
Received: 7 February 2022 Revised: 20 February 2023 Accepted: 21 March 2023 Published on: 24 April 2023

DOI: 10.1002/qj.4450

RE S EARCH ART I C L E

Supervised machine learning to estimate instabilities
in chaotic systems: Estimation of local Lyapunov exponents

Daniel Ayers1,2 Jack Lau3 Javier Amezcua1,4 Alberto Carrassi1,5

Varun Ojha3,6

1Department of Meteorology, University
of Reading, Reading, UK
2National Centre for Earth Observation,
Reading, UK
3Department of Computer Science,
University of Reading, Reading, UK
4School of Science and Engineering,
Tecnológico de Monterrey, Mexico City,
Mexico
5Department of Physics and Astronomy
“Augusto Righi”, University of Bologna,
Bologna, Italy
6School of Computing, Newcastle
University, Newcastle upon Tyne, UK

Correspondence
Daniel Ayers, Department of Meteorology,
University of Reading, Reading, UK.
Email: d.ayers@pgr.reading.ac.uk

Funding information
Engineering and Physical Sciences
Research Council, Grant/Award Number:
EP/N509723/1; National Centre for Earth
Observation, Grant/Award Number:
NCEO02004; Schmidt Futures,
Grant/Award Number: 353

Abstract
In chaotic dynamical systems such as the weather, prediction errors grow faster
in some situations than in others. Real-time knowledge about the error growth
could enable strategies to adjust the modelling and forecasting infrastructure
on the fly to increase accuracy and/or reduce computation time. For example,
one could change the ensemble size, the distribution and type of target obser-
vations, and so forth. Local Lyapunov exponents are known indicators of the
rate at which very small prediction errors grow over a finite time interval. How-
ever, their computation is very expensive: it requires maintaining and evolving a
tangent linear model, orthogonalisation algorithms and storing large matrices.
In this feasibility study, we investigate the accuracy of supervisedmachine learn-
ing in estimating the current local Lyapunov exponents, from input of current
and recent time steps of the system trajectory, as an alternative to the classical
method. Thus machine learning is not used here to emulate a physical model
or some of its components, but “nonintrusively” as a complementary tool. We
test four popular supervised learning algorithms: regression trees, multilayer
perceptrons, convolutional neural networks, and long short-term memory net-
works. Experiments are conducted on two low-dimensional chaotic systems
of ordinary differential equations, the Rössler and Lorenz 63 models. We find
that on average the machine learning algorithms predict the stable local Lya-
punov exponent accurately, the unstable exponent reasonably accurately, and
the neutral exponent only somewhat accurately.We show that greater prediction
accuracy is associated with local homogeneity of the local Lyapunov exponents
on the system attractor. Importantly, the situations in which (forecast) errors
grow fastest are not necessarily the same as those in which it is more difficult to
predict local Lyapunov exponents with machine learning.
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1 INTRODUCTION

Weather and climate are well-known exemplars of chaotic
dynamical systems. These systems exhibit extreme
sensitivity to initial conditions, meaning that initial
condition errors are subject to (on average) exponen-
tial growth until they reach saturation (Lorenz, 1963;
Kalnay, 2002). The rate and characteristics of such growth,
however, are highly state dependent (Lighthill et al., 1986;
Vannitsem, 2017). As a consequence, although chaotic sys-
tems have a finite predictability horizon (about two weeks
for the atmosphere: see, e.g., Holton and Hakim, 2013),
the best estimate of prediction-error growth fluctuates
in size along with the system’s evolution, as the system
goes through periods of lower or higher predictability.
For example, the short-term predictability of the atmo-
sphere depends on the weather regime present at a given
time (see, e.g. Palmer, 1996). Understanding the nature of
error growth is essential to characterising a system, and to
enable better prediction. The present work is motivated by
the idea that, if the degree of predictability of the system
is known in real time, it may be possible and beneficial
to take adaptive measures. For instance, we speculate
that a local decrease of predictability might be counter-
acted by increasing the ensemble size in the context of
ensemble-based data assimilation or probabilistic fore-
casting, or the distribution and type of target observations.
Conversely, in areas of high predictability, one might save
computational resources (and thus energy consumption)
via the opposite actions. Understanding the impact of
such actions would require experimentation. In this study
we investigate the potential of machine learning (ML)
methods (Bishop, 1995; Hastie et al., 2009) to provide a
real-time estimation of the system’s local predictability.

The mathematical theory of dynamical systems has
long been the backbone to understanding and quantify-
ing predictability in deterministic chaotic systems. This is
commonly done by studying the instability properties of
the solution, that is, by analysing the linearised dynamics
of small perturbations: the tangent space evolution of these
“small” perturbations is taken as proxy of the dynamics of
unknown initial condition errors (Ott, 2002). In this con-
text, Lyapunov exponents (LEs) are well-established quan-
tities that measure the asymptotic rates of error growth for
a set of infinitesimally small errors that capture all direc-
tions of phase space (Pikovsky and Politi, 2016). In prac-
tice, theymeasure the average growth of small finite errors
over long periods of time. The spectrumof LEs is character-
istic of each given dynamical system. Lyapunov exponents,
and their corresponding Lyapunov vectors (LVs), have
been exploited in geosciences for more efficient uncer-
tainty quantification in data assimilation (e.g., Palatella
et al., 2013; Quinn et al., 2020; Albarakati et al., 2021;

Carrassi et al., 2022), or for initialising probabilistic predic-
tions (e.g., Toth andKalnay, 1997; Buizza, 2019; Vannitsem
and Duan, 2020). The LE spectrum can also be used to cal-
culate other characteristic properties of a system, such as
the Kolmogorov–Sinai entropy, which measures the rate
of information loss (Sinai, 2009), or the Kaplan–Yorke
attractor dimension (Kaplan and Yorke, 1979).

We note that LEs are associated with directions known
as covariant Lyapunov vectors (CLVs). CLVs also provide
useful information and can be calculated numerically (see
Ginelli et al., 2007; Wolfe and Samelson, 2007; Froyland
et al., 2013). However, in this work we focus on the expo-
nents only.

The LEs are calculated as an average of finite-time
Lyapunov exponents, which are here referred to as local
Lyapunov exponents (LLEs: (Benettin et al., 1980a; Benet-
tin et al., 1980b; Kuptsov and Parlitz, 2012). Whereas LEs
provide “global” information about the average growth
of small perturbations in the system, the LLEs describe
“local” growth rates along a finite-time section of the tra-
jectory. Notably, the LLEs show the heterogeneity of the
instabilities in phase space: the fluctuation of the local
dynamical stability around the asymptotic value as the sys-
tem state varies (Sandri, 1996; Pikovsky and Politi, 2016).
This makes the LLEs ideal quantities to measure the local
degree of predictability, yet a bottleneck for their real-time
use in operational scenarios is the huge computational
cost. Computational cost grows quickly with the system’s
dimension, making it prohibitive even for moderate-size
models, let alone for models as large as those currently
used in numerical weather predictions ((109) dimen-
sions). Using the standard method (Benettin et al., 1980a;
Benettin et al., 1980b; Kuptsov and Parlitz, 2012; Pikovsky
and Politi, 2016), calculating the LLEs and LEs involves
computing a long trajectory of the system (including a
spin-up needed to ensure the solution has reached the
model attractor), propagating perturbations (as many as
the number of desired LLEs)with the tangent linearmodel
(i.e., the resolvent of themodel Jacobian), and then repeat-
edly performing a process of orthogonalisation (e.g., using
a QR decomposition algorithm).

Despite the computational bottleneck, Lyapunov
methods (i.e., computing the local and global LE spec-
trum and aforementioned associated properties or
the Lyapunov vectors) have been used for dynamical
analysis of geophysical models of intermediate order
((103) – (105) variables): for example, see Vannitsem
and Lucarini (2016), Vannitsem (2017), and De Cruz
et al. (2018). Additionally, Lyapunov methods have been
applied to weather reanalysis data to analyse the dynamics
of the North Atlantic Oscillation (Quinn et al., 2021) and
of persistent states of atmospheric pressure over the Euro-
pean and western Asian continents (Quinn et al., 2022). In
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these works, the bottleneck was overcome by reducing the
data dimension (using empirical orthogonal functions)
and constructing a reduced model. Whilst these works
demonstrate the utility of Lyapunov methods, they do not
provide a means of calculating LLEs that is cheap enough
to be carried out regularly during a forecasting cycle.

Avoiding the need for such a costly computation
whilst attaining an estimate of the LEs or LLEs thus has
great relevance. In their recent work, Chen et al. (2021)
show how the outcomes of properly tuned data assimi-
lation experiments can reveal the first LE as well as the
Kolmogorov–Sinai entropy of the underlying dynamical
model. The present work also seeks to avoid the cost of
classical calculation methods, albeit only when time is
critical. We investigate the feasibility of using certain ML
methods (Bishop, 1995; Hastie et al., 2009) to estimate the
LLEs based only on information from the system’s solu-
tion.Our focus is on supervised learning,which uses a data
set of input–output pairs. The targets, that is, the desired
outputs, are LLEs calculated using the classical method of
evolving perturbations via the tangent linear model and
orthogonalising. In this way, the cost of such methods is
paid during the training phase of the ML method, and is
avoided when making predictions.

In the area of weather and climate forecasting, super-
vised learning has been used for various purposes (see
e.g., Reichstein et al., 2019; Rasp et al., 2020; Chantry
et al., 2021; Düben et al., 2021, and references therein).
These include (i) emulating the full dynamics of a system
(Pathak et al., 2017; Fablet et al., 2018; Pathak et al., 2018;
Nguyen et al., 2019; Brajard et al., 2020; Patel et al., 2021;
Schultz et al., 2021; Sonnewald et al., 2021) and (ii) improv-
ing a physics-based model with data-driven correction
or parameterisation (O’Gorman and Dwyer, 2018; Rasp
et al., 2018; Bolton and Zanna, 2019; Bonavita and Laloy-
aux, 2020; Rasp, 2020; Brajard et al., 2021; Gottwald and
Reich, 2021; Nguyen et al., 2021). Both approaches imply
an intervention in the original model: the first approach
yields surrogate data-drivenmodels of the full original sys-
tem, while the second approach builds hybridmodels with
data-driven and physics-based components. In either case
the spectrum of the LEs of these new models can be com-
puted using the standard approach (Benettin et al., 1980a;
Benettin et al., 1980b; Kuptsov and Parlitz, 2012) and can
be compared with that of the original model as a way to
quantify the goodness of the ML-reconstructed dynamics
(Pathak et al., 2017; Brajard et al., 2020).

In contrast to these two families of methods, this study
aims towards improving prediction skills by equipping the
model with an external tool to quantify the local degree of
predictability in real time, and thus guide “nonintrusive”
adaptations, whereby the model equations are left unal-
tered. More specifically, the goal is to use ML to predict

the current LLE spectrum given the input of the system
state at the current and (possibly) most recent time steps.
We envisage that the trained ML algorithm could then
be interrogated for information about the local dynam-
ical instability whilst performing the numerical model
forward integration. We speculate that such information
could drive a decision process for adaptive modelling: for
example, adjusting the ensemble size when performing
ensemble-based data assimilation or probabilistic predic-
tions, changing the distribution and type of target obser-
vations, or adapting the numerical integration scheme.
Such adaptations could mitigate error, improve uncer-
tainty quantification, or reduce computational cost.

In this feasibility study, we test the accuracy of some
popular supervised ML algorithms in this task in two
prototypical low-dimensional chaotic dynamical systems.
This study is concerned solely with the predictive capa-
bility of ML methods: the task of optimising the compu-
tational cost of making predictions is left for future work.
We anticipate that the latter task will be largely depen-
dent on the specific use case and computing hardware. The
ML algorithms we test are regression trees (RTs: Breiman
et al., 1984), multilayer perceptrons (MLPs: e.g. see Good-
fellow et al., 2016, Chapter 6), convolutional neural net-
works (CNNs: LeCun et al., 1989), and long short-term
memory networks (LSTMs: Hochreiter and Schmidhu-
ber, 1997; Graves, 2012). These algorithms encompass
three approaches to exploiting the temporal structure of
the input. We evaluate both their pointwise accuracy and
their statistical performance, measured in this case by the
closeness of the distribution of predictions to the distri-
bution of the target values. We find that on average the
machine learning algorithms predict the stable local Lya-
punov exponent accurately, the unstable exponent reason-
ably accurately, and the neutral exponent only somewhat
accurately. Each exponent is predicted more accurately in
the Lorenz 63 system than in the Rössler system .We show
that greater prediction accuracy is associated with local
homogeneity of the local Lyapunov exponents on the sys-
tem attractor. Importantly, the situations in which (fore-
cast) errors grow fastest are not necessarily the same as
those inwhich it ismore difficult to predict local Lyapunov
exponents with machine learning.

The rest of this article is organised as follows. In
Section 2, we briefly review the theory of LEs and detail the
method used to compute them. In Section 3, we pose and
conceptualise the ML problem we intend to solve, moti-
vate the choice of algorithms, and detail the input and
target data and the evaluation metrics. In Section 4, we
present the two systems under consideration: the Rössler
and Lorenz 63 models, and discuss the characteristics of
their Lyapunov spectra. In Section 5 we present the results
and Section 6 concludes with a discussion.
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2 LYAPUNOV EXPONENTS

2.1 Overview of the theory

We review briefly the theory of LEs, with the aim of
providing an intuitive explanation of what they are.
The section follows Legras and Vautard (1996), Benettin
et al. (1980a); Benettin et al. (1980b), Kuptsov and Par-
litz (2012), Pikovsky and Politi (2016) and Strogatz, 2018,
Chapter 9, Section 3, to which we refer the reader for a
more rigorous and comprehensive treatment.

Consider a deterministic autonomous dynamical
system

ẋ = g(x), (1)

where x ∈ Rn is the state of the system, g ∶ Rn → Rn is the
evolution function, and ẋ denotes the derivative of x with
respect to time. A trajectory of the dynamical system start-
ing at initial condition x(0) is a set {x(t) ∶ t ∈ A}, where
A is a connected subset of R≥0 containing 0. Consider
the difference v(t) between a trajectory started from the
“true” initial condition x(0) and a trajectory started from
the perturbed initial condition x(0) + v(0), where v(0) is
infinitesimally small. The idea behind LEs is to find 𝜆(t),
where

et𝜆(t) = ||v (t)||
||v (0)||

(2a)

⇔ 𝜆(t) = t−1 ln
(
||v (t)||
||v (0)||

)

. (2b)

In other words, 𝜆(t) is the exponential growth rate of the
initial error. In this setting, 𝜆(t) is specific to the initial
condition x(0) and perturbation v(0), and 𝜆(t) varies with
time.

Lyapunov exponents generalise this notion to describe
(a) average exponential growth rates of the system, regard-
less of the initial condition and (b) the exponential growth
rates for infinitesimal perturbations in all directions. To
account for all directions, we consider perturbations con-
tained in an n-sphere of infinitesimal radius. As time pro-
gresses, perturbations within the sphere are mapped into
an ellipsoid. The LEs are the time average of the exponen-
tial growth rate of the ratios between the axes of the sphere
and ellipsoid (Legras and Vautard, 1996).

Fix an initial condition x(0) and let v(0) be an infinites-
imally small perturbation, as above. Then the dynamics of
the perturbation are given by

v̇ = Jg v , (3)

where Jg is the Jacobian of g evaluated at x(t), that is, the
linearisation of the evolution function at x(t). The solu-
tions to Equation 3 can be found using a fundamental
matrix, that is, any matrix-valued functionM(t) satisfying

̇M = JgM, (4)

such thatM(t) is nonsingular for all t. Focusing on a single
perturbation, it follows from Equation 2a that

e𝜆(t) =
(
||v(t)||
||v(0)||

)1∕t

=

(√
v(0)TM(t)TM(t)v(0)

√
v(0)Tv(0)

)1∕t

. (5)

We are interested in the value of𝜆(t) as t → ∞. Rearranging
Equation 5 and taking the limit, we have

𝜆 = lim
t→∞

ln
[(
v(0)TM(t)TM(t)v(0)

)1∕(2t)
]

. (6)

For almost all choices of v(0), the 𝜆 given by Equation 6
is the largest LE.

We consider now the full spectra of LEs 𝜆i(t),
i = 1, … ,n that arise when one considers a sphere of
perturbations. The growth of a sphere of perturbations
depends only on M(t)TM(t). Thus we consider the limit
W(x(0)) defined by

W(x(0)) = lim
t→∞

[
M(t)TM(t)

]1∕(2t)
. (7)

By the multiplicative ergodic theorem (Oseledets, 1968;
Ruelle, 1979), the limit exists, depends on the initial con-
dition x (0), and, importantly, the eigendecomposition of
M(t)TM(t) in the limit exists, which gives

W(x(0)) = P(x(0))DP T(x(0)), (8)

where the eigenvector matrix P(x (0)) is orthonormal. The
matrix of eigenvalues D is unique and depends neither on
x(0) nor on the norm of the vector space containing the
perturbations (Kuptsov and Parlitz, 2012). The LEs, 𝜆1 ≥
𝜆2 ≥ … ≥ 𝜆n, are the natural logarithm of the diagonal
elements of D.

We finish with some remarks on the significance of
LEs. A chaotic system is a system with at least one posi-
tive LE. The LEs, defined above in terms of the growth of
axes of a sphere of perturbations, are linked to the growth
of the volume of the n-parallelepiped defined by the prin-
ciple axes of the resulting ellipsoid (see Wolf et al., 1985).
Also, the sum of the LEs is equal to the average divergence
of the flow (see Pikovsky and Politi, 2016, section 2.5.4).
Thus, in dissipative systems, the sum of the LEs is nega-
tive. Finally, continuous chaotic systems have at least one
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LE equal to zero. This is due to there being zero growth of
an infinitesimal perturbation in the direction of the flow.

2.2 Computation of local and global
Lyapunov exponents

The theory does not translate directly to a method for
calculation of the LEs, since, in order to approach the limit
in Equation 7, one must integrate Equation 4 to findM(t)
for very large t. This both accumulates numerical errors
and results in a range of eigenvalues of MT (t)M(t) that
is too large for accurate numerical calculation (Pikovsky
and Politi, 2016). Instead, we measure the growth of per-
turbations over (finitely) many small time intervals and
compute the average. Specifically, for each time inter-
val we calculate the LLEs: the natural logarithm of the
growth ratios, divided by the length of the time inter-
val, as shown in Equation 2b. If the system is ergodic,
the arithmetic mean of the LLEs converges to the LEs as
the number of time intervals increases. Crucially, the per-
turbation vectors are orthogonalized and resized between
each time interval. Orthogonalising the propagated per-
turbations is necessary to keep the perturbations distinct,
since perturbations will tend to be attracted towards the
direction of largest growth. The resizing is necessary to
prevent perturbations becoming too small or large to be
represented by floating-point numbers. We now present
the algorithm used to calculate LEs and LLEs in this
work, which is based on methods presented in Benettin
et al. (1980a); Benettin et al. (1980b) and Kuptsov and
Parlitz (2012).

1 Calculate and store a long trajectory {x (t) ∶ t ∈
[0,Tend]}. Discard an initial transient period to ensure
the trajectory is in the attractor. One can alternatively
calculate the trajectory at the same time as integrating
Equation 4 in Step 3a below, which avoids the need to
store a long trajectory.

2 Initialize a matrix of perturbations Q 0 =
[q10,q

2
0, … ,qn0], such that the qi0 ∈ Rn are orthogonal

and of unit length, that is, orthonormal.
3 Repeat the following iterationm times, wherem is large
enough to achieve convergence of the LEs. In itera-
tion 𝑗, starting with 𝑗 = 1, perturbations are propagated
along the trajectory {x (t) ∶ t ∈ [(𝑗 − 1)𝜏, 𝑗𝜏]}, where
𝜏 is typically small. Each iteration results in n LLEs:
𝜆

i
𝑗

, i = 1, … ,n. Henceforth we notate LEs with hatted
lambdas to distinguish the asymptotic LE ̂

𝜆i from the
LLE 𝜆

i
𝑗

.
(a) Propagate the perturbations: V

𝑗

= M (𝑗𝜏)Q
𝑗−1,

where Q
𝑗−1 is from iteration 𝑗 − 1, and M (𝑗𝜏) is

computed by integrating Equation 4.

(b) Orthonormalize the propagated perturbations V
𝑗

to
get Q

𝑗

using QR decomposition (Golub and Van
Loan, 2013; Strang, 2016):

Q
𝑗

R
𝑗

= V
𝑗

. (9)

(c) The diagonal elements ri
𝑗

ofR
𝑗

are the desired ratios.
The LLEs at time 𝑗𝜏 are calculated as

𝜆

i
𝑗

= 𝜏

−1 ln(r𝛼(i)
𝑗

), i = 1, … ,n. (10)

In Equation 10, the diagonal element r𝛼(i)
𝑗

is indexed
by labelling function 𝛼(i), where 𝛼(i) is determined
in Step 4.

4 Calculate the LEs:

̂

𝜆i = (m − k)−1
m∑

𝑗=k+1
𝜆

i
𝑗

, i = 1, … ,n, (11)

where the LLEs from the first k iterations are discarded.
The bijective function 𝛼 (in Equation 10) takes inputs
and values 1, … ,n, and is chosen such that the global
LEs are numbered in descending order, that is, such
that ̂

𝜆i ≥ ̂

𝜆i+1. We say “ith LLE” to refer to any set of
LLEs {𝜆i

𝑗

∶ 𝑗 = k, … ,m} that are associated with the
ith LE.

In Step 4, a transient period of length k iterations is
required to let the initial perturbations Q0 converge to the
dynamics of the trajectory so that the leading perturba-
tion q1

𝑗

is oriented in the direction of the largest growth.
As discussed above, the LLEs are defined in terms of ratios
of the axes of the n-sphere and the ellipsoid. In practice,
it is unlikely that the chosen initial perturbation q10 will
be mapped byM(𝜏) onto the leading axis of the ellipsoid,
which will lead to a poor estimation of the LLE. However,
with sufficiently many iterations k, q1k will be attracted to
the direction of largest growth, leading to more accurate
estimates.

Computational cost

The algorithm for computing the LLEs and LEs does
not scale well. The computational costs of the steps of
the algorithm are as follows. The length of the required
transient period, that is, the number of “spin-up” itera-
tions, depends on the system dynamics and, in the worst
case, grows proportionally to the system dimension n
(Kuptsov and Parlitz, 2012, p. 754). For computing LEs,
the total number of iterations m depends on the com-
plexity of the attractor and the precision required. Each
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iteration (Step 3) requires the calculation of a trajectory
of length 𝜏, which involves at least (n) floating-point
operations (flops). The cost of integrating the matrix dif-
ferential Equation 4 involves at least one evaluation of
the Jacobian matrix, and at least one multiplication of the
Jacobian by another matrix, per time step. For a dense,
nontrivial Jacobian, it is reasonable to assume that Step b
involves (n2) flops in the simplest case, namely where
𝜏 = Δt and a minimal numerical integration scheme is
used. In a less simple case, Step b will require at least
(n2.3) flops: the cost of multiplying two dense n × n
matrices (Alman and Williams, 2021). Step b is by far
the most expensive step, since computing eigenvectors
and eigenvalues via QR decomposition requires 25n3 flops
(Golub and Van Loan, 2013; Arbenz, 2016). The overall
theoretical time complexity of the LE algorithm is thus
25n3 + (n2) flops. In practice, n × nmatrixmultiplication
can be much slower (at least (n3)) due to memory access
latency (Albrecht et al., 2010). Consequently, computing
the full LLE spectrum for a modern weather prediction
system (where n ≈ 109) is too expensive to be done during
the forecast cycle.

Obviously, generating a subset of the LLE spectrum
costs less. When using the tangent linear model, one must
compute consecutive leading LLEs: it is not possible to cal-
culate LLE 𝜆

i without also calculating 𝜆

1
, … , 𝜆

i−1. The
cost of QRdecomposition of ann × imatrix scales at(ni2)
(Boyd and Vandenberghe, 2018). The cost of multiplying
an n × nmatrix by an n × imatrix is (n2) when i is suffi-
ciently smaller than n (in particular, at least when logn(i) <
0.31389, see Huang and Pan, 1998; Christandl et al., 2020).
In such cases, where i ≪ n, the cost of computing the LLEs
scales as(n2), as it is dominated by matrix multiplication
rather than QR decomposition. Use cases where it suffices
to know a subset of the LLE spectrum include assimila-
tion in the unstable subspace (e.g., see Carrassi et al., 2022)
and computing the local Kaplan–Yorke dimension, which
can also be exploited for better data assimilation (Quinn
et al., 2020).

3 USING SUPERVISED MACHINE
LEARNING TO ESTIMATE
LYAPUNOV EXPONENTS

3.1 Problem statement and evaluation
metrics

Supervised learning refers to ML algorithms that use data
sets formed of input–target pairs, whereby the goal is to
construct a statistical model that emulates the idealised
function that maps from the input to the target. The
input and target are multidimensional arrays of data, not

necessarily of the same dimensions. A single input–target
pair is known as an example; the size of aMLdata set refers
to the number of examples it contains.

Supervised learning algorithms construct statistical
models by optimising the model’s parameters using the
data. In the problem of this study, the input is the sys-
tem state at a set of consecutive recent time steps includ-
ing the current time t. The target is the vector contain-
ing the full spectrum of n LLEs calculated using the
method described in Section 2.2 by integrating perturba-
tions from time t − 𝜏 to t. We choose to estimate the full
LLE spectrum; however, we note that the ML approaches
we use can easily be adapted to the subproblem of esti-
mating a subset of the LLE spectrum (henceforth “the
subproblem”), such as unstable and near-neutral LLEs.
See also the remarks in Sections 2.2 and 5.3. Generally,
we have

(input, target) =
(
(xk−r, … , xk−1, xk) , (𝜆1k, … , 𝜆

n
k)

)
,

(12)

where we recall that xk ∈ Rn denotes the system state at
time kΔt and 𝜆ik is the ith LLE computed from the interval
[kΔt − 𝜏, kΔt].

Pointwise accuracy

By pointwise accuracy we refer to the ability of a ML
algorithm to predict a specific LLE at an arbitrary time
t. For its evaluation, we calculate a separate R2 score for
each LLE in the spectrum, from a set of d predictions
and targets. The R2 score, also known as the coefficient of
determination, is given by

R2
( { (

y
𝑗

, ŷ
𝑗

)
|𝑗 = 1, … , d

} )
= 1 −

∑d
𝑗=1(y𝑗 − ŷ

𝑗

)2
∑d

𝑗=1(y𝑗 − y)2

∈ (−∞, 1], (13)

where, for each 𝑗, y
𝑗

∈ R is the target output (e.g., the ith
LLE), ŷ

𝑗

∈ R is themodel’s prediction, and y is themean of
the target outputs. In Equation 13, the numerator is known
as the sum of squares of residuals and the denominator is
known as the total sum of squares. An R2 score of 1 is opti-
mal and an R2 score of 0 is as good as guessing the mean
of the target values every time.

Similarity of prediction and target distributions

In addition to the pointwise accuracy, we evaluate the sta-
tistical accuracy of the ML models with quantile–quantile



1242 AYERS et al.

TABLE 1 The four supervised learning algorithms used in this study.

Algorithm Architecture

Multilayer perceptron (MLP) One or more dense layers and one dense output layer

Regression tree (RT) One tree per target LLE

Convolutional neural network (CNN) One 1D convolution layer, max-pooling layer, flatten layer, one or more dense layers

Long-short term memory network (LSTM) One or more LSTM layers, one dense output layer

Note: The hyperparameter values (e.g., number of dense layers) used in the experiment are described in Section 5.2.

(QQ) plots. QQ plots provide a simple nonparametric tool
to compare the empirical probability distributions gen-
erated by two samples (Wilk and Gnanadesikan, 1968).
In our case, these are the predicted and target values.
To generate the plot, a set of quantiles (the 1000 quan-
tiles in our experiments) is computed for both samples.
These quantiles are then plotted against each other in a
scatter plot. If the two samples have the same empiri-
cal distributions, the scatter plot renders a 45◦ diagonal
line (of course this is subject to sampling error, which
diminishes as the sample size grows). Departures from
this ideal result show differences in the location and scale
parameters of the empirical distributions, as well as pos-
sible linear and nonlinear relationships between the vari-
ables: see, for example, National Institute of Standards
and Technology (U.S.) (2012) for a more detailed discus-
sion. In our case, the QQ plots are useful to show which
parts of the target distribution are represented well by the
predictions.

3.2 Supervised learning algorithms

We test four algorithms, summarised in Table 1, all well
known in the ML community. They are chosen to repre-
sent commonly used, proven successful supervised learn-
ing algorithms. In this section we detail the algorithms,
their structure, and their relative characteristics. The
final details of the algorithms, including the number of
parameters, are determined by hyperparameter tuning and
described in Section 5.2. We note that superior perfor-
mance in supervised learning tasks has been achieved by
conducting a neural architecture search (NAS): an exten-
sive (and costly) optimisation of neural network (NN)
architecture from a vast and highly flexible search space
(Zoph et al., 2018). Here we stop short of conducting such
a NAS. Instead, we choose established architectures for
four distinct algorithms and carry out hyperparameter
optimisation for each, where the hyperparameters include
key architectural choices such as the number of layers
and the number of neurons in each layer. We expect that
the results from our selection will give a good indication

of the possible performance of supervised learning in
this task.

As we discuss in the following paragraphs, the chosen
algorithms take different approaches to using the tempo-
ral structure of the input (when there are multiple time
steps in the input). Here, by temporal structure we mean
the temporal sequence of elements in each input vector,
as opposed to the pairwise relation between the inputs
and outputs while segmenting the time series for data-set
preparation. The relative success of each algorithm gives
insight into the nature of the problem from the ML per-
spective.

The first algorithm is the RT (Breiman et al., 1984).
The RT is the only non-neural network algorithm we test;
RTs function by evaluating a finite chain of comparisons
on the input features, such as “xk > 0”. The chain of com-
parisons forms a tree graph; each leaf node corresponds
to an output value. Thus RTs have finitely many possible
output values. The key advantage of a RT is the low com-
putational cost of making predictions. Other advantages
include the implicit feature selection process and poten-
tially greater explainability of predictions compared with
NNs. In fact, the RT may make use of only a few fea-
tures from the set available in the input vector (Breiman
et al., 1984). By setting two hyperparameters (the maxi-
mum number of leaf nodes and the maximum depth, i.e.,
number of consecutive comparisons before a leaf node),
it is possible to constrain the size of the resulting tree
greatly. For simplicity, we opt to train a separate RT for
each target LLE: that is, the prediction of the target vec-
tor (𝜆1k, … , 𝜆

n
k) is made by n RTs, where each RT predicts

a different 𝜆ik.
The second algorithm is the MLP, the most basic type

of feedforward artificial NN (as described in, e.g., Good-
fellow et al., 2016, Chapter 6). The MLP is comprised of
several hidden layers and an output layer, each of which is
comprised of many neurons, where each neuron receives
as input the outputs from all neurons in the previous layer
(i.e., each layer is densely/fully connected). Each hidden
layer has the same number of neurons; this value is opti-
mised as a hyperparameter (see Section 5.2).Whenmaking
a prediction, the entire input vector is passed to every
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neuron in the first hidden layer. These neurons compute
their outputs according to their weights and activation
function, and their outputs are passed on to the neurons of
the second layer, and so forth, until the neurons in the final
layer produce outputs that are taken to be the final output
of the algorithm. The MLP can theoretically approximate
any continuous function (Hornik, 1991); however, in prac-
tise it has been found that in many problems accurate pre-
dictions are achieved more easily with more sophisticated
architectures.

With regards to using temporal structure, the RT and
the MLP take the same approach: to treat each element
of the input vector (each feature) as an independent and
identically distributed variable. Both algorithms have no
inherent preference with respect to the temporal struc-
ture of the data, since they are invariant to the choice of
order of the input features (a choice that is made in the
preprocessing stage before training the algorithm).

The third algorithm is a CNN (LeCun et al., 1989). In
our experiments, the CNN is comprised of one 1D convo-
lution layer with a kernel of size two and a stride of one,
a max-pooling layer (if the number of time steps in the
input is greater than 2), a flattening layer, and finally a
set of dense layers (the number of which is optimised as
described in Section 5.2). The 1D convolution layer is “1D”
in that the layer convolves only over the time dimension.
The kernel size of twomeans that, if the input is comprised
of system state vectors at r + 1 consecutive time steps, the
convolution layer is only sensitive to patterns that occur
in any time window of length two within the r + 1 time
steps. The max-pooling layer has a pool size and stride of
two, which results in an invariance to translation of pat-
terns by a single time step. Thus the CNN takes a different
approach to using the temporal structure of the input, by
only being sensitive to patterns that appear in small time
windowswithin the input. In other words, the convolution
layer predisposes the CNN to be aware which system states
in the input are adjacent to each other in time. CNNs have
been shown to be very successful in a range of applications,
including in image-related tasks (LeCun et al., 2015). The
CNN architecture in our experiments is equivalent to the
MLP with an additional 1D convolution layer at the begin-
ning.We choose a 1D convolution (i.e., a convolution along
the time dimension only) because, in the ordinary differ-
ential equation (ODE) systems in our experiments, there
are only three state variables and there is no spatial local-
ity that would motivate a focus on two of the variables at
one time.

The fourth algorithm is the LSTM (Hochreiter and
Schmidhuber, 1997; Graves, 2012). An LSTM is a form of
recurrent neural network (RNN): the NN processes data
in a sequence and, after each term in the sequence is

processed, information is stored in a hidden state. In an
LSTM, the flow of information in and out of the NN’s
hidden state is controlled by learned gates. LSTMs have
been successful in various tasks where there are long-term
dependences, that is, where the correct output at a later
element in the sequence requires information from ele-
ments further back in the sequence. Such tasks include
speech recognition (Graves et al., 2013) and machine
translation (Wu et al., 2016). In machine translation, for
instance, it is useful to retain information about words
early on in the sentence to predict best how to translate
words at the end of the sentence. However, the sophisti-
cation of the LSTM architecture comes at a computational
cost, which we noticed particularly during training. In the
experiments of this study, the LSTMs are composed of one
to three LSTM layers and a dense output layer. The num-
ber of LSTM layers and the number of units in each is
optimised as described in Section 5.2. The LSTM layers
process the input one time step at a time, in chronologi-
cal order. The estimation of the LLEs is made after the last
time step has been processed. Thus, the LSTM takes a third
approach to using the temporal structure by using infor-
mation from past time steps when processing future time
steps.

The NN algorithms (MLP, CNN and LSTM) were
implemented using Tensorflow (Martín Abadi et al., 2015).
Additionally, all NN algorithms standardise the input and
target data by subtracting the mean and dividing by the
standard deviation, where the mean and standard devia-
tion are calculated from the training set. Each component
of the input and target is standardised independently. This
is tomake the datamore amenable to learning. The scaling
pipeline was implemented using Scikit-learn (Pedregosa
et al., 2011). For the RT, we use the implementation in the
Scikit-learn Python module (Pedregosa et al., 2011).

4 RÖSSLER, LORENZ 63, AND
THEIR LOCAL LYAPUNOV SPECTRA

In this section we present the two dynamical systems
used in this work. We discuss the characteristics of
their attractors and their LLEs, as this forms the data
for the ML models and will be important in under-
standing their performance. The Rössler (Rössler, 1976)
and Lorenz 63 (Lorenz, 1963) systems are both
three-dimensional, continuous-time, ODE dynamical
systems, given respectively by Equations 14 and 15.
We use the parameters (a, b, c) = (0.37, 0.2, 5.7) and
(𝜎, 𝜌, 𝛽) = (10, 28, 8∕3). These are commonly chosen val-
ues for which the systems exhibit chaotic behaviour (see
e.g. Ott, 2002). Under these settings, both systems are
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dissipative, and they possess strange attractors of fractal
dimension.

Rössler
ẋ = −y − z,
ẏ = x + ay, (14)
ż = b + z(x − c),

Lorenz 63
ẋ = 𝜎(y − x),
ẏ = x(𝜌 − z) − y, (15)
ż = xy − 𝛽z.

The Lorenz 63 system is famous amongst weather and
climate scientists: initially derived as a truncated model of
Rayleigh–Bérnard convection in a two-dimensional fluid
flow, it is the archetypal chaotic system and continues
to be used in weather and climate science: for example,
in data assimilation experiments (Carrassi et al., 2018).
For the chosen system parameters, the attractor of the
Lorenz 63 system is formed of two wings, each centred
around a nonstable fixed point. There is a third nonstable
fixed point at the origin (Sparrow, 1982). The Rössler sys-
tem was introduced as a simpler version of the Lorenz 63
system, having only one nonlinear term (zx) instead of the
two in the Lorenz 63 system (xz and xy). Equation 14 was
derived as a simplification of a system that combined two
chemical reactions: a slow, two-variable oscillator (x and y)
and a faster “switching-type” reaction (z) (Rössler, 1976).
For a historical review of the development of the Rössler
system , see Letellier and Messager (2010). The resulting
system attractor is composed of a “disc” in the xy plane
(z close to 0) and a “loop” in which trajectories rise (z
increases rapidly) out of the disc, before folding over and
back into the disc. Consequently there is an imbalance: any
infinite, nonperiodic trajectory spends more time in the
disc than in the loop. The attractor has two fixed points:
an unstable fixed point in the centre of the disc, around
which system trajectories spiral outwards, and a stable

fixed point located outside the attractor. We shall see that
the difference in the systems’ dynamics provides a useful
comparison.

It is easy to compute the analytic Jacobian matri-
ces from Equations 14 and 15. Furthermore, the small
size of both systems allows us to perform exhaustive
experiments with long time series. The data used in our
results are generated following Section 2.2. The evolu-
tion Equations 14 and 15, as well as the corresponding
fundamental matrix Equation 4, are integrated using a
fourth-order Runge–Kutta scheme with time step Δt =
0.01 for both systems. The LLEs are calculated over time
windows of length 𝜏 = 0.04 (i.e., four time steps); the LLEs
at time t are calculated by integrating perturbations from
time t to t + 𝜏. We choose 𝜏 = 0.04, rather than a smaller
value, so that the resulting set of LLEs provides better cov-
erage of the attractor. Table 2 shows the resulting LEs.
Further details of the data used in the results are given in
Section 5.1.

In Figures 1 and 2, the top row shows the values of
the LLEs along the systems’ trajectories, specifically for
the points x(𝜏𝑗) where 1200 ≤ 𝑗 ≤ 26,199; the values of
the LLEs are given in color. We show only 25,000 data
points to avoid saturating the figures: the local hetero-
geneity of the LLE values in phase space is evident. The
bottom row displays the distribution of LLE values via his-
tograms, for the points x(𝜏𝑗) where 1200 ≤ 𝑗 ≤ 719,999.
The ith column shows the LLEs associated with the
ith LE.

Let us first consider the statistical distribution of the
LLEs. In the Rössler system (Figure 1) there is a marked
difference between the first two LLE distributions and the
third. The first two have a single, tall, thin mode with
long tails and are roughly symmetric. The distribution of
the third LLE has a lower-density mode with thicker tails
and is negatively skewed. The range of values of the third
distribution is also much smaller than those of the first
two.

The Lorenz 63 system LLE distributions differ from
those of the Rössler system. All three LLE distributions
(Figure 2) have thicker tails and are positively skewed. The

TABLE 2 The LEs of the Rössler and Lorenz 63 systems as calculated following Section 2.

System ̂

𝝀1 ̂

𝝀2 ̂

𝝀3

Rössler 0.19597 ± 0.00011 0.0000075 ± 0.0001275 −4.30097 ± 0.00068

Lorenz 63 0.90495 ± 0.000145 0.001975 ± 0.000055 −14.571345 ± 0.000105

Note: These values are computed from 718,800 LLE iterations, following a transient of k = 1200 iterations. As described in Section 2, the arithmetic mean of the
LLEs converges to the LEs as one includes LLEs from more iterations, that is, from a longer trajectory. The convergence is not monotonic: the series of
arithmetic means fluctuates as the number of iterations increases. To give an indication of the precision of the numerical calculation, we therefore calculate the
LE as the midpoint of the range of the series of arithmetic means acquired from the first 𝑗 iterations, where 𝑗 = 716,801, … , 718,800. The extent of the range
above and below this value is also given. The proximity of the second LE to zero is a test of the accuracy of the numerical algorithm, since the middle LE is
theoretically known to be zero in chaotic autonomous continuous-time systems (Pikovsky and Politi, 2016).
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F I GURE 1 A long-time trajectory of the Rössler system coloured by LLE values (top row) shows how LLE values tend to be arranged
in the system’s attractor. The bottom row shows the corresponding statistical distribution of the LLEs via histograms; the mean of the LLE
values is shown by the dotted (orange) line. The top panels show the same collection of 25,000 points. On the other hand, the histograms are
generated from the full set of 718,800 LLEs; note that the vertical axis is plotted on a logarithmic scale. The mean (i.e., the corresponding LE)
and standard deviation of the LLE values in each column are shown underneath. [Colour figure can be viewed at wileyonlinelibrary.com]

first and third are weakly bimodal, whilst the second is
unimodal.

We now introduce a property that will be important
to understanding the performance of the ML. In the con-
text of the distribution of LLEs in the attractor of a system,
we say that a region U of the attractor A is (locally) het-
erogeneous if the function f ∶ A → R mapping from A to
the ith LLE value is nonsmooth in U. The best definition
in more simple terms is that the LLE values in U vary
in a nonsmooth fashion across U. For example, an alter-
nating lattice (such as a chess board) would be locally
heterogeneous. If U is not heterogeneous, we say it is
homogeneous. In this work we use homogeneous and het-
erogeneous only in the sense of locally across a small region
of phase space U, and not in the sense of across the entire
attractor (i.e., globally), or along a trajectory (i.e., across
time), as is the case in, for example, Vannitsem (2017) and
Lucarini and Gritsun (2020).

For all three Rössler LLEs, in the disc of the attractor
that sits in the xy-plane, the LLE values are homogeneous.
In the loop that jumps out of the discwith positive z-values,

there are bands of similar values for all three LLEs. For
the first two LLEs, the most extreme LLE values are in the
loop and there is significant local heterogeneity within the
bands. For example, there are some small regions of the
attractor where the first LLE is 10 or above for the major-
ity of points, yet for some other points it is as low as −20.
This high degree of heterogeneity is reflected in the longer
tails of the distributions of the first and second LLEs (cf.
Figures 1 and 2). In contrast, the third LLE is locally homo-
geneous: the colour change in the graph is smooth. Note
that the trajectory of the Rössler system spends more time
in the disc than in the loop. Consequently, data points in
the loop are considerably sparser.

In the Lorenz 63 system, the first two LLEs have
distinct regions of local heterogeneity and homogeneity.
Unlike with the Rössler system, the regions of greater mix-
ing are along the boundaries between regions of greater
local homogeneity. The most extreme values of the first
LLE are at the bottom of the attractor (z close to 0) and on
the top edge of the wings: not in the regions of local het-
erogeneity. The third LLE, as with the Rössler system, is

http://wileyonlinelibrary.com
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F IGURE 2 As Figure 1, but for Lorenz 63. [Colour figure can be viewed at wileyonlinelibrary.com]

locally homogeneous everywhere. Aswewill see, the char-
acteristics of the LLEswehave discussed have implications
for the performance of the ML methods trying to estimate
them.

5 EXPERIMENTS AND RESULTS

5.1 Experiment setup

Having described the ML algorithms (Section 3.2) and
dynamical systems (Section 4) used in this work, this
section details the experiments and results. The experi-
ments test a total of 16 configurations, which consist of
each combination of two dynamical systems, four ML
algorithms, and two input types:

Input Type 1: (xk),
Input Type 2: (xk−5, xk−4, xk−3, xk−2, xk−1, xk).

(16)

The first input type consists of the current time step only,
whereas the second has the current time step and the
five preceding time steps. In the envisaged operational
application of this approach, storing multiple time steps of

the entire model state poses a severe computational chal-
lenge. Since we envisage making LLE predictions every
time step, and we have assumed that the pattern of input
time steps remains fixed, the furthest-back input time step
dictates the number of time steps that must be stored. We
choose five time steps into the past as a balance between
testing whether previous time steps can enable more accu-
rate predictions andnot requiring huge amounts of steps to
be stored. Ignoring the constraints of feasibility as regards
our approach, we expect that delays of more than five time
steps might enable more accurate predictions. Given the
choice of a maximum of five time steps into the past, we
include all six time steps in the input and rely on the ML
algorithms to extract useful features thereof. Note that, if
there is only one time step in the input, the CNN is equiv-
alent to an MLP where the number of units in the first
hidden layer of the MLP is twice the number of filters in
the CNN.

The main results were attained with data sets of 105
examples. The data sets were created using the method
described in Section 2.2 and the parameters given in
Section 4. For our chosen value of 𝜏 = 0.04, the 105
examples are generated from a trajectory of 4 × 105 time
steps, equating to 784 and 3604 Lyapunov times for
Rössler and Lorenz 63, respectively. We note that another

http://wileyonlinelibrary.com
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study that estimated the global LEs of the Lorenz 63
system by emulating the dynamics with reservoir com-
puters used a far smaller data set of 91 Lyapunov times
(Pathak et al., 2017). By inspecting plots of the trajec-
tory (not shown here), we anticipated that 105 examples
provide sufficient coverage of the system attractors. The
Kullback–Leibler divergences of input and target variables
(not included here) show that 105 examples should pro-
vides a good representation of the variables’ statistical
distributions (when compared with a data set of 106). To
assess the impact of the data-set size, we repeated exper-
iments with data sets of 5 × 104 and 106 examples. We
found that themuch larger data set resulted in only slightly
more accurate predictions, with the exception of the
LSTM. Thus the initial choice of 105 does not limit perfor-
mance substantially. These results are discussed further in
Section 5.3.

From each system’s data set we generate 30 data-set
instances, where each instance is a unique random shuffle
of the original. Each data-set instance is partitioned into
training, validation, and test sets with a ratio of 0.6 ∶ 0.2 ∶
0.2. The resulting data setup is summarised in Table 3.
The training, validation, and test sets of different data-set
instances are therefore distinct. Given that the Rössler sys-
tem and Lorenz 63 system are both ergodic, and the size
of the training, validation, and test data sets is large, the
coverage of the attractors by examples in each data-set
instance is similar to what would be achieved if we had
instead generated 30 sets of new data. Each configuration
is tested on 30 data-set instances, that is, each configura-
tion is tested in 30 trials. This provides an estimate of the
variability of performance of each algorithm.

The NNs (MLP, CNN, LSTM) are implemented with
two methods for preventing overfitting: activity regular-
isation on each layer and early stopping. Regularisation
penalises large weight values; early stopping selects the
model weights that score optimally on the validation data
set, rather than on the training data set.

TABLE 3 A summary of key values in the data setup for the
105 data sets.

Number of data-set instances 30

Number of examples:

In each data-set instance 100,000

In the training partition 60,000

In the validation partition 20,000

In the test partition 20,000

Note: Each data-set instance contains the same examples in a unique,
shuffled order.

5.2 Hyperparameter optimisation

In ML, hyperparameter refers to any parameter that has to
dowith the form of, ormethod of optimising, the statistical
model, as opposed to the trainable parameters of themodel
itself (often referred to as weights). Typically, hyperparam-
eters are fixed before the model is fitted to the data, that is,
before the weights are optimised. For example, one hyper-
parameter for a NN is the learning rate: the amount by
which model weights are changed at each step in the opti-
misation. Selecting the right hyperparameters is essential
for effective use ofML algorithms (Goodfellow et al., 2016).

We use a Bayesian optimisation method, implemented
by Scikit-Optimize (Head et al., 2021), to optimise the
hyperparameters for each ML algorithm used in this
study. Conceptually, a Bayesian optimisation method is an
informed hyperparameter search that generates a prob-
abilistic model (e.g., using a surrogate Gaussian process
regression) of the trueMLmodel (e.g., CNN) to select a set
of hyperparameters that maximises the true ML model’s
performance (Snoek et al., 2012).

We perform a separate hyperparameter optimisation
for each configuration. Hyperparameter optimisation was
carried out on Google’s tensor processing units (TPUs)
using Google Colaboratory. The search domain for each
hyperparameter was chosen based on users’ knowledge of
the algorithms, the nature of the problem, and common
practice in theMLcommunity (Hastie et al., 2009;Goodfel-
low et al., 2016). The search domains are shown in Table 4.
The chosen search space permits the NNs to be reason-
ably large (up to 200 neurons per layer and up to 10 layers
for MLP and CNN, and up to 100 LSTM units per layer
and up to 3 LSTM layers for LSTM) given the low dimen-
sionality of the task: mapping from three (3 variables × 1
time steps) or 18 (3 × 6) features to three outputs. On the
other hand, we opted to restrict the maximum number of
layers for the LSTM due to the greater complexity of the
algorithm. In fact, the first attempt to perform hyperpa-
rameter optimisation with a six-layer LSTM exceeded the
24 h runtime limit for Google Colaboratory. In contrast
to the NNs, we forced the RTs to remain computation-
ally light by limiting maximum leaf nodes (i.e., the maxi-
mum number of possible output values) to 100. The entire
hyperparameter optimisation process had a combined run-
time of 108 h. Although the hyperparameter optimisation
was computationally expensive, it was affordable in the
low-dimensional problems at hand. It greatly increases the
chance that we attainmaximal performance from eachML
algorithm, thus providing useful insights into the problem
from a ML perspective.

Table 5 shows the optimised hyperparameter values
resulting from 50 iterations of the optimisation algorithm.
Some optimal values are at the boundary of the search
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TABLE 4 The search domain for hyperparameters of the ML algorithms.

Algorithm Hyperparameter Search domain

RT Maximum depth [1, 100]

Maximum leaf nodes [5, 100]

Maximum features {None, log2, square root}

Splitter {best, random}

Min. cost–complexity pruning parameter [1 × 10−6, 100]

Minimum examples per leaf [1, 20]

Minimum weight fraction per leaf {0, 0.5}

MLP Learning rate [1 × 10−6, 0.9]

Number of layers [1, 10]

Number of neurons per layer [1, 200]

Activity regularisation on each layer {L1(𝛼 = 0.001), L2(𝛼 = 0.001), None}

CNN Learning rate [1 × 10−6, 0.9]

Number of filters [1, 100]

Number of dense layers [1, 10]

Number of neurons per dense layer [10, 200]

Activity regularisation on each layer {L1(𝛼 = 0.001), L2(𝛼 = 0.001), None}

LSTM Learning rate [1 × 10−6, 0.9]

Number of LSTM layers [1, 3]

Number of LSTM units per layer [1, 100]

Activity regularisation on each layer {L1(𝛼 = 0.001), L2(𝛼 = 0.001), None}

Note: For the MLP, CNN, and LSTM, the number of (dense) layers excludes the final densely connected output layer with three units.

domain (Table 4). This suggests that the algorithms might
have performed betterwith hyperparameter values beyond
the chosen search domain. For instance, in every experi-
ment configuration, the optimised value of the RT hyper-
parametermaximum leaf nodes is 100, themaximumvalue
in the search domain. Other examples of hyperparame-
ters with optimised values at the boundary of the search
domain for some configurations are the number of neu-
rons per layer for the MLP and the CNN, and the number
of LSTMunits per layer. Nevertheless, the number of dense
layers in the MLP and the CNN, as well as the number
of LSTM layers, are mostly not at the boundary. Overall,
from the results of the hyperparameter optimisation, we
can argue that, although greater prediction accuracymight
be achieved using NNs with larger layers (more neurons
or LSTM units), the number of layers (NN depth) in the
experiments is adequate.

To give an idea of the complexity of each of the four
optimisedML algorithms, Table 6 shows the size of theML
models, measured by the maximum number of compar-
isons for the RT and the number of trainable parameters
in the case of the NNs. The model size is a function of

the optimised hyperparameter values. For the NNs with
six time steps as input, the model size of those that pre-
dict the Lorenz 63 system LLEs is larger than those that
predict the Rössler system. This is perhaps reflective of the
more chaotic dynamics of the Lorenz 63 system, which
has a larger first LE as well as two nonlinear terms in
the equations as opposed to only one in the Rössler sys-
tem (see Equations 14 and 15). The same is not true of the
NNs that take one time step as input. This is unsurprising,
since the one time step input contains less information on
the dynamics, that is, how the state variables are chang-
ing in time. In this case, the size of the MLP and the
CNN is smaller in the Lorenz 63 system , whereas the size
of the LSTM is larger in the Lorenz 63 system. Due to
their architectural similarity in the one-time-step case, it
is unsurprising that the optimal model size for MLP and
CNN behaves similarly.

The maximum size of the RTs is the same for all
configurations. This is due to the tight restriction placed
on the tree size by the search domain of the maximum
leaf nodes hyperparameter (Table 4). However, the maxi-
mum depth hyperparameter varies across configurations
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TABLE 5 The optimal hyperparameter values selected by 50 iterations of Bayesian optimisation.

Optimised value

Rössler Lorenz 63

Algorithm
Target
LLEs Hyperparameter

One time
step

Six time
steps

One time
step

Six time
steps

RT LLE 1 Maximum depth 78 58 100 100

Minimum examples per leaf 20 13 15 16

LLE 2 Maximum depth 100 24 100 78

Minimum examples per leaf 20 20 1 1

LLE 3 Maximum depth 17 48 100 72

Minimum examples per leaf 2 1 14 20

MLP All Learning rate 7.300e−05 1.222e−04 7.628e−05 1.939e−05

Number of dense layers 7 6 8 10

Number of neurons per dense layer 200 182 165 200

Activity regularisation on each layer L2 L2 L2 L1

CNN All Learning rate 1.081e−04 1.586e−04 3.287e−04 1.016e−04

Number of filters 100 37 29 59

Number of dense layers 6 6 3 6

Number of neurons per dense layer 200 200 122 200

Activity regularisation on each layer None L1 L1 L1

LSTM All Learning rate 2.857e−03 1.874e−03 2.722e−03 1.105e−04

Number of LSTM layers 3 1 2 2

Number of LSTM units per layer 62 100 100 100

Activity regularisation on each layer L1 L1 L1 None

Note: For all RTs, the optimal maximum leaf nodes was 100, and the optimal minimum weight fraction per leaf was 0. Some RT hyperparameters are excluded
for brevity.

TABLE 6 The size of the ML models, measured by the number of comparisons (RT) and number of trainable parameters (NNs).

Rössler Lorenz 63

Algorithm One time step Six time steps One time step Six time steps

RT Maximum comparisons 99 99 99 99

MLP Trainable parameters 242,603 170,537 192,888 366,203

CNN Trainable parameters 222,503 224,262 34,244 237,616

LSTM Trainable parameters 78,557 41,903 122,303 122,303

Note: The maximum number of comparisons for each RT is 99 (one fewer than the maximum leaf nodes), since the max depth is too large to constrain the
number of non leaf nodes in the tree.

and between LLEs. The optimal value of the maximum
depth depends on the number of linear separations of the
input space that improves the predictions during genera-
tion of the tree from the training data. For the same input
type, and for a given LLE, the RT for the Lorenz 63 sys-
tem has a greater maximum depth than the RT for the
Rössler system . The greater maximum depth implies that

more accurate predictions can be made by separating the
input space at smaller scales (i.e., making finer-grained
partitions of the input space) in the Lorenz 63 sys-
tem compared with the Rössler system. In other words,
there is clearer detail at smaller relative scales (in the
input space) in the Lorenz 63 system than in the Rössler
system.
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5.3 Results

Impact of data-set size

As discussed in Section 5.1, whilst we focus on results
using a data set of 105 examples, we ran all experi-
ments with three data-set sizes to determine the impact
on prediction accuracy. We use the same setup for
all data-set sizes: hyperparameters as described in
Section 5.2, 30 trials, and a partition of 0.6 ∶ 0.2 ∶ 0.2
training–validation–testing. The mean R2 scores from all
data-set sizes are shown in Figure 3. In both systems,
there are only small (or negligible) gains in accuracy
from using 106 examples compared with 105 exam-
ples. The one exception is the LSTM: in both systems,
the R2 scores of the LSTM increased significantly with
data-set size. In the Rössler system , the LSTM becomes
the most accurate method when trained on 106 exam-
ples, whilst in the Lorenz 63 system the LSTM achieves
accuracy similar to the MLP and CNN (indeed, Figure 3
shows that the six-time-step input LSTM achieves
the best mean R2 scores). In both systems, the vari-
ation of the LSTM over the 30 trials is substantially
reduced with 106 examples compared with 105 exam-
ples (notably, for the one-time-step LSTM in Lorenz 63 ,
the variance of R2 scores of LLE 2 reduces from 0.0201
to 0.0007). This suggests that choosing 105 examples
strongly limits the performance of the LSTM. We sus-
pect that the LSTM requires more data than the MLP
and CNN due to its more complicated architecture,
namely the hidden state and the three parameterised
gates that control information flow into and out of the
hidden state.

With regards to the smaller data set of 5 × 104, Figure 3
shows that the impact on accuracy is different in the
two dynamical systems: in the Rössler system , the accu-
racy of MLP and CNN (especially with the one-time-step
input) is strongly reduced (compared with the 105 data
set), whereas for Lorenz 63 the equivalent reduction in
accuracy is small. This is likely due to the greater spar-
sity of data points in the loop of the Rössler system. With
these insights as context, the remainder of Section 5.3
refers to results from the 105 data sets, unless stated
otherwise.

Comparisons between systems and across
the LLE spectrum

We assess accuracy with the R2 score of predictions made
on the test data sets, each of which has 20,000 examples
(see Table 3). There are 30 R2 scores for each configu-
ration: one from each data-set instance. These R2 scores

F IGURE 3 The impact of data-set size on mean R2 scores
across 30 trials. The solid lines indicate one-time-step results, the
dashed lines indicate six-time-step results. [Colour figure can be
viewed at wileyonlinelibrary.com]

are shown in boxplots in Figure 4 and summarized by
their mean and standard deviation in Table 7. The imme-
diate observation is that the R2 scores differ consistently
among LLEs (for a given system) and between systems
(for a given LLE). The first LLE is predicted at least rea-
sonably well in both dynamical systems (0.54 for Rössler
system and 0.93 for Lorenz 63 system). The third LLE
is well predicted in both systems, by all ML algorithms
and with both types of input. Apart from one case, the
mean R2 scores for LLE 3 are above 0.98. This is unsur-
prising, given the local homogeneity of LLE 3 on the
attractors, as discussed in Section 4. In all cases, the sec-
ond LLE is the least well predicted (0.39 for the Rössler
system and 0.76 for the Lorenz 63 system). This result
is to be expected, since it is known that the second LLE
is calculated least accurately by the numerical method
(Kuptsov and Parlitz, 2012) and has a slower convergence
(Bocquet et al., 2017). Also, this result aligns with some
recent attempts to emulate chaotic dynamics with ML
methods, where the emulators have failed to reproduce
near-neutral LEs accurately (Pathak et al., 2017; Brajard

http://wileyonlinelibrary.com
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F I GURE 4 The R2 scores of test data sets from the 30 trials,
showing the variation across data-set instances, for each
combination of system and ML method. Perfect predictions have an
R2 score of one. These results use 105 data sets: each test data set has
20,000 examples. [Colour figure can be viewed at
wileyonlinelibrary.com]

et al., 2020). We note that, particularly in multiscale sys-
tems such as ocean–atmosphere systems, the neutral and
near-neutral exponents play an important role in under-
standing predictability (see, e.g., De Cruz et al., 2018;
Quinn et al., 2020) and are connected to the coupling
mechanisms (Vannitsem and Lucarini, 2016; Tondeur
et al., 2020).

Next we compare prediction accuracy between dynam-
ical systems. For LLEs 1 and 2, predictions of the Lorenz 63
system tend to be better than those of the Rössler system.
The highest mean R2 scores for LLEs 1 and 2 are 0.9304
and 0.7613 (respectively) for Lorenz 63, yet only 0.5365 and
0.3897 for Rössler. For LLE 3, the mean R2 scores are sim-
ilarly high in both systems. These results indicate that the
LLEs can be predicted and the variability of the prediction

accuracy depends on the LLE and the dynamical system
being predicted.

Analysis of predictions on ordered test data

Figures 5 and 6 show time series of target values and pre-
dictions for a small set of ordered test data. The predictions
are produced by the algorithm that achieves the best mean
R2 scores (on the 105 data sets): MLP for the Rössler sys-
tem and CNN for the Lorenz 63 system. In both systems,
LLE 3 is almost perfectly predicted throughout the time
series. However, the predictions of LLEs 1 and 2 have error
characteristics that are specific to each system.

Figure 5 illustrates that the first and second LLEs of
the Rössler system vary intermittently: they are stationary
and near the mean value for the majority of the time and
then abruptly change and oscillate for a short period before
returning to be close to the mean. This corresponds to the
system trajectory being in the disc in the xy-plane, and
then jumping into the “loop” with positive z-values, before
returning to the disc. Predictions are extremely good dur-
ing the stationary periods, and they are satisfactory during
the peaks, which we label “fluctuation events”. This is par-
ticularly true for LLE 1, where we see that the ML-based
predictions always catch the fluctuation event and often its
sign. The predictions of LLE 2 follows similar behaviour
to LLE 1, however the R2 score suggests that the pointwise
accuracy is slightly worse than for LLE 1.

On the other hand, in the Lorenz 63 system, Figure 6
shows that LLEs 1 and 2 are constantly oscillating. Certain
characteristics of the target time series arewell reproduced
by the predictions: for example, the largest peaks of LLE 1.
These large peaks occur when the system trajectory passes
close to the origin (cf. Figure 2), a region in which LLE 1 is
locally homogeneous on the attractor. Nonetheless, small
errors occur frequently. Notably, the higher-frequency fea-
tures (such as the secondary peaks of LLE 2 between t = 17
and t = 20) are often relatively poorly reproduced for LLEs
1 and 2.

These time series provide further insight into the lower
R2 scores for LLEs 1 and 2 in the Rössler system compared
with the Lorenz 63 system. Recall the definition of R2 in
Equation 13: the distance from the perfect score of 1 is
the sum of squared residuals divided by the total sum
of squares. The periods of stationarity in the Rössler sys-
tem LLEs 1 and 2 contribute little to the total sum of
squares. Consequently the larger errors during fluctu-
ation events strongly reduce the R2 score. In contrast,
in the Lorenz 63 system, the R2 score is high despite
more frequent prediction errors, because the constant
variation of the target values results in a larger total sum of
squares.

http://wileyonlinelibrary.com
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TABLE 7 The table shows mean R2 scores over 30 trials, with the corresponding standard deviations in parentheses.

Target LLE 1 LLE 2 LLE 3

Input type One time step Six time steps One time step Six time steps One time step Six time steps

R2 on test data: mean and (standard deviation) of 30 data-set instances

Rössler

RT 0.5155 (0.0248) 0.5161 (0.0268) 0.3506 (0.0299) 0.3681 (0.0278) 0.9944 (0.0002) 0.9946 (0.0002)

MLP 0.5323 (0.0211) 0.5363 (0.0243) 0.3837 (0.0249) 0.3897 (0.0274) 0.9978 (0.0005) 0.9975 (0.0006)

CNN 0.5279 (0.0333) 0.5054 (0.0349) 0.3711 (0.0518) 0.3530 (0.0419) 0.9960 (0.0040) 0.9956 (0.0044)

LSTM 0.4657 (0.0633) 0.5319 (0.0462) 0.2921 (0.0769) 0.3788 (0.0571) 0.9869 (0.0074) 0.9955 (0.0023)

Lorenz 63

RT 0.8672 (0.0025) 0.8801 (0.0027) 0.6166 (0.0046) 0.6540 (0.0053) 0.9324 (0.0305) 0.9936 (0.0003)

MLP 0.9217 (0.0038) 0.8350 (0.0438) 0.7325 (0.0123) 0.4449 (0.1446) 0.9993 (0.0003) 0.9925 (0.0033)

CNN 0.9169 (0.0081) 0.9304 (0.0047) 0.7153 (0.0261) 0.7613 (0.0159) 0.9992 (0.0005) 0.9993 (0.0002)

LSTM 0.8659 (0.0530) 0.7594 (0.0302) 0.5702 (0.1419) 0.2933 (0.0803) 0.9955 (0.0044) 0.9838 (0.0028)

Note: The R2 scoremeasures the accuracy of predictions: the optimum score is 1.We calculate the R2 on the test data set for each of the 30 trials. The highest mean
R2 score for each combination of LLE and system (for both input types) is shown in bold. “One (six) time step(s)” refers to the number of time steps in the input.

F IGURE 5 Time series
of targets and predictions of test
data from the Rössler system.
Predictions made by an MLP
with six input time steps. The
R2 scores for the period shown
are 0.4393, 0.3175, and 0.9981
for LLEs 1, 2, and 3, respectively.
[Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 As with
Figure 5 for the Lorenz 63
system. The predictions are
made by a CNN with six input
time steps. The R2 scores for the
period shown are 0.7981,
0.4897, and 0.9953 for LLEs 1, 2,
and 3, respectively. [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Impact of local heterogeneity in phase space

The variability of the LLEs on the strange attractor of
chaotic systems is a known feature, the immediate conse-
quence of which is a highly state-dependent predictability
horizon: two slightly different initial conditions can gener-
ate trajectories with hugely different degrees of instability.
In a recent work, Lucarini and Gritsun (2020) have for the
first time shown how this variability is related to the pres-
ence and distribution of unstable periodic orbits, eachwith
a different degree of instability, densely filling the attrac-
tor. Arbitrary solutions are bounced among these unstable
periodic orbits, taking their local instability features when
they are in proximity.

Recall from Section 4 that, in both dynamical systems,
there are regions of the system’s attractor where the values
of LLEs 1 and 2 are locally heterogeneous (LLE 3 is every-
where locally homogeneous). The locally heterogeneous
regions in the Rössler system are in the loop with posi-
tive z-values, and in the Lorenz 63 system they form a strip
that lies halfway between the outside edge and the centre
of each wing. Figure 7 shows where the larger prediction
errors occur on the attractor, for all configurations with a
six-time-step input. More precisely, it shows the detraction
from the perfect R2 score of 1 contributed by each point.
We see that, for all ML algorithms, larger errors occur in
the locally heterogeneous regions. Moreover, the locally
heterogeneous regions are robustly difficult: for the most
accurate algorithm in the Lorenz 63 system (CNN), larger
prediction errors only occur in these regions. This suggests
that local heterogeneity plays a key role in determining
where on the attractor it is possible forML tomake reliably
accurate predictions of LLEs.

Figure 8 shows that a similar pattern occurs for the
absolute relative error of predictions. The relative error
compares the size of the error with the size of the tar-
get value. Notably, there are some large relative errors
in the locally homogeneous regions of the Rössler sys-
tem attractor (i.e., in the disc), since the relative error is
especially punitive when the target value is close to zero.

The difficulty of making accurate predictions in these
regions is in line with ML theory. ML algorithms work
by optimising a model (such as a NN) to approximate
the map from the input to the target of the training data.
ML algorithms are successful if the optimised model also
approximates themap from input to target on unseen data,
such as test data. This is possible only if the training data
provide enough information about the unseen data. The
fundamental problem in locally heterogeneous regions is
that the training data cannot provide enough information
because the LLE values are noisy. In other words, the tar-
get values are highly variable, even as length-scales tend
to zero. Thus the target values of unseen data are likely to

be quite different from those of nearby seen data. Conse-
quently, as local heterogeneity increases, ML models are
less able to generalise from training data to unseen data.

The characteristics of the local heterogeneity explains
the differences in prediction accuracy between the two
dynamical systems. In the Rössler system, local hetero-
geneity in the loop of the attractor results in poorer pre-
dictions during the aforementioned fluctuation events. As
explained above, errors during fluctuation events strongly
reduce the R2 score. On the other hand, in the Lorenz 63
system the values of LLEs 1 and 2 in their respective het-
erogeneous regions (see Figure 2) are relatively close to
the mean: the largest deviations from the mean are in
locally homogeneous regions. Therefore, the prediction
errors resulting from locally heterogeneous regions are
likely to be small compared with the deviation of the tar-
get values from themean. Consequently, the differences in
local heterogeneity explain the higher R2 scores achieved
for LLEs 1 and 2 of the Rössler system, compared with the
Lorenz 63 system.

Impact of statistical distribution of targets
and predictions

The poorer prediction accuracy for the Rössler system is
also explained, to a lesser extent, by the statistical distri-
bution of the LLE values. As described in Section 4, the
Rössler system LLEs 1 and 2 include “extreme events”,
that is, values of large magnitude that appear infrequently.
Predicting these extreme events is very challenging for
any model, and particularly so for ML: one would need
to enlarge the training data set commensurately to the
(very long) return times of the extreme events. As noted
above, we found a marked improvement in the LSTM
performance with a tenfold increase in data-set size (see
Figure 3).

A complementary picture of the prediction accuracy
is given in Figure 9, which shows target values plotted
against predicted values. The panels for the first and sec-
ond LLEs of the Rössler system show that all four ML
algorithms fail to predict the larger magnitude targets
accurately. Similarly, the QQ plots in Figure 10 show that
the predictions fail to replicate the extremities of the true
values: the minimum andmaximum of the predictions are
lower in magnitude than those of the target. For instance,
for LLE 1, we see that the NN methods make few predic-
tions greater than 10 in magnitude, despite target values
reaching magnitudes of 25. This behaviour can also be
seen in the time-series plot (Figure 5). In the Lorenz 63
system, however, the larger-magnitude targets occur more
frequently and are thus well represented in the training
data set. Consequently, we see in Figure 10 that the larger
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F IGURE 7 Recall the definition of the R2 score (Equation 13): the distance from the perfect score of 1 is given by the sum of squares of
residuals divided by the total sum of squares. Here we give a local (in phase space) description of the contribution towards that distance made
by each prediction in a set of 20,000 test examples. Points are located at the current time step xk of the input, and both coloured and sized by
the square of the residual, divided by the total sum of squares. Darker points contribute a greater reduction to the R2 score. If we denote the
colour values as a

𝑗

, then R2 = 1 −
∑
a
𝑗

. We show all configurations with a six-time-step input. For each configuration, we use the data-set
instance for which the R2 score was closest to the mean (as shown in Table 7). [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I GURE 8 As with Figure 7, but point colour and size show the absolute relative error, given by |y − ŷ|∕(𝜖 + |ŷ|), where 𝜖 = 10−6, y is
the prediction, and ŷ is the target. The darker the point, the larger the absolute relative error of the prediction. [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F IGURE 9 Scatter plots of targets versus predictions, for a
test data set. Note that the axis scales differ in each panel. For each
method–system combination, the data are from the data-set
instance with R2 closest to the mean for all data-set instances. Only
results from setups with six input time steps are shown. Note that
all scatter plots show different levels of heteroskedasticity, that is,
the variance of a predicted value depends on the value of the target.
This is a well-known challenge for regression methods. [Colour
figure can be viewed at wileyonlinelibrary.com]

magnitudes are well represented in the predictions distri-
bution, even if the predictions sometimes fail to capture
the amplitude of the targets on a pointwise basis, as illus-
trated in Figure 6.

Impact of ML approaches to exploiting
temporal structure

Each of the ML algorithms we test takes one of three
approaches to exploiting the temporal structure of the
input, as discussed in Section 3.2. A comparison of these
approaches can only be made when there is nontrivial
temporal structure: this paragraph refers only to results
with the six-time-step input. We find that there is no sin-
gle optimal approach across both systems and all data-set

F IGURE 10 The 1000 quantiles of the predictions are plotted
against those of the targets, revealing how well the two distributions
match. The closer the graph to the y = x line (dashed white), the
closer the prediction distribution to the target distribution. Note
that there is not necessarily any relationship between the proximity
of distributions and (pointwise) accuracy of predictions. In each
panel, and for each machine learning method, the quantiles are
from the test data of the data-set instance with R2 closest to the
mean. Only results from setups with six input time steps are shown.
[Colour figure can be viewed at wileyonlinelibrary.com]

sizes. Figure 4 shows that, with the 105 data set, the MLP
and LSTM perform comparatively well in the Rössler sys-
tem but farmore poorly in the Lorenz 63 system. However,
with the 106 data set, clearer patterns emerge: in both sys-
tems, the LSTM is the most accurate and the MLP and
CNNperform similarly well.With the larger data set, there
is not a clear distinction in performance between the three
approaches.

Impact of input type

With the 105 data set, the input type has a big impact
on the MLP and LSTM algorithms, particularly for LLE
2 of Lorenz 63: the mean R2 score for MLP is 65% better
with one time step than with six, and for the LSTM it is

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 8 The time elapsed for one set of LLEs to be calculated (by the standard method) or predicted (by the ML algorithms).

Execution time per set of three LLEs
Standard
method RT MLP CNN LSTM

Rössler Mean 2.32e−4 9.96e−5 2.37e−2 2.38e−2 2.34e−2

𝜎 2.16e−5 3.51e−6 2.36e−2 2.57e−3 2.51e−2

Lorenz 63 Mean 9.69e−4 9.88e−5 2.36e−2 2.37e−2 2.31e−1

𝜎 2.53e−3 2.26e−6 2.85e−2 2.83e−2 1.60e−3

Note: The table shows the mean and standard deviation of elapsed time from 4000 trials.

94% better. However, with the 106 data set, clearer patterns
emerge: in the Rössler system, the one-time-step input
achieves the same or better mean R2 for all algorithms,
whereas in Lorenz 63 the six-time-step input achieves
higher mean R2 for all algorithms and lower variance
of R2 for all NN algorithms. This may be due to the
more complicated dynamics of the Lorenz 63 system (see
Section 4), or Lorenz 63 having a smaller Lyapunov time
(1.1 compared with 5.1 in the Rössler system), meaning
that six time steps providesmore information in Lorenz 63.
As mentioned in Section 5.1, in an idealised case (with-
out computational constraints) one would optimise the
input to include more distant time steps. The compari-
son between the 105 and 106 data sets shows that some
NN algorithms require more data in order to exploit the
additional information provided in the six-time-step input
fully.With the 106 data set, themaximal difference ofmean
R2 scores between input types (for any given algorithm) is
small: one time step is 10% better in Rössler (LSTM, LLE 2)
and six time steps is 9% better in Lorenz 63 (LSTM, LLE 2).

Among two input types we tested, the R2 scores in
Table 7 (for the 105 data set) suggest that, across all algo-
rithms, there is only a small advantage to be gained by
providing six time steps in the input rather than one.
However, for a given algorithm, the input type can have
a big impact. Figure 3 shows that this is especially true
for the smaller data set of 5 × 104 in the Rössler system,
where the NN prediction accuracy was far lower with the
one-time-step input.

Computation time

As stated previously, this is a feasibility study focused on
accuracy. Nevertheless, we discuss here briefly the com-
putational cost, keeping in mind, however, that optimis-
ing the latter was not our priority. These arguments are
thus included for context and completeness, and not as
a proof of viability. Table 8 shows the mean (and stan-
dard deviation) time elapsed per prediction of the three

LLEs, computed over 4000 trials on a CPU processor in
a personal computer. The RT is two orders of magnitude
faster than the NNs. This is expected: the RT has far fewer
trainable parameters (see Table 6) and, unlike the NNs,
does not require the evaluation of activation functions.
The RT is the only ML algorithm that is faster than the
standard method of computing LLEs (propagating pertur-
bations and orthogonalising, ignoring the time taken by
the spin-up iterations). Despite the comparative simplicity
of the RT, it achieves R2 scores that are close to those of the
NNs, although it is less close in the Lorenz 63 system. It
is likely that the number of output values (constrained by
the maximum leaf nodes hyperparameter) limited the RT
performance more strongly in the Lorenz 63 system, due
to the greater complexity of the Lorenz 63 attractor.

Finally, we speculate on the cost of making predictions
in the subproblem (see Section 3.1). The energy cost (mea-
sured in flops) of the RT scales linearly with the number
of LLEs, since a separate tree is trained for each scalar tar-
get. However, the time cost remains the same, as the RTs
can be executed in parallel. For the NNs, the potential cost
saving is not clear without further experimentation. Less
expensive NNs could be attained via pruning or distilling
methods: see, for example, Molchanov et al. (2017).

6 DISCUSSION AND SUMMARY

This study discusses the use of supervised machine learn-
ing (ML) to support numerical forecasting of chaotic
dynamics. A huge amount of work has appeared recently
at the crossroads between ML and the geosciences,
whereby the former has provided novel data-driven solu-
tions to complement or, in some ideal scenarios, substitute
the physical models see e.g. Sonnewald et al., 2021. In this
work we took a different approach that we referred to as
“nonintrusive”.

We did not pursue improving the given physical model
with a ML model, but rather using ML models as a
supplementary tool that provides information to drive



1258 AYERS et al.

adaptive decisions while running the prediction. The
range of possible desirable information is ample—for
example, anticipating a regime change or the onset
of intense convective events—as is that of consequent
actions. In this work, we focused on chaotic systemswhere
real-time knowledge of the unstable properties of the sys-
tem’s state is of paramount relevance. Local Lyapunov
exponents (LLEs) provide this knowledge in the form of
the local (in time) exponential rates at which errors about
the system’s state evolve (Benettin et al., 1980a; Pikovsky
and Politi, 2016). Nevertheless, they are notably difficult
to compute, require the coding and maintenance of a tan-
gent linear model, and the computational cost grows fast
with the system’s size. This work is a feasibility study that
investigates the accuracy with which supervised ML can
estimate the LLEs of a dynamical system trajectory based
only on the system state at the current time step and a few
recent time steps.

We tested four supervised ML algorithms—a regres-
sion tree (RT), a multilayer perceptron (MLP), a convo-
lutional neural network (CNN), and a long short-term
memory network (LSTM)—on two dynamical systems
(the Rössler system and Lorenz 63 systems). The dynam-
ical systems are chaotic, dissipative, three-variable ODE
systems. The algorithms encompass three approaches to
exploiting the temporal structure of the input.

Our results indicate that the best algorithm depends
on the dynamical system, the size of the data set, and the
number of time steps included in the input. Overall, the
results show that in certain conditions the LLEs can be
predicted well: this depends on the system dynamics, the
LLE being predicted, and, importantly, the local hetero-
geneity of the LLE in the proximity of the given state. In
particular, the average accuracy was lowest for the neu-
tral LLE. Further work is required to see if this result also
holds in ocean–atmosphere systems (and multiscale sys-
tems more generally), where the neutral and near-neutral
exponents are key to determining local predictability (De
Cruz et al., 2018; Quinn et al., 2020). Our results suggest
that the feasibility of using supervised ML to drive adap-
tive actions in an operational setting will depend on the
specific use case: the forecasting model, the desired target
information, and the intended adaptive actions.

Additionally, we investigated the impact of the size of
the data set used to train the ML algorithms. We found
that, with data sets of 106 examples, compared with 105
examples, the variance of the R2 score reduced but there
were only marginal improvements in the mean R2 score.
With the 106 data sets, the LSTM performed best in
both systems. However, with the 105 data set, the LSTM
was limited: the MLP performed best in the Rössler sys-
tem whereas the CNN performed best in the Lorenz 63
system. The RT achieves an accuracy that is close to the

best-performing algorithm in both systems, whilst being
computationally much cheaper than the NNs. We tested
two input types: one with one time step and one with six
time steps (of the system state). We found the best input
type depends on data-set size and dynamical system: in the
Rössler system, six input time steps is better for the small-
est data set (5 × 104), whilst in the Lorenz 63 systemmany
more data (106) are required for the LSTM and MLP to
achieve comparable performance with the six-time-step
input. We further show that large prediction errors occur
when the current state is in a region of local hetero-
geneity on the system attractor. Outside the locally het-
erogeneous regions, the best-performing algorithms make
consistently accurate predictions. The differences in local
heterogeneity between the two systems explain the lower
R2 scores achieved for LLEs 1 and 2 in the Rössler sys-
tem, compared with the Lorenz 63 system. We explain
that local heterogeneity is an insurmountable problem
for deterministic ML predictions. This challenge could be
mitigated if the ML prediction also included a reliable
uncertainty quantification.We suspect that an uncertainty
quantification could be made either by using Bayesian
NNs (Wang and Yeung, 2016) or by including a measure-
ment of the nearby local heterogeneity in the target of each
example.

The low-dimensional setting permitted extensive
experimentation in this work, providing lessons that will
be useful should this “nonintrusive” approach be taken in
weather and climate prediction. The next steps will be to
apply the approach of this work to spatially extendedmod-
els with more dimensions. There are several foreseeable
challenges on the path from the very low-order models of
this work to the envisioned setting of operational weather
prediction models. The first challenge is to generate suit-
able data sets, since the calculation of LLEs does not scale
well and requires a tangent linear model (see Section 2.2).
However, the requirement of a tangent linearmodel can be
avoided by using bred vectors (e.g. Toth and Kalnay, 1997;
Uboldi and Trevisan, 2015). Additionally, the attractor of
any numerical weather prediction (NWP) model is com-
plex and high-dimensional: very large data sets will be
required if sufficient attractor coverage is to be obtained.
For a NWP model with (108) variables, one would need
(1012) input–target pairs to obtain a ratio between the
degrees of freedom of the NWP model and the size of
the ML data set that is similar to the ratio used in this
study. If one were to use ERA5 reanalysis data (Hersbach
et al., 2020) as input, a data set of (1012) single time step
inputs would amount to approximately (109) TB of data,
which is unfeasibly large. Furthermore, due to the long
time-scales involved in teleconnection events, the number
of such events can be small even in long time series. Given
the number of input features, this can lead to a “small
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data problem”: see, for example, Vecchi et al. (2022) and
references therein.

Therefore, it may be necessary to generate training
data using a reduced-dimension version of the opera-
tional model. For example, in Quinn et al. (2021); Quinn
et al. (2022), LLEs are computed by reducing the data
dimension (via empirical orthogonal functions) and con-
structing a multistate vector autoregressive model.

Once initial training data have been generated, the cost
of making predictions with the ML model can be reduced
by reducing the dimension of the training data further, that
is, by performing feature extraction (Guyon et al., 2006).
For example, ML techniques such as autoencoders can
be used for dimension reduction: for example, see Mack
et al. (2020). Also, it may be possible to curate training
data sets strategically to reduce their size. Finally, if the
intended use case requires only part of the LLE spec-
trum, then cost savings can be made (a) when generating
training data, which scales as (n2) rather than (n3)
(see Section 2.2), and (b) when making predictions (see
Section 5.3).

The computational benefit of the ML approach inves-
tigated here is twofold. The ML approach estimates LLEs
directly from the current system state, thus avoiding the
cost of the long spin-up that is required by the conventional
method for calculating LLEs. Second, the ML approach
has the potential to be cheaper per iteration of LLEs. We
found that the lightest algorithm we tested, the RT, was
computationally cheaper (by a factor of 10) than the con-
ventional method for calculating LLEs (see Table 8).

Although the NNs were comparatively costly in this
setting, we expect that in a higher-dimensional, opera-
tional setting, NNsmay be competitive. It is unknown how
the required NN size will increase with the system dimen-
sion: this will require experimentation. The time cost of
making predictions with NNs may be reduced (relative to
the size of the NNs) by using purpose-built ML hardware.
On the other hand, the cost of calculating LLEs numeri-
cally (by propagating perturbations and orthogonalising)
will scale as(n3) if computing the full spectrum, or(n2)
if the number of LLEs computed is much smaller than the
dimension of the NWP model n.
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