consensus among unrooted trees, see for example [14, Section 3.17] for the
relevance of this case. Given a profile of rooted trees, one can consider a profile
of unrooted trees obtained from the former by appending a "special leaf" to the
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root of all trees in the rooted profile. From any regular (and stable) consensus
tree among the unrooted trees we can then extract a regular (and stable) consen-
sus tree for the rooted profile by deleting the special leaf. Thus, no regular and
(extension- or associatively) stable consensus method can exist for unrooted trees
on more than 6 leaves. Moreover, supertree consensus is a generalization of tree
consensus, hence any claim of non-existence of tree-consensus functions implies
in particular the same claim for supertree consensus.

As was also remarked in [6], such negative results are valuable inasmuch as
they uncover the intrinsic limitations of certain approaches, thus helping direct
future research towards feasible paths. We suggest four such possible directions
of further research.

1. Prompted by discussions with researchers at the Swiss Institute of Bioin-
formatics, we propose to consider single splits as the basic features of
phylogenetic trees, instead of rooted triples. A split in a (rooted) tree is a
bipartition of the taxa that is obtained by deleting an edge of the tree.
Q. Are there regular consensus methods on phylogenetic trees that are
Pareto-optimal with respect to single splits and satisfy extension stability
(with respect to single splits) or associative stability?

2. Another way forward may involve relaxing the constraint on the data
structures outputted by consensus methods. The minimum hybridization
network associated with a profile of trees is a rooted phylogenetic network
that “minimally deviates from being a tree” among those displaying all
trees in the profile. We refer to [14, Section 11.5] for a precise description,
and only mention here that the deviation from a true tree form is mea-
sured by the number h of reticulations of the resulting network. Trees
have no reticulation, that is, h = 0.

Now notice that a hybridization network displays every triple that is
displayed by any input tree. By contracting some edges on this network
we can decrease reticulation, coming closer to a tree-network, at the cost
of having to “take a stance” by resolving some rooted triples. Our results
show that certain regularity, Pareto and stability conditions cannot be sat-
isfied by a tree (that is, a non-reticulated network). It is natural to ask
how reticulated consensus networks need to be, in order to behave in a
stable fashion.
Q. Find a bound on the required number of reticulations of a regular,
extension stable consensus network (for example, as a function of the
number of leaves of the trees of the input profile).

3. Since performing inference often leads to a collection of different phylo-
genetic trees for the set of taxa under investigation, consensus methods
are mostly applied to aggregate the given data in this context [14]. Hence
both the extension of consensus methods towards reasonable choices of
random variables as well as their axiomatic limitations are an interesting
avenue for future research. We have only considered deterministic con-
sensus methods (cf. Definition 1.1), and thus our impossibility results do
not apply to probabilistic consensus methods such as greedy consensus,
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see for example [9]. In particular we leave it as an interesting question to
determine whether there exist probabilistic consensus methods satisfying
(probabilistic) analogues of Pareto and stability properties.

4. Our methods combine theoretical reductions with explicit computations,
and are in principle adaptable to explore other stability conditions that
appeared in the literature, for instance in [4]. Even if such conditions are
sometimes dependent on each other (for example, our Theorem 2.4 im-
plies incompatibility of condition (I6) in [4] with regularity assumptions,
even for binary trees), this approach is in its essence case-by-case. From a
systematic point of view, we believe that it would be interesting to shed
more light on general conceptual or structural obstructions to the exis-
tence of consensus methods with given properties. A possible instance of
work in this direction is the following. Recall that an associatively stable
regular consensus method is equivalent to a partial order on the set of in-
puts (for example, phylogenetic trees on n taxa) that is a meet-semilattice
[12, Chapter 1, p. 7] and equivariant with respect to the action on the
permutation group Sn on the labels of taxa. The existence of such a con-
sensus method that is Pareto on rooted triples is then equivalent to the
existence of a (Sn-equivariant) meet-semilattice structure ∨? on the set of
phylogenetic trees such that, for all trees T1, T2,

F(T1 ∨? T2) > F(T1)∨ F(T2) (2)

where F : RP(X) →
∏
A⊆[n],|A|=3 RP(A) is the canonical function that

associates with a tree T the set of rooted triples (T |A)A⊆[n],|A|=3, and 6
is the natural partial order (resp. ∨ the meet operation) in the codomain
of F. In fact, if |A| = 3, RP(A) has a natural semilattice structure (the only
one on four elements that is not a lattice and not a chain) and this defines
naturally a “product” semilattice structure on

∏
A⊆[n],|A|=3 RT(A), see

for example [17, Chapter 3].
Q. Find obstructions to the existence of an Sn-equivariant meet-semilattice
structure on RP(X) that satisfies Equation 2.

Appendix A. Proofs

In this appendix, we describe the computer programs used to prove Theorem
2.4 and Lemma 2.9. Source code is freely available online, see [10]. We will make
use of standard terminology from group theory (see for example [16]). When
discussing associative stability, we will also make use of standard terminology
from the theory of partially ordered sets (see for example [7]).

Given a finite set X, let us denote by S(X) the symmetric group on X. Then
S(X) acts naturally on the set RP(X), by permuting the labels of the leaves. Given
a permutation σ ∈ S(X) and a tree T ∈ RP(X), we write σ(T) for the tree obtained
from T by permuting the labels of the leaves according to σ. In particular, this
induces an action of the symmetric group on the set RBP(X) of rooted binary
phylogenetic trees. The neutrality axiom can be restated by saying that the k-
consensus functions ϕkX : RP(X)

k → RP(X) should be equivariant with respect to
the action of S(X).
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A.1. Extension stability on binary trees. As was discussed just after the Theo-
rem’s statement, in order to prove Theorem 2.4 it is enough to check that there is
no extension stable 2-consensus method among profiles of binary trees on a set X
of 5 taxa. Since there is only a finite number of consensus methods on X, it is pos-
sible (at least in principle) to check every such consensus method by means of a
computer program. The number of 2-consensus functions ϕ2

X : RBP(X)
2 → RP(X)

is, however, intractably large already for a set X of cardinality 5. In order to ob-
tain an answer in a reasonable amount of time, we formulate our problem in the
context of integer linear programming (see [15]).

Consider the following set T of triples of phylogenetic trees:

T = {(T , T1, T2) ∈ RP(Y)× RBP(Y)× RBP(Y) | Y ⊆ X}.

For every triple (T , T1, T2) ∈ T, we introduce a boolean variable mT ,T1,T2 ∈ {0, 1}.
Denote by M the set of all these boolean variables. A 2-consensus method ϕ on
X (restricted to profiles of binary trees) corresponds to the following assignment
of the variables in M:

mT ,T1,T2 =

{
1 if ϕ(T1, T2) = T ;
0 otherwise.

Conversely, an assignment of the variables in M yields a 2-consensus method
on X (restricted to binary trees), provided that the following linear relations are
satisfied: ∑

T∈RP(Y)
mT ,T1,T2 = 1 for all T1, T2 ∈ RBP(Y), for all Y ⊆ X.

Our aim is now to enforce all the requirements for our consensus method by
means of linear equalities or inequalities involving the variables in M.

(1) Unanimity is equivalent to the following set of direct assignments:

mT ,T ,T = 1 for all T ∈ RBP(Y), for all Y ⊆ X.

(2) Anonymity is enforced as follows:

mT ,T1,T2 = mT ,T2,T1 for all (T , T1, T2) ∈ T.

(3) Neutrality is given by:

mT ,T1,T2 = mσ(T),σ(T1),σ(T2) for all (T , T1, T2) ∈ T, for all σ ∈ S(X).

(4) Extension stability is slightly more complicated to encode. Consider any
triple (T , T1, T2) ∈ T, and let Y be the set of leaves of T . For every subset
Z ( Y, and for every tree T ′ ∈ RP(Z) such that T ′ 6� T |Z, we require that

mT ,T1,T2 +mT ′,T1|Z,T2|Z
6 1.

The reason is that, if mT ,T1,T2 = mT ′,T1|Z,T2|Z
= 1, then

ϕ(T1|Z, T2|Z) = T
′ 6� T |Z = ϕ(T1, T2)|Z

which violates extension stability. Conversely, a violation of extension
stability translates into having mT ,T1,T2 = mT ′,T1|Z,T2|Z

= 1 for some trees
T , T ′, T1, T2 with T ′ 6� T |Z.
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Remark A.1. In a practical implementation, the equalities given in (1), (2), and (3)
can be used to greatly reduce the number of variables involved in the model. In-
deed, instead of using one boolean variablemT ,T1,T2 for every triple (T , T1, T2) ∈ T,
we use one variable for every orbit [T , T1, T2] ∈ T / (S(X) ×Z2). Here the ac-
tion of S(X)×Z2 on T is as follows: a permutation σ ∈ S(X) maps (T , T1, T2) to
(σ(T),σ(T1),σ(T2)); the generator of Z2 maps (T , T1, T2) to (T , T2, T1). From a prac-
tical point of view, this means that we choose a representative for each orbit, and
rewrite all the linear constraints in terms of variables mT ,T1,T2 where (T , T1, T2) is
the representative of its orbit. In addition, thanks to (1), we can remove all the
variables of the form mT ,T ′,T ′ for T 6= T ′, because their value must be 0. The opti-
mizations described here are essential, in order to make the number of variables
tractable.

After optimizations, we obtain a model consisting of 11,688 boolean variables.
We use the solver Gurobi [13] to check that there exists no assignment of the
variables that satisfies all the previous constraints. Our program runs in approx-
imately 4 minutes on a laptop with an Intel Core i7 processor (8× 2.80 GHz) and
16 GB of RAM. This running time includes both the computation of the model
and the proof of infeasibility.

A.2. Associative stability. Again as discussed after the Theorem’s statement, in
order to prove Theorem 2.8 it is sufficient to show that there exists no regular
associative 2-consensus function on a set X of 5 taxa which is Pareto on rooted
triples. Just as in the case of extension stability, we formulate our problem in the
context of integer linear programming.

The set of triples that we need to consider is simply T = RP(X)3 in this case.
For every triple (T , T1, T2) ∈ T, we introduce a boolean variable mT ,T1,T2 ∈ {0, 1}
with the same meaning as in the previous section. Again, denote by M the set of
all these boolean variables.

As before, we need to express the fact that to every input (T1, T2) corresponds
a unique output T . We ensure this by requiring the following linear relations to
be satisfied: ∑

T∈RP(X)
mT ,T1,T2 = 1 for all T1, T2 ∈ RP(X).

Assignments of the variables in M satisfying the previous relations are in one-to-
one correspondence with 2-consensus functions ϕ2

X : RP(X)
2 → RP(X).

Unanimity, anonymity, and associative stability of ϕ2
X, are equivalent to RP(X)

being endowed with a partial order relation 6 (not to be confused with the pre-
viously defined �), such that every pair of trees T1, T2 ∈ RP(X) has a unique
greatest lower bound, given precisely by the tree ϕ2

X(T1, T2), see [12, Chapter 1,
p. 7]. Notice that, in particular, T1 6 T2 if and only if ϕ2

X(T1, T2) = T1. The validity
of the latter expression is represented by the value of the variable mT1,T1,T2 ; this
leads us to introduce new variables

pT1,T2 := mT1,T1,T2 for T1, T2 ∈ RP(X),
11



with the following meaning:

pT1,T2 =

{
1 if T1 6 T2;
0 otherwise.

Notice that the variables pT1,T2 are simply aliases for some variables in M.
We are now ready to translate all requirements for our consensus function into

linear constraints.

(1) Reflexive property of the partial order 6:

pT ,T = 1 for all T ∈ RP(X).

Notice that this set of assignments is equivalent to unanimity.
(2) Antisymmetric property of the partial order 6:

pT1,T2 + pT2,T1 6 1 for all T1, T2 ∈ RP(X) with T1 6= T2.

(3) Transitive property of the partial order 6:

pT1,T3 > pT1,T2 + pT2,T3 − 1 for all T1, T2, T3 ∈ RP(X).

(4) The tree ϕ2
X(T1, T2) must be a lower bound of T1 and T2:

pT ,T1 > mT ,T1,T2 and pT ,T2 > mT ,T1,T2 for all T , T1, T2 ∈ RP(X).

(5) The tree ϕ2
X(T1, T2) must be greater than every lower bound of T1 and T2:

mT ,T1,T2 + pT ′,T1 + pT ′,T2 6 pT ′,T + 2 for all T , T ′, T1, T2 ∈ RP(X).

Indeed, the only way to violate this constraint is to set mT ,T1,T2 = 1 (that
is, ϕ2

X(T1, T2) = T ), pT ′,T1 = pT ′,T2 = 1 (that is, T ′ is a lower bound of T1
and T2), and pT ′,T = 0 (that is, T ′ 66 T ).

(6) Neutrality:

mT ,T1,T2 = mσ(T),σ(T1),σ(T2) for all T , T1, T2 ∈ RP(X).

(7) Pareto property on rooted triples:

mT ,T1,T2 = 0 if T1|Y = T2|Y 6� T |Y for some Y ⊆ X with |Y| = 3.

Remark A.2. As for extension stability, in our actual implementation we signifi-
cantly reduce the number of variables. First, we only use one variable mT ,T1,T2

for every orbit with respect to the action of S(X)×Z2, as described in Remark
A.1. We also discard the variables of the form mT ,T ′,T ′ with T 6= T ′, because their
value must be 0. A further observation is that T 6< σ(T) for every T ∈ RP(X) and
σ ∈ S(X): in fact, if T < σ(T), then using neutrality we obtain the contradiction

T < σ(T) < σ(σ(T)) < · · · < σk(T) = T ,

where k is the order of σ. Therefore we can discard all the variables mT ,T1,T2

where T is in the same S(X)-orbit of T1 (respectively T2) and T 6= T1 (respectively
T 6= T2), because their value must be 0 (recall that, if mT ,T1,T2 = 1, then T 6 T1
and T 6 T2). Finally, we can discard in advance all the variables appearing in (7),
because their value is 0.

12



With the optimizations described above, we end up with a model having 15,878
boolean variables. As for extension stability, we use Gurobi [13] to check that
there is no assignment of the variables in M for which all the previous constraints
are satisfied. Our program runs in approximately 8 minutes on a laptop with an
Intel Core i7 processor (8× 2.80 GHz) and 16 GB of RAM.

Appendix B. Consensus methods on small sets of taxa

For every set X of at most 4 taxa there is a unique regular associative consensus
function on X that is Pareto on rooted triples, namely Adams consensus. This
can be checked using a variant of the program described in the Appendix. The
corresponding partial order relation 6 discussed earlier is represented in Figures
3 and 4, for X = {1, 2, 3} and X = {1, 2, 3, 4} respectively.

Notice that Adams consensus on a set X of (at most) 4 taxa also satisfies ex-
tension stability, not only on binary trees, see [6]. However, it is not the only
consensus method on X which satisfies extension stability on binary trees.
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1 2 3

1 2 3 1 3 2 2 3 1

Figure 3. Partial order 6 associated with Adams consensus, for
X = {1, 2, 3}. The consensus tree of T1 and T2 is the highest com-
mon descendant of T1 and T2.

1 2 3 4

1 2 3 4 1 3 2 4 1 4 2 3 2 3 1 4 2 4 1 3 3 4 1 2

1 2 3 4 1 2 4 3 1 3 4 2 2 3 4 11 2 3 41 3 2 4 1 4 2 3

x y z 4 x y z 3 x y z 2 x y z 1

Figure 4. Partial order 6 associated with Adams consensus, for
X = {1, 2, 3, 4}. Each of the four elements on the top represents
three different trees, obtained by choosing the values of x,y, z in
all possible ways.
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