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Abstract— Modeling hand kinematics and
dynamics is a key goal for research on
Human-Machine Interfaces, with surface elec-
tromyography (sEMG) being the most com-
monly used sensing modality. Though under-
researched, sEMG regression-based model-
ing of hand movements and forces is promis-
ing for finer control than allowed by mapping
to fixed gestures. We present an event-based
sEMG encoding for multi-finger force estima-
tion implemented on a microcontroller unit
(MCU). We are the first to target the HYSER
High-Density (HD)-sEMG dataset in multi-day
conditions closest to a real scenario without a
fixed force pattern. Our Mean Absolute Error
of (8.4 ± 2.8)% of the Maximum Voluntary
Contraction (MVC) is on par with State-of-the-Art (SoA) works on easier settings such as within-day, single-finger, or
fixed-exercise. We deploy our solution for HYSER’s hardest task on a parallel ultra-low power MCU, getting an energy
consumption below 6.5 uJ per sample, 2.8× to 11× more energy-efficient than SoA single-core solutions, and a latency
below 280 us per sample, shorter than HYSER’s HD-sEMG sampling period, thus compatible with real-time operation on
embedded devices.

Index Terms— Edge computing, EMG, Event-based, Force estimation, Hand kinematics, High-Density sEMG, Human-
Machine Interfaces, Low-power, Machine Learning, Microcontroller, Open source, Parallel Ultra-Low-Power, Regression.
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I. INTRODUCTION

SURFACE electromyography (sEMG) is nowadays one of
the most promising sensing modalities for the control

of Human-Machine Interfaces (HMIs) in consumer, industry,
and health applications involving wearable control systems for
robotics, augmented reality, and prosthetics [1], [2]. State-of-
the-Art (SoA) approaches for intuitive control delegate the
challenging sEMG-to-command mapping to Machine Learn-
ing (ML) and Deep Learning (DL) classification [3], desig-
nating discrete gestures for classification [4] or continuous
variables for regression [5]. On the one hand, DL classification
generally achieves high accuracy thanks to automated learning
of data-driven features more informative than their handcrafted
counterpart [3], [6]; on the other hand, regression of contin-
uous target variables avoids fixed hand positions, enabling a
more versatile and natural control.

Most research so far has focused on classification [7]–[10],
and regression studies are still a niche. Just like for classifi-
cation, the ML revolution in sEMG regression has gathered
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momentum from the release of open-access datasets; two
major examples are the Non-Invasive Adaptive Prosthetics
Database 8 (NinaPro DB8) [11] for hand kinematics based on
joint angles, and the High-densitY Surface Electromyogram
Recordings (HYSER) dataset for multi-finger forces [12].
Regression approaches have targeted finger forces and hand
kinematics, modeling joint angles or velocities. As to kinemat-
ics, [11] and [13] have tackled NinaPro DB8, reconstructing
the joint angle measurements of a dataglove; in contrast, [14]
has targeted joint velocity with a hybrid recognition-regression
stratagem that thresholds speed into three levels. As to dynam-
ics, multiple Degrees-of-Freedom (DoF) force estimation was
addressed by [2].

The major limitation shared by all the mentioned works is
the lack of focus on the execution on resource-constrained
computational platforms, which is a fundamental requirement
for wearable embedded control systems. This shortcoming is
especially relevant for works focusing on DL aiming at a low
regression error [15], [16] at the cost of increased memory
and computation requirements compared to non-deep ML.

This work proposes a lean, bio-inspired strategy for an
event-based encoding of the sEMG for force estimation, imple-
mented and validated on an ultra-low-power microcontroller
suitable for embedded control systems. The approach is moti-
vated by our long-term research interest in validating the accu-
racy and profiling the execution of event-based techniques for
future implementation onto event-based computing platforms
as an alternative to the dominant DL models relying on matrix
multiplication on temporal data buffers [3], [5]. In contrast,
event-based computing promises reduced computation latency
and energy consumption [17]–[19].

An example of energy-efficient and extreme-low-latency
event-based computing is represented by Spiking Neural Net-
works (SNNs), a class of artificial neural networks able to
process spike trains, i.e., binary time series characterized by
high sparsity. The spike format is closer to biological neuronal
signals than classical DL’s activation tensors, moving a step
further in the brain-inspired paradigm for intelligent data
processing. SNNs’ neurons imitate the biological membrane
potential, raising their inner state when they receive input
events, decaying over time if short of inputs, and firing a spike
upon crossing a threshold, i.e., creating an output event for-
warded to the connected neurons [20]. The optimal substrate
for executing SNNs are digital [17], [18] or mixed-signal [19]
neuromorphic processors, specialized for the sequential emu-
lation of time-varying potentials. In particular, neuromorphic
processors implement event-proportional computing [17], [18],
which benefits latency and energy consumption by only exe-
cuting computation in correspondence of events (regardless of
any structure of the sparsity), in contrast with ordinary DL
networks that always compute full activation maps.

The key to integrating sEMG-based control and event-based
computing is to devise a strategy for bringing the sEMG to
the spiking domain while preserving as much information
as possible. For instance, a popular technique is the delta-
modulator analog-to-digital converter [21], [22]. Previous solu-
tions for processing the sEMG on event-driven hardware have
demonstrated that SNNs can successfully extract informative

features consuming < 1 nJ per spike, totaling a power draw as
small as 0.05mW (hundredths of a milliwatt) [23] since the
proposed nets have a size of the order of 100 neurons with a
bio-plausible maximum individual firing rate of the order of
100 spike/s. However, this vein has only tackled classification
so far [23], [24], yielding inspiring insight into the dynamics
of activation patterns [25] without tackling regression.

This work proposes a technique for encoding the High-
Density sEMG (HD-sEMG) signal into an event format that
successfully preserves the information content required for the
multi-finger force estimation regression task. Our contribution
is three-fold:

• we propose an event-based method that processes the
HD-sEMG samples one-by-one in streaming, updating its
state and generating spike trains;

• we tune the parameters of our method on the real HD-
sEMG regression dataset HYSER, obtaining a Mean Ab-
solute Error (MAE) of (8.42± 2.80)% of the Maximum
Voluntary Contraction (MVC) in a multi-day, multi-finger
scenario, on a par with the literature that addresses easier
settings;

• we deploy and profile our setup on a parallel ultra-
low power Microcontroller Unit (MCU), getting a power
consumption ≤ 23.1mW, an energy draw ≤ 6.37 µJ
per sample (2.8× to 11× more energy-efficient than the
reference SoA single-core baseline [26], and a latency
≤ 280 µs per sample, shorter than HYSER’s HD-sEMG
sampling period, thus compatible with real-time process-
ing.

This work is an extension of our previous paper [26] and
expands its heuristic findings as outlined in Table I; namely,
here we show that our event-based encoding method remains
accurate and versatile if ported from kinematics regression
based on sparse sEMG to force estimation based on HD-
sEMG, always within strict latency and resource limits.

We release the code developed for this work open-source.1

II. MATERIALS & METHODS

A. sEMG and HYSER Dataset
The EMG originates from the motor unit action potential

trains in the muscular fibers, and it is one of the most relevant
indicators of the activity of muscles [30], [31]. The EMG
signal has an amplitude of 10 µV–1mV and a bandwidth
up to 2 kHz. Surface EMG is the technique of sensing the
EMG from the skin relying on surface electrodes that enable
non-invasiveness, which is essential for the acceptance of
EMG-based health or consumer HMIs. The disadvantages of
sEMG are represented by signal variability across subjects and
time [32], motion artifacts, and noise sources such as floating
ground, crosstalk, and power line interference [33]. In the field
of automated learning on sEMG, SoA countermeasures to the
inherent variability are multi-session training [4], [6], [32] and
retuning of either non-deep [34], [35] or DL models [36], [37].

In this work, we target the High-densitY Surface Elec-
tromyogram Recordings (HYSER)2 [12], an open-access HD-

1https://github.com/pulp-bio/hdsemg-force-regression
2https://www.physionet.org/content/hd-semg/1.0.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

TABLE I
OUTLINE OF THE PRESENT WORK AS AN EXTENSION OF OUR PREVIOUS PUBLICATION [26]. FOR A FAIR COMPARISON, THIS WORK’S PROFILING

SHOWN HERE REFERS TO 64 LEAKY INTEGRATE-&-FIRE NEURONS AS [26]; THE COMPLETE PROFILING RESULTS ARE EXPOSED IN III-C.

WORK Regression
target Approach sEMG type:

dataset
SoA

baseline
MCU:

processor(s)
Results

MAE (average ± std) profiling

Zanghieri
et al. [26]

(extended here)

kinematics:
joint angles event-based

encoding

sparse sEMG:
NinaPro DB8 [5] STM32 F401:

ARM Cortex-M4F (8.84± 2.28) degrees latency: 448 µs
energy: 18.2 µJ

This work dynamics:
forces

HD-sEMG:
HYSER RANDOM

[12]
[27]–[29]

GWT GAP9:
8 RISC-V cores (8.42± 2.80)% MVC latency: 69.6 µs

energy: 1.55 µJ

sEMG dataset realized for research on hand gesture recog-
nition and force estimation. The dataset was collected from
20 healthy participants, each undergoing two sessions at
a distance of 3 to 25 days (8.5 ± 6.7 days on average).
The HD-sEMG data were acquired with four 8 × 8 HD-
sEMG arrays (256 channels in total) placed two on each
side of the forearm on the extensor and flexor muscles, using
an OT Bioelettronica Quattrocento system and sampling at
2048 samples/s. Force signals were acquired during isometric
contractions, with a sensor-amplifier pair for each finger, using
Huatran SAS sensors and Huatran HSGA amplifiers, sampling
at 100 samples/s.

The HYSER dataset is composed of 5 sub-datasets:

1 PR: pattern recognition on 34 hand gestures;
2 MVC: trials for determining the MVC of every finger’s

flexion and extension;
3 1-DoF: single-finger contractions, for 1-Degree of Free-

dom (DoF) force estimation;
4 N-DoF: multi-finger contraction following prescribed

combinations and trajectories, for 5-DoF force estimation
in controlled conditions;

5 RANDOM: with multi-finger contractions performed in
a fashion defined random task, i.e. with no prescribed
protocol of combinations or trajectories.

Datasets 2 to 5 contain the forces of individual fingers for
research on force estimation. In particular, we focus on the
RANDOM dataset, which consists of 5 trials per subject, each
lasting 25 s, performed with a 5 s inter-trial rest to prevent
muscle fatigue.

Most literature on HYSER focuses on discrete gesture
recognition on the PR dataset, whereas few works to date
have addressed continuous force estimation on 1-DoF and
N-DoF. Moreover, the RANDOM dataset is only dealt with
in the basic benchmarking of the first HYSER paper [12].
Table II reports the SoA works on the HYSER regression
datasets. To the best of our knowledge, we are (i) the first
to tackle HYSER’s RANDOM dataset in a multi-day setting;
(ii) the first to deploy and profile our regression algorithm
for the HYSER task on a hardware platform suitable for
low-power, low-latency wearable HMIs. Thus, we address
the working conditions closest to reality, where the force
ranges and trajectories are not predefined and can differ from
training to test. Moreover, we propose a regressor that is
explicitly designed to be hardware-friendly, considering the
power, energy, and latency constraints of wearable real-time

HMIs.

B. Event-based Encoding

We encode the raw sEMG to events with a power-based
approach inspired by how the mammalian cochlea transduces
various frequencies into neural spike trains. The principle of
using a bank of filters combined with neural integration has
been a model for many designers of bio-inspired hardware to
implement circuits that imitate the event encoding happening
in nature, either in the digital [38] or analog domain [39], [40].

We execute the conversion to events by implementing a
set of Leaky Integrate-and-Fire (LIF) neurons, each associated
with one of the processed sEMG signals. The LIF is a very
parsimonious model of the biological neuron, characterized by
an inner membrane potential Vmem(t) that follows the electrical
law

dVmem

dt
= −

(Vmem − Eleak)− Iinj(t)
gleak

τ
(1)

where τ is the membrane relaxation time, Eleak is the constant
leak reversal potential, Iinj is the injected current, and gleak is
the constant leak conductance. When Vmem surpasses a fixed
threshold level Vthr, the LIF creates a spike, which acts as
an emitted event associated with the time of crossing tspike.
Then, the LIF is subject to a refractory time trefr, defined as
a segment of time [tspike, tspike + trefr] where the LIF is forced
to a reset value Vreset:

Vmem(t) ≡ Vreset t ∈ [tspike, tspike + trefr] , (2)

also pausing the response to the inhomogeneous driving term
Iinj(t)/gleak.

Our numerical LIF emulation for accuracy-oriented regres-
sions does not need to account for the electrical nature of
the bio-inspired model. This makes it convenient to change
variables to remove the electrical quantities and simplify the
notation:

x(t) ≜
Vmem(t)− Eleak

Vthr − Eleak
(3)

xdrive(t) ≜
1

Vthr − Eleak
·
Iinj(t)

gleak
. (4)

The physical sense of this transformation is to refer the
membrane voltage to the constant Eleak, and measure the
membrane voltage and Iinj(t)/gleak (dimensionally a tension)
as a fraction of of Vthr − Eleak, which is the dynamic range of
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TABLE II
OVERVIEW OF THE LITERATURE OF FORCE REGRESSION ON THE HYSER DATASETS.

WORK Interest Approach HYSER
sub-dataset Data split Numerical results

(average ± std) HW?

Jiang et al. [12]
(2021)

dataset
presentation

FIR
kernel RANDOM

within-day,
leave-1-trial-out RMSE = (8.57± 5.27)% MVC ✗

Jiang et al. [27]
(2022)

channel
selection

FIR kernel +
random masks N-DoF

cross-day,
leave-1-subject-out RMSE = (8.66± 0.96)% MVC ✗

Jiang et al. [28]
(2023)

robustness vs. noise,
physiological
explainability

deep forests 1-DoF
cross-day:

train on day 1,
test on day 2

RMSE = (8.0± 2.3)% MVC
rPearson = 0.900± 0.101
R2 = 0.631± 0.172

✗

Wu et al. [29]
(2023)

extraction of
motor units

gCKC BSS +
cumulative spike train

+ linear regression
1-DoF

no ML-style
validation rPearson = 0.908± n.a. ✗

This work
event-based ML

embedded on parallel
ultra-low power MCU

encoding as events
+ linear regression RANDOM

cross-day:
train on day 1,
test on day 2

MAE = (8.42± 2.80)% MVC ✓

the system. This yields a dimensionless state x(t) with firing
threshold xthr = 1 and law

dx
dt

= −x− xdrive

τ
. (5)

This form of the law makes it more evident that the injected
current plays the role of an external driving term. We encode
the sEMG as events using each channel to drive an indepen-
dent LIF unit. In our experiments, we set the relaxation time
to τ = 10ms and the refractory time to trefr = 2ms. To create
the driving term from the raw sEMG data, we multiply the
dataset values sEMG(t) by an empirical gain gdata, converting
the arbitrary-units into an xdrive(t):

xdrive(t) = gdata · |sEMG(t)| , (6)

experimenting different values of gdata. Since the signals of
the HYSER dataset are available as voltage values, gdata has
dimensions V−1.

After each LIF, we simulate a post-synaptic potential
xpost(t) driven by the spikes generated by the corresponding
source LIF. This potential also undergoes relaxation, with a
relaxation time τpost that causes decay toward 0 if no spikes
are received. More formally, xpost obeys the law

dxpost

dt
= −

xpost

τpost
+
∑
tspike

δ(t− tspike) (7)

where δ denotes the Dirac delta and represents the fact that
xpost is raised by +1 (dimensionless) increments at each
received spike. The relaxation regulated by τpost has the effect
of a causal exponential decay kernel [41], a form of rate
encoding. This rate encoding is equivalent to an event count
that, at the present time t, weights every spike in the past as
exp(− (t− tspike) /τpost) ≤ 1. This causal exponential-kernel
rate always takes values in the range

0 ≤ xpost <
1

1− e−trefr/τpost
(8)

In our experiments, we set τpost = 250ms, thus getting xpost
values in the range [0, 125.5). Finally, we use all LIFs’ xpost
values as the input regression features for force estimation.

Numerically, the simulations of the LIF neurons can be
implemented as discrete updates of x and xpost:

x← x · e−∆t
τ + xdrive · (1− e−

∆t
τ ) (9)

xpost ← xpost · e
− ∆t

τpost + 1 [if spike] (10)

where ∆t is the discrete time step of the simulation; Eq. 9 is
skipped during refractories. A key feature of (9) and (10) is
that they update online, i.e., they consume one single sEMG
input for each channel at a time, computing xdrive and then
the new xpre and xpost; at the next sampling period, the new
sEMG input data overwrite the old ones. Hence, the size of
the input data stored at each sampling period never exceeds
Nch×4 bytes = 256×4 bytes = 1KiB for float32 data on
the Nch = 256-channel HYSER dataset. In addition, we apply
L1-regularization for a data-driven channel selection, further
reducing the size of inputs and computation, as explained in II-
C.

We developed two implementations of the event-based en-
coding and the inference:

• in Python (v. 3.8), we directly configured the
NeuronGroup and Synapses classes native to the
simulator Brian23 [42] v. 2.5;

• in C, for deployment on the MCU, we implemented
(9) and (10) and refractories, parallelizing as detailed in
Section II-D.

We used the Python and C implementations to compute the
regression error statistics in offline experiments on a PC and
online experiments on the GAP9 MCU (II-D), respectively. In
the Python offline experiments, the whole output time series
of each HYSER RANDOM’s 25-second recording is available
for taking the error statistics. In the online experiments, a PC
sends the HYSER’s samples to the MCU via a serial interface
in streaming; the MCU consumes them to update the neurons’
states and the inference; finally, the MCU sends the inference
output back to the PC. Figure 1 shows the setup used for the
online experiments. The GAP9 MCU repeats the reception-
processing-transmission loop online for each sample of every

3https://github.com/brian-team/brian2



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

Fig. 1. Setup of the online experiments: board mounting the GAP9 MCU
with serial connection to a PC. (For pictures of the placing of HD-sEMG
arrays on the forearm, please refer to the original HYSER paper [12], to
which the sensors setup pictures belong.)

HYSER RANDOM’s 25-second recording. On the PC side, a
script reads the regression outputs and saves them into an
array. This series is used to check the numerical match of
the results of the Python and the C implementations and to
compute the regression error statistics.

C. Regression

We tackle force estimation with linear regression to ensure
reduced memory and computation requirements, prioritizing
the low embedded resource budget. With the Nch = 256 HD-
sEMG channels and the NDoFs = 5 of the HYSER dataset, the
force estimation task is framed as a

x ∈ RNch 7−→ y ∈ RNDoFs (11)

multivariate, multi-target regression, parameterized by a W ∈
RNch×NDoF = R5×256 coefficients matrix and an intercept
ytrain ∈ RNDoFs = R5 equal to the sample mean of the training
set values. In float32 format, each inference amounts to a
memory footprint of 6184 bytes (including input and output)
and 1285FLOP.

To keep the processing hardware-friendly, we reduce the
resource budget by applying a strong L1 regularization. The
target function of the regression is thus

1

Ntrain

Ntrain∑
i

∥ŷi − yi∥22 + α ∥W∥1 (12)

where yi, ŷi = Wx ∈ R5 are the multivariate ground
truth and estimation, respectively, corresponding to the i-th
inference, Ntrain is the total number of inferences (equivalent
to the training set size, i.e., each HYSER RANDOM Day 1
session), ∥·∥2 is the Euclidean norm, ∥·∥1 is the L1-norm,
and α is the parameter governing the amount of regularization
(notice that it does not get divided by Ntrain). We tune the
amount of regularization by exploring different values for α.

In addition to countering overfitting, the prerogative of the
L1 regularization is to perform automatic sEMG channel se-
lection. The reason why L1 regularization results in automatic
feature selection is that it induces sparsity, since reducing
any coefficient benefits the penalty term equally, regardless of
the coefficient’s magnitude; in contrast, Lp>1-norms privilege
reducing the larger coefficients (since the p > 1 exponent

makes their contribution to the norm larger), thus making
Lp>1-norms less likely to push coefficients to 0.

The L1-induced data-driven feature selection on the sEMG
channels results in fewer associated LIF units compared to
HYSER’s Nch = 256 total sensors. Channel selection reduces
the application’s requirements, namely input data bandwidth,
memory footprint, and computational load. This reduction
makes our processing more hardware-friendly for resource-
constrained computation devices such as the MCU targeted
in this work (II-D). Moreover, this data-driven reduction
experimentally determines the number of channels actually
required for an accurate regression. So, in this work, L1-
regularization is used as the key for studying the integration
of HD-sEMG acquisition setup and embedded platforms.

As a dataset split on HYSER RANDOM, we used the Day 1
session for training and the Day 2 session for validation; for
both sessions, we used all the 5 trials. We ran training and test
separately for every subject without any multi-subject training
or inter-subject validation. Together with the choice of HYSER
RANDOM itself, this dataset split is the most challenging and
closest to a real test scenario; no previous work on HYSER
has addressed multi-day inference of 5-finger forces (Table II).

We determine the regression accuracy using the Mean
Absolute Error (MAE):

MAE =
1

NinferNDoF

Ninfer∑
i=1

∥ŷi − yi∥1 (13)

where Ninfer is the total number of inferences, i.e., the valida-
tion set size, and the rest follows the notation of Section II. We
measure the error as a fraction of the MVC, as is the standard
approach [12], [27]–[29]. To rescale forces to the MVC scale,
we determined the MVC for each direction (i.e., flexion or
extension) of each finger of each subject using the data from
HYSER MVC following the same heuristic as suggested by the
dataset authors, namely determining the MVC as the average
of the 200 strongest values.4 Assessing the control quality via
the MAE is convenient because the MAE is first-order, thus
more robust to outliers than quadratic statistics such as the
(R)MSE or the multivariate coefficient of determination R2.
We average the MAE over time (i.e., over the 5 trials of each
session) and over all 5 finger DoFs, as expressed by (13), and
over all 20 participants.

D. Deployment and Profiling on a Parallel ULP MCU
We have deployed the numerical model of the LIF neurons

associated with each HD-sEMG onto the commercial MCU
GAP95 (Fig. 2), which features a Parallel Ultra-Low Power
(PULP)6 9-core cluster accelerator based on the RISC-V
Instruction Set Architecture extended with specialized DSP
and ML instructions. This device is a SoA low-power pro-
cessor that ranked first in latency and energy consumption on
the benchmarks MLPerf Tiny v1.0.7 In a potential complete
prototype implementing our HD-sEMG-based control policy,

4https://www.physionet.org/content/hd-semg/1.0.0/toolbox/function
5https://greenwaves-technologies.com/gap9 processor/
6https://pulp-platform.org/
7https://mlcommons.org/en/inference-tiny-10/
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Fig. 2. Essential scheme of the GAP9 MCU and its parallel multicore
cluster.

the MCU’s role is computation, i.e., the data processing that
consists of updating the LIF neurons’ states and executing the
regression inference. In contrast, the upstream functions of
data sampling and transmission are to be performed by other
ADC and interface modules that produce the data and convey
them to the MCU.

We have programmed GAP9 implementing the LIF update
steps in C with parallelization. Parallelization comes naturally
since all LIFs are independent as to both state variables and
operations, so LIFs were distributed evenly across the cores,
with a workload difference of 1 LIF at maximum in the
experiments where LIFs are not a multiple of the used cores.
A core getting assigned a LIF means that the core will execute
all that LIF’s x and xpost discrete update iteration steps. We
parallelize over up to 8 cores since GAP9’s cluster’s ninth
core, referred to as Master Core or Core 8, only serves as a
cluster controller and manages Direct Memory Access (DMA)
memory transfers.

For profiling, we used the settings corresponding to GAP9’s
highest energy-efficiency, namely Vdd core = 0.65V and
fCLK = 240MHz. We measured latency in cycles by exploit-
ing the performance counter exposed by the API of PMSIS,8

the open-source system layer for GAP9’s operating system. We
determined latency in physical time as num cycles/fCLK. We
measured the power draw experimentally, using the GAP9’s
Evaluation Kit9,10 and a Nordic Semiconductor Power Profiler
Kit II (PPK2).11 The PPK2 measured the current consumption
of GAP9’s core, excluding the peripherals and the off-chip
memories. We used a GPIO to synchronize the current mea-
surement with the code execution. Finally, we determined the
energy consumption as power×latency.

III. EXPERIMENTAL RESULTS

8https://greenwaves-technologies.com/manuals/BUILD/HOME/html/
index.html

9https://greenwaves-technologies.com/product/gap9 evk-gap9-evaluation-
kit-efused/

10https://greenwaves-technologies.com/product/gap9-resources/
11https://www.nordicsemi.com/Products/Development-hardware/Power-

Profiler-Kit-2

A. Time-Domain Behavior
Fig. 3 displays a representative example of the time-domain

behavior of the finger force estimation provided by our al-
gorithm. The reported results are from HYSER’s Subject 1,
RANDOM dataset, Day 2 (i.e., the one never seen in training),
all 5 trials, all 5 fingers. These data are chosen for display
as they are representative of the general time-domain trends
observed in the results.

The reported trials contain many examples of good regres-
sion quality, especially for the thumb, middle, and ring fingers.
The rest position is generally well-modeled, with a good match
between the ground truth and the estimation when force is
in the interval ±0.05MVC. The timing of the falling and
rising fronts, corresponding to the dynamic phases of flexions
and extensions, respectively, are also accurate. In contrast,
the estimation errors mainly happen in the central regions
of flexions and extensions, where the estimation often stops
before the force reaches its full amplitude; this happens both
in some steady central segments and in some triangular peaks.
Interestingly, this kind of time-domain behavior, with accurate
timing in transients and a central offset error, is the same as
observed in the estimation of the hand kinematics [5].

The displayed results also contain the typical estimation
errors obtained with our algorithm, especially in the index
finger trials. A common regressor’s mistake is failing to
recognize negative forces, i.e., finger flexions. This error is one
of the most frequent erratic behaviors in the results. In future
work, the trials with poor modeling of contractions can be
addressed by adding a flexion-vs-extension(-vs-rest) detector
before the regressor, using the regressor only for estimating the
amount of force and the dedicated detector for recognizing the
force’s sign. The little finger’s results are the ones showing the
least accurate regression. The reason why this poor modeling
does not harm the overall performance of our method is that
the little finger has an MVC, and thus a force dynamic range,
that is on average (0.55±0.07)× compared to the other single
fingers. This means that the little finger contributes to the
global dynamics of the hand forces by approximately one-
half compared to the other single fingers, making errors less
impactful from an end-to-end application viewpoint.

It is worth remarking that the regression issues illustrated in
this section are only discussed to present an overview of the
most typical errors from a time-domain point of view. These
behaviors do not compromise the average regression quality.
The overall competitiveness of our method compared to the
SoA is shown by the regression error statistics presented in
the next section.

B. Regression Error
Fig. 4 shows the regression error obtained evaluating a grid

of pairs of gdata and α, exploring

gdata
[
V−1

]
= 5.0, 10.0, 15.0, 20.0, 25.0, 30.0 (14)

α = 10−1, 10−1.5, 10−2. (15)

The fits with the mildest regularization α = 0.01 do not
yield reliable results: the high variability of the MAE means
a high regression error for a relevant fraction of fingers
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Fig. 3. Force estimation results obtained for regression inference on HYSER’s Subject 1, RANDOM dataset, Day 2 (the one not seen in training), all
5 trials, all 5 fingers.

or subjects; α = 0.01 proves thus poor methodologically.
Pushing regularization to α = 0.032 makes results more stable,
improving both the MAE’s average and variance for all values
gdata. Tightening to α = 0.1 further improves both averages
and variances for all the explored gdata yielding the lowest
error, i.e. (8.42 ± 2.80)% MVC for gdata = 15.0V−1. These
results prove that our method can work in a multi-day multi-
finger setup in the absence of fixed force exercises, achieving
results in the same range as previous works that tackled the
HYSER dataset in easier settings, namely within-day [12],
with predefined force protocol [27], or single-finger [28] (as
summarized in Table II), whereas our validation is closer to
actual non-laboratory scenarios.

In the perspective of pursuing real-world implementations,
error variability is methodologically as essential as error
average to ensure that a method is capable of uniform per-
formance across different users. The standard deviation is due

to the inherent variability across subjects and sessions, which
produce sEMG data with easier or harder patterns. Tightening
the screw of regularization has decreased both the average
error and its dispersion, proving more beneficial than adjusting
gdata, which only yielded plateaus with uniform variance.

As to the feature sparsity obtained from the L1 regulariza-
tion, the identified optimal solution α = 0.1, gdata = 15.0V−1

has a minimum of 42 sEMG channels (out of Nch = 256) with
a non-zero coefficient for at least one of the 5 fingers (i.e.,
maximum sparsity of 83.6%, for subject 6), and a maximum
of 84 (i.e., minimum sparsity 67.2%, for subject 13), with
a median of 55 (sparsity 78.5%, for subjects 10 and 18).
These results are not only competitive but also interesting for
the insight they provide in the perspective of integrating HD-
sEMG with embedded systems. On the one hand, the heuristic
range 42 – 84 is above the typical channel count of a low-
density, sparse sEMG setup, confirming that the use of HD-
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Fig. 4. Regression error results. Explored data gains shown as
categorical to allow horizontal x-displacement to de-overlap bars.

sEMG is motivated. On the other hand, the resulting 42 –
84 channels are much fewer than HYSER’s total Nch = 256
(i.e., sparsity is high), informing in a data-driven way that
an accuracy-oriented application does not require channel
counts of the order of 100 or even 200. So, a key insight
of the regression results is the empirical estimate of the useful
channel count actually needed for a low regression error.

The amount of L1-induced data-driven sparsity also shapes
the conclusions of the on-device profiling results (in the next
section) since we only need to implement the LIFs associated
with the selected input channels. For instance, a consequence
of sparsity is on input data memory footprint: sparsity lowers
the size of input data from the theoretical maximum of 1MiB
(as explained in II-B) to a minimum of 168 bytes, a maximum
of 336 bytes, and a median of 220 bytes across subjects,
corresponding to the values of 42, 84, and 55 channels reported
above. These results prove that L1-regularization contributes
to making our method hardware-friendly in the presence of a
high number of input channels, such as the 256 sensors of the
HYSER dataset.

C. Profiling
Figs. 5 and 6 show the profiling results regarding speedup

and latency on 8 cores, respectively.
The experimental speedup on 8 cores (Fig. 5) is close

to 8× and is better for a higher number of simulated LIF
neurons. The speedup on 8 cores for 64 and 256 LIFs is
7.45× and 7.81× on a theoretical maximum of 8×. Since
all LIFs are independent, our algorithm is fully parallelizable
mathematically. The only sequential part when executing on
HW is the initial DMA transfer of one float32 value per
channel from the MCU’s L2 memory to the cluster’s L1
memory for faster access during the subsequent computation.
This DMA transfer takes < 2 cycles per float32 datum.
According to Amdahl’s law, this overhead yields an ideal
speedup of 7.95× on 8 cores, equal for all the profiled
workloads since both the transfer and the computation are
proportional to the number of LIFs. Considering the Amdahl
upper bound, the obtained speedup is 97.6% and 98.3% of the
Amdahl ideal for 64 and 256 LIFs, respectively.
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Fig. 5. Speedup on 8 cores obtained for different numbers of executed
LIF neurons. The grey region is the unreachable speedup ≥ 8×.
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The latency results (Fig. 6) show that our implementation
satisfies the real-time constraint since it can update all LIFs
within the sampling period

TsEMG HYSER =
1

2048Hz
≈ 488 µs, (16)

thus proving able to use every sEMG sample as a driving term
for the corresponding LIF. The highest workload case, i.e.,
256 LIFs, has a latency of 276 us. We observe that workloads
between 64 and 96 LIFs have a latency of 69.6 µs to 103 µs,
which is in the range of 1/7 to 1/5 of the available time.
This range of workloads is similar to the range of lower-
sparsity subjects identified in the regression results of the
previous section, namely 55 (median) to 84 (maximum) LIFs.
These results confirm that the amount of parallelism we have
pursued is required by our use case, motivating our choice
of the parallel platform. Overall, our solution is consistent
with the HYSER dataset and with SoA sEMG applications,
characterized by sampling frequencies typically > 1 kHz.

The measured power consumption is 22.3mW and
23.1mW for 64 and 256 LIF neurons respectively, with a
respective energy consumption of 1.55 µJ and 6.35 µJ. In par-
ticular, the energy draw for 64 LIFs is 11.7× lower compared
to the 18.2 µJ of our previous work with 64 LIFs deployed
on a single-core MCU (STM32 F401, featuring ARM Cortex-
M4F) [26], denoting the improved energy-efficiency of our
parallel implementation.
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IV. CONCLUSION

We have presented a solution for estimating finger forces
from the HD-sEMG exploiting an event-based signal encoding,
expanding existing event-based heuristics for hand kinematics.
We are the first to address the HYSER HD-sEMG dataset
in a multi-day validation without fixed force sequences and
the first to deploy and profile a solution for HYSER’s most
arduous task onto a parallel ultra-low-power MCU. Our re-
gression error is in the same range as previous works on
easier scenarios such as within-day, single-finger, and fixed
force patterns. Our method proves accurate and versatile even
within embedded devices’ power and latency budget, proving
competitive in the conditions closest to actual non-laboratory
settings. In future work, we will exploit this work’s insight
about the optimal HD-sEMG channel number to implement
an acquisition setup and realize a novel dataset for research;
moreover, on the performance front, we will port our event-
based processing onto neuromorphic event-driven hardware to
exploit the increased energy efficiency of event-proportional
computing.
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