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Bayesian inference for quantiles of the log-normal
distribution

Aldo Gardini∗, Carlo Trivisano∗, Enrico Fabrizi†

Abstract

The log-normal distribution is very popular for modelling positive right-skewed data and represents a com-
mon distributional assumption in many environmental applications. Here we consider the estimation of
quantiles of this distribution from a Bayesian perspective. We show that the prior on the variance of the log
of the variable is relevant for the properties of the posterior distribution of quantiles. Popular choices for
this prior, such as the inverse gamma, lead to posteriors without finite moments. We propose the generalized
inverse Gaussian and show that a restriction on the choice of one of its parameters guarantees the existence
of posterior moments up to a pre-specified order. In small samples, a careful choice of the prior parameters
leads to point and interval estimators of the quantiles with good frequentist properties, outperforming those
currently suggested by the frequentist literature. Finally, two real examples from environmental monitoring
and occupational health frameworks highlight the improvements of our methodology, especially in a small
sample situation.

Keywords: Bessel Functions; Environmental Monitoring; Generalized Inverse Gaussian; Small
Samples

1 Introduction

The log-normal is among the most popular distributions for modelling positive, right-skewed con-
tinuous data. Its relationship to the normal (if X ∼ N (ξ, σ2) then Z = exp(X) ∼ LN (ξ, σ2) is said
to be log-normally distributed) makes this distribution appealing to applied scientists from various
fields (see for instance Kosugi, 1996; May et al., 2000; Ignatov et al., 2000; Limpert et al., 2001;
Lawless, 2003; Bengtsson et al., 2005).

In this paper we focus on the estimation of log-normal quantiles, that can be of interest in
many applications. Specifically, in environmental monitoring and occupational health analyses it is
common to estimate extreme quantiles in the right tail of a skewed distribution from small samples
(Bullock and Ignacio, 2006; Gibbons et al., 2009; Krishnamoorthy et al., 2011), or to compare a
fixed legal exposure limit to an extreme quantile (or to its upper confidence limit, UCL) estimated
from a typically small sample. In this case, the tools available in the current literature can produce
unefficient point and interval estimators with poor coverage or low precision and can be significantly
improved. The methodology we propose improves current methods, especially in the analysis of
small samples.

As a motivating real-data example, the following popular data set (USEPA, 2009; Millard, 2013)
is considered. It consists in n = 8 chrysene concentrations (ppb) obtained from two background
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1 Introduction 2

wells:
19.7, 39.2, 7.8, 12.8, 10.2, 7.2, 16.1, 5.7.

Background wells data are used to set the tolerance limit for chrysene concentrations in the site.
Specifically, the limit equals the 95% UCL of the 95−th percentile. In doing this, as in most of the
cases samples from background wells are small, parametric assumptions, and namely the log-normal,
are often used.

Statistical techniques for the estimation of this site-specific UCL described in the EPA guidelines
(that we will label in section 2.2 as naive) lead to overly conservative, i.e. too large, values for
the tolerance limit. This implies wrong evaluations of safety for the site and consequently wrong
decisions.

Inference about the log-normal distribution often targets functionals of (ξ, σ2) such as θa,b =
exp(aξ+ bσ2), that include all moments along with the mode and the median. In case of interest on
the quantiles, the target functional is θp = exp(ξ+Φ−1(p)σ) where Φ−1(p), p ∈ (0, 1) is the quantile
function of a N (0, 1) random variable.

Notoriously, naive transformations of estimators of (ξ, σ2) efficient on the transformed scale do
not lead to efficient estimators of functional on the exponential scale such as θa,b or θp (Finney,
1941). The problem of estimating moments of the log-normal distribution and especially the mean
(a = 1, b = 0.5) has a long tradition in both the frequentist and Bayesian literature. For the
frequentist approach we may refer to Crow and Shimizu (1988) for a review of early results and
to Shen et al. (2006). On the Bayesian side, a key reference is Zellner (1971); Rukhin (1986)
proposes a Bayesian estimator with optimal frequentist properties (mean square error); Fabrizi and
Trivisano (2012) note that under many popular choices for the prior p(σ2), the posterior for θa,b,
although well defined, has no finite moments, a fact that precludes the use of ordinary loss functions
for summarizing the posterior distribution. Adopting a generalized inverse Gaussian (GIG) for
p(σ2), they characterize the choices of the hyperparameters that guarantee the existence of posterior
moments for θa,b and propose to set hyperparameters in order to optimize frequentist properties of
point predictors.

The estimation of log-normal quantiles has received little attention so far. In the frequentist
literature, Longford (2012) identifies a class of estimators depending on two constants that he de-
termines with the aim of minimizing the frequentist mean square error (MSE); he overlooks relevant
inferential problems such as interval estimation. As far as we know, in the Bayesian literature, the
problem has not been considered. This paper contributes to fill this gap.

In the first place we adapt the results in Zellner (1971), which are conditional on σ2; then in
line with Fabrizi and Trivisano (2012) we propose a GIG prior for σ2 and study which values of
the hyperparameters lead to posterior distributions of the quantiles with finite moments up to a
prespecified order. It turns out that notable special cases of the GIG, such as the inverse gamma,
lead to posterior for θp without finite moments.

We study analytically the posterior distribution of the quantiles under a conjugate Normal-GIG
prior for (ξ, σ2) (Thabane and Haq, 1999). This posterior is a distribution new to the literature and
we label it as SMNG: the acronym stays for a scale-mean mixture of normal distribution assuming
a GIG distribution on the scale. We study the properties of this distribution and obtain formulas for
the density, moments and propose algorithms to generate random samples from it. We discuss the
choice of hyperparameters of p(σ2) that, a part allowing for the existing of posterior moments, turns
out to be relevant in the analysis of small samples. In doing this we aim both at point predictors
with small mean square error and posterior probability intervals with good frequentist coverage,
proposing two alternative solutions. We find that the two goals are to some extent conflicting
and hyperparameters optimal for minimizing the MSE lead to sub-optimal intervals and vice versa.
The choice should then be tuned on inferential aims of specific applications. Of course, as the
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sample size increases, the choice of hyperparameters, others than the one ruling the existence of
posterior moments become irrelevant. Our proposals are motivated by both theoretical results and
simulations. Specifically, we obtain probability intervals that reach the nominal frequentist coverage
and are shorter than those obtained with the methods currently used.

All the methods presented in this paper have been implemented in R functions that are included
in the BayesLN package (Gardini et al., 2020), in order to simplify the inferential process to practi-
tioners.

The rest of the paper is organized as follows. In section 2 we review published results on log-
normal quantiles relevant to our research. In section 3 we obtain the posterior for θp when a GIG
prior for σ2 is assumed, while the problem of hyperparameters choice is discussed in section 4. Section
5 introduces a simulation exercise and section 6 two applications of the methodology we propose
to small real datasets from the environmental monitoring literature. Section 7 offers concluding
remarks.

2 Preliminary results on estimation of quantiles

In this section we review some earlier results on quantile estimation for the log-normal distribution
that will be later used in discussing our proposals. Before doing this we set some notation.

Let’s assume that a random sample X1, . . . , Xn is drawn from a X ∼ N (ξ, σ2); we are interested
in estimating θp = exp(ξ+Φ−1(p)σ), p ∈ (0, 1), the p-quantile of the log-normal variable Z = exp(X).
Let’s denote X̄ = n−1

∑n
i=1 Xi and V 2 = n−1

∑n
i=1(Xi − X̄)2 the two sufficient statistics.

2.1 Non-parametric estimation

Although apparently straightforward, there exist a host of different methods for basic non-parametric
estimation of quantiles (see Hyndman and Fan, 1996). As a benchmark for our proposals, the
standard R function quantile will be considered, and specifically the type 7 method based on
Gumbel (1939). The estimator of the p-quantile, included between the positions k − 1 and k in the
ordered sample is defined as:

Q̂7
p = X(k−1) −

(
X(k−1) −X(k)

) pk+1 − p

pk+1 − pk
, (1)

where pk = (k − 1)/(n− 1).

2.2 Naive estimation

A simple estimator of θp can be obtained replacing unknowns with their maximum-likelihood esti-
mators:

θ̂p = exp
{
X̄ +Φ−1(p)σ̂

}
, (2)

where σ̂ =
√
V 2 (S =

√
nV 2/(n− 1) can alternatively be used in small samples). In the same

line we can compute the extremes of the confidence intervals. In the two sided case with the fixed
confidence level 1− α they are (Gibbons et al., 2009):[

exp

{
X̄ + t(α

2 ,n−1,kp)
σ̂√
n

}
; exp

{
X̄ + t(1−α

2 ,n−1,kp)
σ̂√
n

}]
, (3)

where t(α
2 ,n−1,kp) is the quantile α

2 of a non-central Student’s t distribution with n − 1 degrees of

freedom and a non-centrality parameter kp =
√
nΦ−1(p).
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2.3 Longford’s minimum MSE estimator

Longford (2012) proposes an estimator of θp in the form:

Qp = exp
{
X̄ + bpσ̂ + dpσ̂

2
}
. (4)

The values of the constants (bp, dp) are determined by minimizing the MSE of the estimator using a
Newton-Raphson algorithm. We point out that this estimator has finite expectation only when dp
is negative or when σ2 < n−1

2dp
. The same inequality divided by 2 determine the existence condition

for the MSE. These conditions are not testable since the variance σ2 is not known.

2.4 Bayes estimator conditional on σ2

Conditionally on σ2, let’s assume a normal prior for ξ:

ξ|σ2 ∼ N
(
ξ0,

σ2

n0

)
. (5)

It can easily be shown that ξ|σ2, X̄, V 2 ∼ N
(
ξ1,

σ2

n1

)
where ξ1 = wX̄ + (1−w)ξ0, n1 = n+ n0 and

w = n
n1

. Moreover, if we denote ηp = log θp = ξ +Φ−1(p)σ, then we have that:

ηp|σ2, X ∼ N
(
η̄p,

σ2

n1

)
, (6)

where η̄p = ξ1 +Φ−1(p)σ.
Zellner (1971) studies a minimum MSE for the log-normal mean θ1,0.5 among those in the form:

θ∗1,0.5 = k · exp{X̄}, where k is a constant possibly involving σ2. He assumes the flat prior p(ξ) ∝ 1,
a special case of (5) for n0 → 0. He finds that the minimum MSE estimator can be obtained as the
Bayesian point predictor that minimizes the relative quadratic loss function. We can extend Zellner
(1971) result to the estimation of log-normal quantiles.

Theorem 2.1: Among the estimators of the functional θp in the class θ∗p = k · exp{X̄}, the one that
minimizes the frequentist MSE is:

θ̂∗p = exp

{
X̄ + σΦ−1(p)− 3σ2

2n

}
. (7)

It coincides with the Bayes estimator that minimizes the relative quadratic loss function (condi-
tionally on σ2).

We note that the predictor minimizing the frequentist mean square error is different from the ex-
pectation of exp(ηp|X̄, σ2) that can be derived from (6).

3 The posterior distribution of the log-normal quantiles under a Generalized
Inverse Gaussian prior distribution for σ2

In this paper we assume a generalized inverse Gaussian (GIG) prior for σ2:

p(σ2) ∼ GIG(λ, δ, γ). (8)
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The density of the GIG distribution may be written as follows:

p(x) =
(γ
δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{
− 1

2

(
δ2x−1 + γ2x

)}
1ℜ+ , (9)

where Kν(y) is the Bessel K function of order ν and argument y (Gradshteyn and Ryzhik, 2014).
The parameters domain is given by δ > 0, γ ≥ 0 if λ < 0; δ > 0, γ > 0 if λ = 0; δ ≥ 0, γ > 0 if
λ > 0.

The first reason to consider the GIG is that many important distributions may be obtained as
special cases. For λ > 0 and γ > 0, the gamma distribution emerges as the limit when δ → 0. The
inverse-gamma is obtained when λ < 0, δ > 0 and γ → 0 and an inverse Gaussian distribution is
obtained when λ = − 1

2 . For more details on the GIG distribution see Jorgensen (1982) or Paolella
(2007).

If we couple (5) to (8), the resulting prior for (ξ, σ2) can be labelled as Normal-GIG (Thabane
and Haq, 1999) that enjoys interesting conjugacy properties. A first relevant result is that:

σ2|X̄, V 2 ∼ GIG
(
λ̄,
√

δ2 + nV 2, γ
)
, (10)

where λ̄ = λ− n
2 . For a proof see Fabrizi and Trivisano (2012). A second result is:

ξ|X̄, V 2 ∼ GH
(
λ̄, γ̄, 0, δ̄, µ̄

)
, (11)

where the GH is the Generalized Hyperbolic distribution introduced by Barndorff-Nielsen (1977)

and γ̄ =
√
n1γ, δ̄ =

(√
n1

)−1 √
δ2 + nV 2, µ̄ = ξ1. For details on the GH distribution see Bibby

and Sørensen (2003). This result is consistent with the conjugacy of the Normal-GIG prior, since
the normal prior (5) for ξ is conditioned with respect to σ2 and it can be shown that marginally
the prior on ξ is a GH distribution. The posterior (11) is a direct consequence of Barndorff-Nielsen
introduction of the GH as a normal variance-mean mixture where the mixing distribution is GIG.
Specifically, if:

Y = µ+ βW +
√
WQ,

where µ, β ∈ ℜ, Q ∼ N (0, 1), W ∼ GIG(λ, δ, γ) with Q and W independent, then the marginal
distribution of Y will be GH (i.e., Y ∼ GH(λ, α, β, δ, µ), where α2 = β2 + γ2).

Formula (11) is very useful to study the posterior of θa,b as log θa,b = aξ + bσ2 is still GH
distributed because of closure of GH with respect to linear affine transformations. A similar result
would be useful to obtain the posterior of θp. In this case we have a different variance-mean mixture
that we can label as normal square root mean-variance mixture. Specifically, if we consider:

Y ′ = µ+ β
√
W +

√
WQ,

assuming W ∼ GIG(λ, δ, γ) independent on Q, the marginal distribution of Y ′ is not a GH any
more. The resulting distribution has never been studied in the literature before. As anticipated in
the introduction, we label it as SMNG. We can now state the following result.

Theorem 3.1: Assuming the priors (5), (8) then it is possible to obtain ηp|X̄, V 2 ∼ SMNG(λ̄, δ̄, γ̄, β̄, µ̄),
where β̄ =

√
n1Φ

−1(p). As a consequence the main result is that:

θp|X̄, V 2 ∼ logSMNG(λ̄, δ̄, γ̄, β̄, µ̄). (12)
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For details on the real-valued SMNG distribution, its density, interpretation of parameters, mo-
ments and other properties see the Appendix A in the supplementary material. The log−SMNG
distribution is such that its log transform is SMNG distribution. See the Appendix A for a descrip-
tion of this distribution as well. Here we note that the parameters of the θp posterior distribution
are consistent with the meaning of the log−SMNG parameters: a higher posterior sample size n1

implies lighter tails (smaller and negative λ and bigger γ) and a density that is more peaked around
the mode (smaller δ). On the other hand, the asymmetry parameter β is not an actual parameter as
it is a function of the specific quantile under consideration through the inverse of the standardized
Gaussian cumulative distribution function, and the location parameter µ̄ is given by the conditioned
posterior mean ξ1.

Using theorem A.2 in the Appendix we have that the r-th moment of θp is given by:

E
[
θrp
]
= eµr

(
γ̄√

γ̄2−r2

)λ̄

Kλ(δ̄γ̄)

+∞∑
i=0

(rβ̄)i

i!

(
δ̄√

γ̄2 − r2

) i
2

Kλ̄+ i
2

(
δ̄
√

γ̄2 − r2
)
, (13)

that is defined if r < γ̄. We can state the following result.

Theorem 3.2: Assuming the priors (5), (8) then θp|X̄, V 2 has finite moments up to the order r if and
only if:

γ >
r√

n+ n0
. (14)

The existence of posterior moments is subjected to a restriction on the parameter γ, that controls
the right tail of the distribution. Fabrizi and Trivisano (2012) obtained a parallel results for the
posterior distribution of θa,b. The condition (14) is less restrictive than the one they found; this
could be expected as the functional involved in the quantile estimation is characterized by less
variability, and consequently lighter tails, because of the presence of σ instead of σ2. We note that
the restriction on γ does not depend on the quantile estimated; moreover it becomes less and less
restrictive as n is increases, thus allowing for priors with heavier tails. Condition (14) requires that
γ is above a positive threshold. Note that the popular inverse gamma prior on σ2, a special case
of the GIG for λ < 0, δ > 0, γ → 0, does not respect condition (14) thereby leading to a posterior
distribution with non-existent moments for finite sample sizes. Similarly, the uniform prior over
the range (0, A) for σ (Gelman, 2006) implies that p(σ2) ∝ 1

σ1(0,A), which may be seen as an

approximation to a Gamma( 12 , ϵ) (where ϵ = (4A2)−1) truncated at A2. For λ > 0, γ > 0 and
δ → 0, GIG(λ, δ, γ) → Gamma(λ, γ2/2). If we let A → ∞, therefore, p(σ) ∝ 1 is equivalent to a
GIG prior with γ → 0 and thus implies non-existent posterior moments.

The result of theorem 3.2 can be extended to the case in which censored observation are included
in the sample (Balakrishnan and Mitra, 2011; Krishnamoorthy et al., 2011), as showed in appendix
B of the supplementary material. This is an important finding since the Bayesian framework allows
to easily deal with censored data, but the posterior moments of the target functional could be not
finite under popular prior settings. However, the investigation of the posterior properties are omitted
here since it is beyond the aim of this paper.

Focusing again on the uncensored data setting, we can now give the formulas for two Bayes
estimators obtained under alternative loss functions.

Theorem 3.3 (Bayes estimators of θp): Given that the posterior distribution for the target functional
θp is (12), then:
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1. the Bayes estimator of the log-normal p-th quantile under the quadratic loss function is:

θ̂QB
p =eξ1

( √
n1γ√

n1γ2−1

)λ̄

Kλ̄(
√
nV 2 + δ2γ)

+∞∑
j=0

β̄j

j!

( √
nV 2 + δ2

√
n1

√
n1γ2 − 1

) j
2

×

×Kλ̄+ j
2

(√
nV 2 + δ2

√
n1γ2 − 1

√
n1

)
,

(15)

that exists when γ > 1√
n1

;

2. the Bayes estimator under relative quadratic loss is:

θ̂RQB
p =eξ1

(√
n1γ2 − 4√
n1γ2 − 1

)λ̄

×

×

∑+∞
j=0

β̄j

j!

( √
nV 2+δ2

√
n1

√
n1γ2−1

) j
2

Kλ̄+ j
2

(√
nV 2+δ2

√
n1γ2−1√

n1

)
∑+∞

j=0
β̄j

j!

(
4
√
nV 2+δ2

√
n1

√
n1γ2−4

) j
2

Kλ̄+ j
2

(√
nV 2+δ2

√
n1γ2−4√

n1

) ;

(16)

that exists when γ > 2√
n1

.

Unfortunately, both estimators can only be expressed as infinite sums of Bessel K function.
These sums are convergent (see proposition A.2 in the Appendix).

Despite the complicated expressions of the proposed estimators, the developed R package BayesLN
contains the function LN quant() that allows to easily obtain the numerical results.

4 Choice of the hyperparameters for the GIG prior

The choice of hyperparameters, especially those of p(σ2), that we assume within the GIG family,
has a considerable impact on posterior inferences when the sample size is small. In this section
we propose two alternative choice strategies. First, we consider a weakly informative choice of the
hyperparameters that always satisfies the moments existence condition; in later sections this choice
will be shown to produce posterior probability intervals with good properties from a frequentist
perspective. The second choice strategy aims at obtaining Bayesian point predictors with optimal
frequentist MSE. In all cases only priors that guarantee the existence of at least the first two moments
for the posterior p(θp|X̄, V 2) will be considered.

4.1 A weakly informative choice for the hyperparameters

We start letting n0 → 0 in (5) that becomes p(ξ) ∝ 1, i.e. we specify an improper flat prior on
the location parameter on the log scale, that leads to ξ|X̄, σ2 ∼ N(X̄, n−1σ2). Note that, as a
consequence, posterior moments coincide with maximum likelihood estimators.

In this line, our proposal for choosing the hyperparameters vector (λ, δ, γ) is to have E(σ2|X̄, V 2) ∼=
V 2.
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Fig. 1: Log density of the weakly informative GIG distributions proposed and of the most common
vague inverse gamma priors.

Using a result from Fabrizi and Trivisano (2012) on the GIG distribution we have that

E
[
σ2|X

] ∼= λ+
√
λ̄2 + (nV 2 + δ2) γ2

γ2
. (17)

By means of a first order expansion of the square root around a value c, implying
√
c2 +m ∼= |c|+ m

2|c| ,

we have that

E
[
σ2|X

] ∼= (
nV 2 + δ2

)
−2λ+ n− 1

. (18)

If we set λ = 0 and δ = ε where a ε is a small number close to 0 (e.g. 0.01 or 0.001), then
E
[
σ2|X

] ∼= V 2. Note that δ2 can be be interpreted as the contribution of the prior to sample
residual sum of square, so setting it to a small vale makes sense in a weakly informative setting.

The approximation (18) does not depend on γ. In view of (14), we propose to set γ so to guarantee
the existence of the first two moments of p(θp|X̄, V 2). For any positive real ε > 0, γ = 2/

√
n+ ε can

be suitable. Nonetheless, very small ε can lead to numerical instability, especially for the variance
(informally speaking, because of barely existing moments). We then suggest to set ε = 1/

√
n leading

to:

γmin2 =
3√
n
. (19)

Note that, in view of (14), it is equivalent to imposing the existence of the first three moments
of p(θp|X̄, V 2). To sum up, our constrained weakly informative proposal for (λ, δ, γ) is given by
(λ = 0, δ = ε, γ = γmin2). From figure 1 we can see how the proposed prior (with n = 21 in
this case) has higher density than two inverse gammas with popular uninformative choices of the
hyperparameters over a wide range of σ2 values; the density becomes smaller in the right tail of the
distribution, a feature that guarantees the existence of posterior moments. To compute the estimates
under this prior setting it is required to specify the option method=‘weak inf’ in the LN quant()

function included in the BayesLN package.
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4.2 A choice of hyperparameters minimizing frequentist MSE of Bayes
estimators

In this section, in line with Rukhin (1986), we propose a choice of the hyperparameters aimed at
minimizing the frequentist MSE of the estimators (15) and (16). Let’s consider the first of the two,

θ̂QB
p : its frequentist MSE can be written as follows:

E
[(

θ̂QB
p − θp

)2]
= E

[
e2(wX̄+(1−w)ξ0)g(V 2)2 − 2θpe

w0X̄+(1−w)ξ0g(V 2) + θ2p

]
= θ2p

[
e2(1−w)(ξ0−ξ)+ 2w2σ2

n −2Φ−1(p)σ ×

×E
[(

g(V 2)− e(1−w)(ξ0−ξ)− 3w2σ2

2n +Φ−1(p)σ
)2]

+

+1− e−
w2

0σ2

n

]
.

(20)

where g(V 2) is implicitly defined by re-writing (15) as θ̂QB
p = eξ1g(V 2). We note that g(V 2) is

the only part that depends on the GIG-hyperparameters (λ, δ, γ). As we have five hyperparameters
(ξ0, n0, λ, δ, γ) the optimization problem is clearly over-parametrized.

A first step we take to simplify the problem is to set n0 as in the weakly informative setting, a
choice that protects from mis-specifications of ξ0. Then the part of the MSE involving (λ, δ, γ) can
be written as:

E

[(
g(V 2)− exp

{
Φ−1(p)σ − 3σ2

2n

})2
]

(21)

This quantity cannot be treated analytically because of the complicated mathematical expression
of g(V 2), involving infinite sums of Bessel K functions. For this reason we consider numerical
optimization.

We note that (21) involves the unknown σ2. When implementing numerical optimization it could
be replaced by V 2 but this is not advisable, both to avoid the use of data in the prior specification
process and to have the choice influenced by sampling variability that can be substantial in small
samples. We propose to replace σ2 with a guess s20. Of course, the closer the guess is to σ2 the
better it is, but we found that solutions are quite insensitive to s20 unless it is set much greater than
the actual σ2.

A global optimum for the hyperparameters (λ, δ, γ) cannot be found as it should be expected in
view of the fact that we have a single functional and three hyperparameters. Fabrizi and Trivisano
(2012), using an analytical approximation to the MSE of Bayes estimators of θa,b, found a solution
free of γ, in which λ could be expressed as a function of δ. Unfortunately, their approximation is
not viable in our case.

We propose to fix two of the GIG hyperparameters and search the optimal value of the third.
In the first place we set λ = 0, again as in the non-informative setting. The reason is technical:
this shape parameter appears in the order of the Bessel K functions and numerical optimization
algorithms involving it are unstable.

After careful exploration of numerical optimization results, not reported here for brevity, we
found that a strategy separating quantiles above and below the median is advisable. Specifically,
when

• p < 0.5: we fix γ to the minimum value that allows for the existence of the first two moments
of p(θp|X̄, V 2) according to the (19) and find numerically an optimal value for δ;
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• p > 0.5: fix δ and minimize with respect to γ. Recalling (18), it is possible to specify an
informative value of δ, considering it as the contribution of a prior sample to the residual sum
of squares. A general proposal could be δ = 1: in most applied problems, values of the variance
in the log scale σ2 are seldom greater than 2, so 1 can be read as a reasonable guess for the
size of an hypothetical deviation from the mean when n = 1. Of course, if the scale of the
problem is totally different, the user can specify alternative values for δ; in any case we have
evidence that δ = ε (i.e. a very small value) is not a good choice and leads to severely biased
Bayes estimators of θp in small samples.

Heuristically, searching for optimal γ for quantiles above the median, and optimal δ for those below,
is in line with the specialization of these parameters in the GIG distribution: γ rules the right tail of
the distribution that is not relevant when p < 0.5, while δ is more involved with the general spread
of the distribution and is therefore more relevant to the shape of the lower tail.

The case of the median (p = 0.5) is peculiar as θ0.5 does not depend on σ. If we try to minimize

(21), the solution points in the direction λ → −∞ that implies θ̂QB
p

∼= exp(X̄), the naive estimator.

To estimate θ0.5, the Bayes estimator under relative quadratic loss θ̂RQB
p is much more efficient,

although its performances deteriorate quite fast when p moves away from 0.5. We suggest to consider
θ̂RQB
0.5 when estimating the median. In line with θ0.5 not depending on σ2, the MSE is quite insensitive
to the choice of (λ, δ, γ), so the parameters suggested for the weakly informative setting can be used.

The numerical optimization procedures required to specify the optimal proposed prior are auto-
matically adopted when the option method=‘optimal’ in the LN quant() function included in the
BayesLN package is used.

5 A simulation exercise

In this section we use a simulation exercise to assess the impact of prior parameter choices when the
sample size is small. The aim of the simulation is twofold: first, to assess the frequentist properties of
the posterior probability intervals when parameters are chosen according to the weakly informative
strategy of section 4.1; second, to compare the frequentist MSE of the Bayes point predictor under
the MSE optimal strategy of 4.2 with relevant alternatives proposed in the literature. For the latter
case we evaluated also the performance of the posterior variance as a measure of the estimator
uncertainty.

We considered also the Bayesian estimators obtained under inverse gamma priors for σ2, in
particular we simulated the frequentist properties of the credible intervals and point estimators
when the classical small parameters inverse gamma σ2 ∼ IG(0.001, 0.001) and a more informative
setting σ2 ∼ IG(2, 1) are assumed. We remark that in both cases the posterior moments of θp are
not finite.

We note that, in the log-normal estimation context, MSE-optimality implies negative biased
estimators, so the objectives of posterior intervals with good frequentist properties and optimality
in terms of frequentist MSE are divergent targets when choosing hyperparameters. Of course, as
the sample size grows, the impact of the hyperparameters choice become less and less relevant.

In our simulation we generate samples form log-normal distributions with mean 0 in the log-scale,
i.e Z ∼ LN (0, σ2) and four different log-scale variances: σ2 = (0.25, 0.5, 1, 2). These values for the
variance are the same that Longford (2012) considers. The results related to n = (11, 21, 51) are
reported for all the studies, with the exception of the interval estimation case in which the figures
have the sample size in the abscissa and more values are considered. The same occurs for the quantile
p in the MSE evaluation, the values p = (0.05, 0.50, 0.95) are considered otherwise.
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Fig. 2: Average width of the credible intervals obtained under the weakly informative choice of the
hyperparameters for selected quantiles compared to the average width of the naive frequentist
confidence intervals.

All the results we present are based on B = 50, 000 samples, with the exception of the study
about the intervals that is more computationally expensive and B = 5, 000 replicates are considered.
All the R code is available.

In figure 2 we explore the average width of the posterior probability intervals based on the weakly
informative choice of hyperparameters. The intervals are defined by the 0.025 and 0.975 quantiles
of the posterior distribution found computing the quantile function. They are compared to the
naive intervals obtained by (3). A further comparison between the credible intervals obtained under
the proposed GIG prior and the classical inverse gamma prior is reported in the appendix D in
the supplementary material. There, the frequentist coverage is reported as well, and the proposed
interval shows a better behaviour with respect to the inverse gamma case.

From figure 2, it is apparent that for quantiles in the right tail of the distribution and small
sample sizes, the quantiles obtained using the GIG prior under weakly informative choice of the
hyper-parameters achieve the nominal coverage with significantly narrower intervals; the larger σ,
the more we gain in interval width; moreover the gain is apparent also for the median and not only
for quantiles in the right tail. For the 0.05 quantile we did not find any relevant difference.
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Fig. 3: Relative root mean square error of selected estimators: the Bayes predictor with MSE-
minimizing hyper-parameters choice (Bayes Opt.), the predictor (4) (Longford) and the naive
predictor (2) (Naive)

Then, we study the frequentist relative root mean squared error (RRMSE) of the Bayes estimator
obtained under the choice of hyperparameters discussed in section 4.2. In the framework of this
simulation, in line with Longford (2012), σ2 has been replaced by S2 when optimizing (21) to avoid
subjective choices, even if we remark that the use of a guess of σ2 is generally advisable. The aim
is that of comparing the sampling RRMSE of (15) with those of alternatives from the frequentist
literature such as (4). We note that in this case the predictor is obtained summarizing the posterior
distribution using quadratic loss for all quantiles except the median for which we use the relative
quadratic loss. Results are summarized in figure 3 where relative root mean square errors are plotted
for ease of comparison.

From figure 3 we have that differences between alternative estimators decrease with the sample
size, i.e. our choice of the hyper-parameters is less and less important as the sample size grows, as
it should be expected. The Bayes predictor with optimal parameter choice has the lowest RRMSE
in all cases with the only exception of the plot in bottom left plot (left tail of the distribution). In
general, efficiency gains are larger for the right tail of the distribution which is often more relevant
in scientific enquiries. The estimator we propose is clearly better than (2) in small samples and a
little better of Longford’s estimator (see 4) that is the most efficient estimator from the frequentist
literature. The results about the posterior mean under inverse gamma priors are omitted here since
extremely high RRMSE values are obtained for the quantiles in the right tail, probably due to the
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Tab. 1: Monte Carlo standard deviation of the Bayes estimator with MSE optimal prior in the sample
space (

√
VMC) and square root of the mean of the posterior variance distribution (

√
V̄QB)

at different n, σ2, p.

p: 0.05 0.50 0.95

σ2 n
√
VMC

√
V̄QB

√
VMC

√
V̄QB

√
VMC

√
V̄QB

0.25
11 0.108 0.104 0.149 0.174 0.484 0.440
21 0.076 0.075 0.108 0.117 0.358 0.333
51 0.048 0.048 0.070 0.072 0.234 0.224

0.5
11 0.109 0.101 0.207 0.255 0.905 0.872
21 0.076 0.074 0.151 0.169 0.683 0.662
51 0.048 0.048 0.098 0.103 0.457 0.446

1
11 0.097 0.086 0.285 0.384 1.884 1.918
21 0.066 0.063 0.210 0.249 1.478 1.487
51 0.042 0.041 0.138 0.148 1.016 1.009

2
11 0.075 0.065 0.385 0.619 4.545 4.901
21 0.048 0.045 0.288 0.381 3.793 4.008
51 0.031 0.029 0.193 0.216 2.716 2.764

posterior moments infiniteness.
In table 1 the posterior standard deviations we can associate to θ̂QB are compared to the fre-

quentist standard error of this predictor estimated empirically from the Monte Carlo experiment
for three different quantiles. Posterior standard deviations track the standard errors fairly well.
Nonetheless, posterior probability intervals for θ̂QB attain frequentist coverage below the nominal
level because of the frequentist bias. This trade-off between MSE-optimality and bias is in line with
results of previous literature (see Shen et al., 2006; Fabrizi and Trivisano, 2012).

6 Applications to real data sets

As anticipated, in different branch of environmental regulatory standard thresholds are frequently
compared to percentiles and upper confidence limit, i.e. one sided confidence intervals around
percentiles. Moreover, log-normality is often assumed in the analysis of hazardous materials con-
centration data and monitoring studies are often conducted with small sample sizes, so the methods
we illustrated for point and interval estimation with a proper choice of hyper-parameters can be
relevant.

In this section, the methodology described in the paper is applied to two real datasets taken
from the literature, in which the estimation of extreme quantiles was of practical interest: the first
is an application in the environmental health and monitoring framework, whereas the second one
will focus on occupational health.

6.1 Example 1: environmental monitoring

In this section we reconsider the motivating example on the chrysene concentrations data from
USEPA (2009). As discussed in the introduction, using data from background well at the site
in question, the inferential goal is the estimation of the 95-th percentile (θ0.95) of the underlying
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Fig. 4: Left panel: log-density of the prior on σ2 specified according to the weakly informative choice
and the MSE-optimizing (‘Numerical’) choice. Right panel: posterior density p(σ2|X̄, V 2)
under the two different choices for the prior on σ2

distribution and the associated UCL, i.e. the threshold that includes the 95% of the distribution
with the 95% confidence.

The main aim of this analysis is to compare the results obtained with the naive estimation pro-
cedures (discussed in section 2.2), which are currently mentioned in the guidelines, to the proposed
Bayesian procedures that show better frequentist properties, according to the provided simulation
study. More in detail, as point estimator we consider the Bayes estimator under the prior of section
4.2, whereas the weakly informative prior of section 4.1 is used to produce the credible interval to
estimate the UCL. We considered also the efficient estimator proposed by Longford and described
in section 2.3.

A first interesting point is the comparison between the two considered priors. The MSE-
optimizing prior is given by σ2 ∼ GIG(λ = 0, δ = 1, γ = 4.61), with the last value obtained by
numerical optimization. In the left panel of figure 4, this prior is compared to the weakly informa-
tive prior σ2 ∼ GIG(λ = 0, δ = 0.01, γ = 1.06), obtained considering n = 8 and γmin2 = 3/

√
n: we

can easily note how the right tail of the weakly-informative prior is heavier, as expected.
The different choices for the prior on σ2 are reflected into different posteriors p(σ2|X̄, V 2): if a

weakly informative choice is taken, the posterior will be more diffuse, thus giving more weight to
large values of the estimand, while the one obtained by means of numerical optimization is more
peaked around its mean and light-tail.

Alternative point estimates for the 95-th percentiles are displayed in table 2. We note that the
most efficient estimator according to our simulations of section 5, i.e. θ̂QBo

0.95 (that indicates the
Bayes estimator under MSE-optimizing prior), provides the smallest point estimate of θ0.95; also

Q̂0.95 produces a value smaller than the naive predictor θ̂0.95. We stress that the latter method
is recommended in many operational guidelines in environmental monitoring, although it turned
out to be the less efficient in our simulation study of section 5. This ordering of the estimates is
consistent with the fact that the most efficient estimators tend to be negatively biased. For the Bayes
estimators, the posterior standard deviation was reported as estimate of the estimator standard error;
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Tab. 2: Estimates of θ0.95 with different methods for example 1: naive (θ̂0.95), Longford (Q̂0.95),

our Bayes estimator under MSE-optimizing prior (θ̂QBo
0.95 ). The estimates of the estimator

standard error are reported too.

θ̂0.95 Q̂0.95 θ̂QBo
0.95

Estimate 34.517 33.696 31.181
S.e. - 8.056 8.257

whereas the squared root of the minimized MSE was reported for Longford’s proposal, even if the
author observed a severe underestimation of the true MSE.

As far as it concerns the estimation of the upper confidence limit, we compare our proposal based
on the weakly informative prior specification (the one using numerical optimization for γ leads to
intervals with frequentist coverage below the nominal level) to the method currently employed in the
literature. According to the simulation study of section 5, our methodology leads to intervals with
a shorter length on average with respect to the naive method recommended by EPA (see USEPA
(2009) 17-17) although preserving the nominal coverage level. Specifically, substantive improvements
can be observed with small samples for quantiles in the right tail. A smaller estimated UCL has the
relevant consequence of defining a smaller threshold.

From an operational viewpoint, the estimated UCL is used as comparison term for observations
coming from the wells to evaluate at the site. The contamination level is then determined according
to the amount of water samples that exceeds the estimated threshold. Therefore, the proposed Bayes
credible intervals represent a more powerful tool than the currently used method since it leads to
a lower probability of rejecting the hypothesis that the site is uncontaminated when actually it is,
because of its higher precision.

As it is possible to observe in figure 5, the value of our estimate is 76.195, whereas the estimate by
EPA is 90.925: this can have relevant implications when the UCL is used to evaluate the compliance
of pollutant’s concentration future samples.

Eventually, we note that our estimates can be easily reproduced using the R package BayesLN,
specifically running the following two commands:
LN Quant(x = EPA09, quant = 0.95, method = "optimal", CI = F),
LN Quant(x = EPA09, quant = 0.95, method = "weak inf", type CI = "UCL").
In this way, we hope to encourage practitioners to improve the statistical tools used in such delicate
analysis.

6.2 Example 2: pollutant exposure assessment

To show a possible use of our methods in the occupational health field, a small dataset from the
appendix IV of the book by Bullock and Ignacio (2006) is considered. It consists of n = 10
observations of exposures (ppm) of the coil feed operator and helper to Methyl Isobutyl Ketone
(MIBK) during cleanup:

23, 42, 86, 62, 34, 107, 29, 65, 54, 55.

For these data, all the most popular normality tests do not reject the hypothesis of log-normality.
Occupational health is a particularly interesting field to apply the developed statistical methodol-

ogy because Bayesian inference is already used and the log-normal distribution represents the default
distributional assumptions for data as it is testified from the web application Expostats (Lavoué et al.,
2019). Within this widget, largely useful for practitioners, Bayesian methods are employed and an
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Fig. 5: Posterior distribution of θ95 with weakly informative prior and different estimates of the UCL
for the data of example 1.

informative prior on σ is suggested; its specification is based on estimated variances σ̂2
e from past

exposure studies reported in Kromhout et al. (1993). Specifically, the authors proposed to fit a
log-normal distribution on these estimated variances, yielding the prior σ ∼ LN (−0.17, 0.39), and
thereby σ2 ∼ LN (−0.34, 1.16).

We decided to incorporate the same information but considering our GIG prior setting, in order to
obtain a posterior distribution of θp with finite moments, since it can be proved that the log-normal
prior on σ does not preserve their existence (see appendix C). To do so, we fit a GIG distribution
by maximum likelihood on σ̂2

e using the routine gigFit from the GeneralizedHyperbolic package
(Scott, 2018). We obtained the prior σ2 ∼ GIG(0.29, 0.59, 0.98) and the existence condition for
moments up to the second order is fulfilled for n > 9, otherwise we would have replaced the γ
obtained in fitting the value of γ with γmin2 = 3/

√
n that is in this case slightly lower.

The GIG prior is compared to the histogram of σ̂2
e in figure 6. It can be noted that the higher

flexibility of the GIG distribution can be useful in the specification of informative priors, whereas
the log-normal distribution shows some difficulties in capturing the peak near to 0 and keep the right
weight in the right tail. Therefore, the GIG prior we suggest can provide the basis for the specification
of informative priors for the σ2 parameter in the occupational health context. Moreover, the GIG
prior guarantees the existence of the posterior moments for θp. Eventually, another appealing
property of the proposed prior is the fact that conditions for the existence of the posterior moments
can be easily worked out also in presence of censored data that quite common in occupational health.
Details about these conditions can be found in appendix B.

For the data introduced at the beginning of this section, let’s consider the problem of estimating
θ0.95 and the related UCL, in order to compare them to the MIBK short term exposure limit fixed at
75 ppm. The posterior summaries of θ0.95 obtained under the two informative priors described above
are reported in table 3. Because of the lighter tail of the log-normal prior, the posterior median
obtained under this prior are slightly lower than the ones obtained under the informative GIG prior.
Note that, differently from the case of the log-normal prior posterior moments are a well defined
and represent meaningful summaries of the posterior distribution, and for this reason displayed in
table 3.
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Fig. 6: Prior distribution obtained fitting a GIG distribution on σ̂2
e . The histogram of σ̂2

e is reported
too.

Tab. 3: Summaries of the posterior distribution of θ0.95 under the GIG prior on σ2 and a log-normal
on σ.

Prior Post. median Post. mean Post. s.d. UCL

GIG 121.17 132.20 57.00 223.41
Log-normal 120.67 - - 219.94
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7 Concluding remarks

In this paper we have considered the popular log-normal distribution and the problem of estimating
its quantiles. We assumed a GIG prior for the variance on the log-scale as the GIG encompasses
many popular distributions (e.g. inverse gamma, gamma) as special or limiting cases. We show that
the existence of the posterior moments for the log-normal quantiles depend on the choice of one of
the GIG hyperparameters and that priors of common use such as small parameters inverse gammas
lead to posterior with non-existent expectations and not only in small samples.

A careful choice of the GIG hyper-parameters can improve inference for log-normal quantiles
with respect to current practice; specifically, it can lead to shorter interval estimators, although
keeping frequentist nominal coverage.

Our results can be extended in several directions. In the first place, to the regression case where
we assume an heterogeneous population in which for the i-th unit in the populationXi ∼ N (aTi β, σ

2).
The problem of estimating the mean of the Z = exp(X) conditionally on a given point of the covariate
space a0 has been already considered in Fabrizi and Trivisano (2016); extension to the estimation
of quantiles of this distribution can be obtained using the methodology illustrated in this paper.
In this way, a quantile regression procedure with an underlying parametric assumption could be
implemented. Another interesting development might be represented by the investigation of the
result in appendix B about the censored data case, extending the finding to the mean estimation
problem too.

8 Supporting information

Additional information for this article is available online. Technical details and theorems proves are
contained in appendix A, some results about the censored data case are reported in appendix B,
remarks on the log-normal prior for σ are in appendix C whereas additional figures are in appendix
D. Moreover, the R code required to reproduce the results is provided.
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