
09 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Elastic Provisioning of Stateful Telco Services in Mobile Cloud Networking / Bellavista P.; Corradi A.;
Edmonds A.; Foschini L.; Zanni A.; Bohnert T.M.. - In: IEEE TRANSACTIONS ON SERVICES COMPUTING. -
ISSN 1939-1374. - ELETTRONICO. - 14:3(2021), pp. 8336982.710-8336982.723.
[10.1109/TSC.2018.2826003]

Published Version:

Elastic Provisioning of Stateful Telco Services in Mobile Cloud Networking

This version is available at: https://hdl.handle.net/11585/855145 since: 2022-02-10

Published:
DOI: http://doi.org/10.1109/TSC.2018.2826003

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/855145
http://doi.org/10.1109/TSC.2018.2826003

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Bellavista, A. Corradi, A. Edmonds, L. Foschini, A. Zanni and T. M. Bohnert, "Elastic
Provisioning of Stateful Telco Services in Mobile Cloud Networking," in IEEE
Transactions on Services Computing, vol. 14, no. 3, pp. 710-723, 1 May-June 2021

The final published version is available online at:
https://dx.doi.org/10.1109/TSC.2018.2826003

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TSC.2018.2826003

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 1

Elastic Provisioning of Stateful Telco Services
in Mobile Cloud Networking

Paolo Bellavista, Senior Member, IEEE, Antonio Corradi, Member, IEEE,

Andy Edmonds, Member, IEEE, Luca Foschini, Member, IEEE,

Alessandro Zanni, Student Member, IEEE, Thomas Michael Bohnert, Member, IEEE

Abstract — Several relevant research and innovation activities have recently investigated the technical and economic ad-

vantages of cloud computing for the provisioning of telco service infrastructures, in particular towards all-IP next generation 5G

networks. In fact, the evolution of telco service infrastructures traditionally requires a significant upfront investment (and a long

adoption process). Conversely, cloud exploitation significantly lowers investment risks by potentially providing elasticity in ser-

vice provisioning via flexible Virtual Network Functions (VNFs) on top of a Network Functions Virtualization (NFV) Infrastructure.

In this context, the paper presents novel solutions that we have designed, implemented, and evaluated within the EU FP7 Mo-

bile Cloud Networking project (MCN). Their aim is to achieve cost-effective elastic provisioning of telco services over heteroge-

neous and federated cloud providers, with the specific focus of supporting the extreme quality levels that are demanded by tra-

ditional, non-virtualized, and dedicated telco infrastructures. In particular, we concentrate on how to effectively and efficiently au-

tomate service state migration for coarse-grained telco service (cloudified) components by leveraging industry-mature orches-

tration technologies and cloud management frameworks. While our proposed state migration model and procedure are general,

its implementation is experimented for MCN’s Rating, Charging, and Billing as a Service (RCBaaS). This MCN functionality has

been chosen by purpose due to its challenging reliability and uptime requirements. The reported experimental and simulation

results show the technical feasibility of the proposed solution under different and realistic load conditions for next-generation

and cloudified 5G services.

Index Terms — Cloud computing; Service State Migration; Virtual Machine and Containers; Service Provisioning; Service

Composition; Mobile Cloud Networking; Network Function Virtualization; Resource Management.

—————————— ◆ ——————————

1 INTRODUCTION

LOUD computing is widely accepted as the domi-
nant paradigm to enable elastic resource provision-
ing and dynamic configuration. This is primarily mo-

tivated by its advantages in saving management costs and
in maximizing resource usage efficiency, by dynamically
enabling on-demand services tailored to end-user re-
quirements. Virtualization allows partitioning a cloud da-
ta center into multiple virtual data centers and hardware
resources into Virtual Machines (VMs) or containers, with
the purpose of providing dynamically customized re-
source allocation and of isolating, consolidating, and mi-
grating the received workload at runtime.

Boosted by the opportunity to cut operational costs
and to gain wider flexibility, and pushed also by the rele-
vant standardization efforts in the field, such as the Open
Cloud Computing Interface (OCCI) and ETSI Network
Function Virtualization (NFV) initiatives [1][2], the tele-
communications industry is going through a major tech-
nological shift. The vision is to take telco services and

their entire infrastructures, which once ran on specialized
hardware, and their softwarized analogous functions to
cloud computing environments. The key driver is effi-
cient execution and reliability on commodity hardware,
as well as the cost-effective exploitation of elastic re-
sources similarly to Internet-oriented Over-The-Top
(OTT) services. In addition, note that this softwarization
can significantly help telco providers to be more dynamic
in rapidly offering new services to their customers. More-
over, this allows them to ultimately exploit their market
positioning as the owners of the infrastructure closest to
end users. The related methodologies for cloudifying vir-
tualized network functions are typically grouped under
the term of either cloud-optimized or cloud-native ser-
vices. These telco services typically require to manage
complex virtualized infrastructure deployments includ-
ing multiple VMs, virtual networks, and Virtualized
Network Functions (VNFs) [3].

Cloudification of telco-oriented functions is complicat-
ed by the tight performance requirements and constraints
that telco software stacks traditionally have. For example,
consider the availability and latency requirements that
are regulated by standard specifications for the IP Multi-
media Subsystem (IMS) and the Evolved Packet Core
(EPC). Note that latency requirements are not typically
strict in general-purpose cloudified services provided by
general-purpose public cloud providers such as MS Az-
ure or Amazon AWS, while they become a central con-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• P. Bellavista, A. Corradi, L. Foschini, and A. Zanni are with DISI, Univ.
Bologna, Viale Risorgimento 2, 40136 Bologna, Italy. E-mail: {pao-
lo.bellavista, antonio.corradi, luca.foschini, alessandro.zanni3}@unibo.it

• A. Edmonds and T.M. Bohnert are with the InIT Cloud Computing Lab,
ZHAW School of Engineering, Obere Kirchgasse 2, 8400 Winterthur,
Switzerland. Email: {andrew.edmonds, thomasmichael.bohnert}@zhaw.ch

C

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

straint for the support to (and acceptance of) next genera-
tion networking infrastructures built on top of cloudified
resources.

Given those infrastructure and end-user quality re-
quirements, several technical cloudification challenges
still remain hard and partially unsolved. This spans from
optimized placement of service components in the data-
center (at both creation and runtime) to optimum scaling
in/out based on current and predicted load, from proac-
tive, adaptive, and quality-aware service composition to
integration with internal and external business/operation
support services.

Within this challenging context, this paper describes
our novel service state migration solution that we have
designed, implemented, and evaluated in the Mobile
Cloud Networking (MCN) initiative, a large scale EU pro-
ject that had involved several leading 5G and cloud com-
panies, research centers, and universities. MCN has the
ambitious goal of provisioning quality-constrained, carri-
er-grade, and cloudified telco services in an efficient way1
[4]. This goal is pursued via the creation of an ecosystem
of service management mechanisms, tools, and frame-
works for self-management, self-maintenance, on-
premises design, and operations control functions.

More specifically, our service state migration allows
moving all the VMs that compose an end-to-end telco
service, along with all the data collected and associated to
that service. The target service is then reactivated at the
new destination with full transparency for the final users.
The proposed state migration service allows the MCN
framework, for example, to transparently move cumulat-
ed application/session state from a service instance to a
dynamically deployed replica of it. This allows for en-
hanced elasticity and for reliable continuous provisioning
of services with no user-perceivable downtime. It can eas-
ily facilitate dynamic modifications in resource placement
for deployment optimization and relieving of congested
links.

General-purpose VM migration is not a new research
issue and has been widely explored in the past, with the
two main variants of: pre-copy [5], which pushes most of
the data to destination host before stopping and migrat-
ing the VM; post-copy [6], which pulls most of the data
from source host after resuming VM at the destination
host. In our original solution for 5G cloudified service
provisioning, service state is efficiently migrated by:
i) anticipating state migration through traffic patterns

prediction based on gray-box techniques requiring
very limited a-priori knowledge [7] and,

ii) creating disjoint epochs that enable simultaneous ser-
vice provisioning by both old and new virtualized in-
stances over disjoint subsets of final users, according
to the pre-copy base approach.
The solution is completely integrated with state-of-the-

art open-source cloud and monitoring infrastructures,
e.g., OpenStack and Zabbix. In addition, we exploit
OpenStack Heat templating2 as the basis to enable i) the

1 MCN Website at http://www.mobile-cloud-networking.eu
2 https://docs.openstack.org/developer/heat/

Template_guide/hot_guide.html

runtime creation and management of targeted VM repli-
cas, ii) the connection of new replicas to old state instanc-
es and iii) the state migration process. The employment of
standard widespread solutions not only makes our pro-
posal highly portable on different cloud providers and
underlying hosts, but also provides a valuable implemen-
tation for further experimentation, refinement, extension,
and utilization by the community3.

The remainder of the paper is structured as follows.
After related work about VM management and service
state migration, the paper gives an overview of MCN,
needed to fully understand our original proposal. The de-
sign guidelines and architectural organization of our solu-
tion for service state migration are in Section IV, while
Section V goes into in-depth technical insights for the effi-
cient implementation of our proposal. Performance re-
sults (from both in-the-field experimentation and
CloudSim simulations), conclusive remarks, and direc-
tions of ongoing related work end the paper.

2 RELATED WORK

Management of cloudified services has been widely in-
vestigated in recent years. Here, with no ambition of be-
ing exhaustive, we concentrate on two main research di-
rections that are central for our proposal: i) resource/VM
management and orchestration, and ii) service state mi-
gration.

On the one hand, OpenStack Heat, Nirmata, and Hurt-
le have emerged as effective and widespread solutions for
service and VM management and orchestration. Open-
Stack Heat has been one of the pioneers in the manage-
ment of VMs and their lifecycle, working on top of Open-
Stack clouds. It is also one of the first solutions to intro-
duce the idea of management templating [8]. Nirmata has
adopted a novel micro-services architecture [9]. It pro-
vides seamless service discovery, registration, load-
balancing and customizable routing for micro-services. It
provides functionality that makes it easy to automate the
entire DevOps lifecycle. Hurtle is an orchestration
framework, adopted in the MCN project, that allows to
automate the service life-cycle , from the deployment of
cloud resources to configuration and runtime manage-
ment [10]. It ensures the creation and management, not
only of the foundational resources required to operate the
target service logic, but also of the so-called external re-
quirements, i.e., the needed external service dependen-
cies.

Some other recent proposals are based on the Topolo-
gy and Orchestration Specification for Cloud Applica-
tions (TOSCA) [11]. TOSCA is a model for topology and
orchestration specification in the form of a service tem-
plate. The adoption of TOSCA enables interoperability of
application descriptions, of cloud service infrastructures,
and of the operational behavior of these services, e.g., de-
ploy, patch, shutdown, independently from the service
provider. [12] presents how TOSCA enables the portable

3 Additional information, tools, experimental results, and the state mi-
gration prototype code are available at:

 http://lia.disi.unibo.it/Research/MCN

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 3

and standardized management of cloud services. Cloudi-
fy also exploits TOSCA and includes functions to ena-
bling deployment on any cloud or data center environ-
ment, monitoring/detecting issues and failures, and
manually/automatically handling maintenance tasks [13].

Several migration and replication mechanisms have
been proposed in the related literature. Seminal research
efforts focused on VM migration and on its impact on
network/service performance [14, 15]. To alleviate these
impacts, various VM management plans based on live
VM migrations have been widely explored. Pre-copy is
the most common approach used for live migration and
has been successfully optimized into some widespread
and commercial hypervisors, e.g. Xen, KVM, VirtualBox,
and VMware [6]. [14, 15] adopts a typical pre-copy strate-
gy as a base, which combines a push phase, during which
the VM memory is transferred in subsequent rounds
while the VM is still running, and a stop-and-copy phase,
during which the VM is stopped and just a residual part
of the data is transferred.

Many works have investigated performance in relation
to the migration efficiency of the cloud data center, with
different purposes. S-CORE is a scalable live VM migra-
tion scheme, based on a distributed migration solution
with multiple distinct policies, to dynamically reallocate
VMs in order to minimize communication cost [16]. [17]
attempts to enhance data center performance and scala-
bility, by minimizing the overall network cost with the
introduction of an algorithm to improve VM placement
management. [18] can migrate groups of VMs depending
on network indicators (e.g., cost of migration, available
bandwidth), by detecting the most overloaded links to
alleviate network congestion. [19] proposes hierarchical
placement of VMs for wide-scale problems on IaaS cloud.
Sandpiper [20] automates resource allocation and migra-
tion of virtual servers in a data center to avoid machine
overload by relocating VMs via Xen’s migration mecha-
nisms. They adopt black-box and gray-box strategies to
automate monitoring of system resource usage, hotspot
detection, resource allocation, and triggering of proper
migrations. Finally, live migration of multiple joint VMs
is a hot topic and requires more efforts for improvement
and optimization given that only a few works have start-
ed proposing solutions for it [15].

Regarding session and application state migration, Al-
batross [21] proposes a technique for live migration in
multitenant databases in a shared storage architecture
that initially creates a snapshot of the database on the des-
tination host and then uses several iterations copying the
state incrementally to minimize the unavailability win-
dow. Zephyr [22] efficiently migrates a live database in a
shared nothing transactional database architecture. Dif-
ferently from Albatross, Zephr’s virtual disks are locally
attached to every node and, to minimize service unavail-
ability, the destination of a VM migration starts serving
new transactions while the “old” VM source completes
the still active old transactions. This is partially similar to
our original proposal (see later), but in Zephyr, during
migration, requests at the destination force a pull on the
data page from the source. Furthermore, any transaction

at the source accessing a migrated page must restart at the
destination.

Slacker [23] is an end-to-end database migration sys-
tem that optimizes the impact of migration changing the
throttling rate with which persistent state is migrated
from the source to destination. Moreover, it uses recovery
mechanisms to stream updates from the source to the des-
tination. To avoid straining the other tenants at migrating
nodes, a Proportional-Integral-Derivative (PID) controller
monitors average transaction latency to adjust throttling.

ProRea [24] represents a live database migration ap-
proach that combines proactive and reactive measures, in
order to reduce page faults and improve buffer pool han-
dling compared to purely reactive approaches. To pre-
pare migration, the source sets up local data structures
and migration infrastructure and sends an initial message
to the destination to create an empty database and sets up
its local migration infrastructure. ProRea proactively mi-
grates hot pages (i.e., recently accessed and in the buffer
pool)/ New transactions start at the destination and pull
pages on-demand. To complete the migration, the source
additionally pushes pages which have not been trans-
ferred during previous phase or as response of a pull re-
quest from the destination, similarly to our proposal.

Dolly [25] exploits VM cloning to spawn database rep-
licas. In particular, it clones the entire VM of an existing
replica, comprehensive of operating environment, data-
base engine, and all settings and data; the cloned VM then
synchronizes state with other replicas prior to processing
application requests. Since creating a new database repli-
ca is a time consuming process (with overhead linearly
dependent on size of replicated database), Dolly incorpo-
rates a model to estimate latency and uses this model to
trigger replication in advance [26].

Going beyond the state of the art, we propose a live and
lightweight state migration mechanism integrated in the MCN
architecture. Our proposal aims at using existing man-
agement components and avoiding adding new support
components (e.g., migration controllers and routers) to
grant the widest possible interoperability and integration
with existing cloud management frameworks. Therefore,
to benefit from the OpenStack features, we leverage the
standard Heat service to create VM replicas that are able
to start and manage the connection to the old instance in-
cluding the database migration by proper configuration
of the managed Heat template files.

Finally, although many activities have proposed vari-
ous database migration mechanisms to move data in the
most efficient way, very little attention has been given to
the challenging task of live migration in a timely way
[26]. Hence, our proposal goes further in relation to this as-
pect by including novel resource monitoring techniques
combined with congestion prediction models.

3 MCN COMPLETE BACKGROUND AND ARCHI-

TECTURE

To facilitate the full understanding of our original pro-
posal and to make this paper self-contained as much as
possible, this section gives an overview of the MCN archi-

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

tecture. We focus specifically on the services and func-
tionality that are most central to our proposal. For addi-
tional details about the general MCN architecture, inter-
ested readers can refer to [27].

The main objective of MCN is to develop a novel archi-
tecture and a set of cloud-related technologies to provi-
sion carrier-grade virtualized telco services to 5G mobile
users. Cloud resources (not just networking-related ones)
are used to support on-demand and elastic provisioning
of mobile end-to-end services, thus exploiting the oppor-
tunities of processing/storage near end-points through
virtualized edge nodes (edge computing).

The MCN architecture, supported by the Hurtle or-
chestration framework, is very modular. Its key concept is
to make possible the different services to create other
more complex end-to-end (E2E) composed services. To
this purpose, its Service Management Framework enables
and defines the tools to compose and orchestrate the
MCN operations across multiple domains and service
types. Notably MCN went beyond NFV in some key are-
as such as E2E service composition as well as scalability
objectives [28].

The architecture has two key aspects, its lifecycle man-
agement and architectural entities. The technical phase of
the lifecycle includes all activities from technical design
all the way through to technical disposal of a service:
• Design of the architecture, implementation, deploy-

ment, provisioning and operation solutions. Supports
Service Owner to “design” their service.

• Implementation of the designed architecture, func-
tions, interfaces, controllers, APIs, etc.

• Deployment of the implemented elements, e.g., data
centers, cloud controllers, etc.

• Provisioning of the service environment (e.g., network
functions, interfaces, etc.).

• Operation and Runtime Management. At this stage
the service instance is ready and running. Activities
such as scaling, reconfiguration of service instance

components (SICs) are carried out here.
• Discarding of the service with the release of SICs and

the service instance itself is carried out here.
Fig. 1 illustrates an instance of the MCN architecture,

which is based on some key components used by all the
services of the architecture:
• The Service Manager (SM) exposes an external inter-

face to the Enterprise End-User (EEU) and is respon-
sible for managing SOs to request the creation of ser-
vices instances. The SM programmatic interface
(northbound interface, NBI) is designed so it can pro-
vide either a CLI and/or a UI. Through the NBI, the
SM gives either EEU or SO, both classed as tenant,
capabilities to create, list, detail, update and delete
(EEU) tenant service instance(s). Its Service Catalogue
contains a list of the available services offered by the
provider. Its Service Repository is the component that
provides the functionality to access the Service Cata-
logue.

• The Cloud Controller (CC) supports the SO require-
ments and service life-cycle management, providing
the management interfaces used by SM and SO, ab-
stracting from specific technologies that are used in
the technical reference implementation.

• The Service Orchestrator (SO) creates, configures, or-
chestrates and manages every service instance in or-
der to access functionality provided by the specific
service. The SO component has the task of receiving
requests from the SM and overseeing the deployment
and provisioning of the service instance. Once the in-
stantiation of a service is complete, the SO can over-
see tasks related to runtime of the service instance
and also disposal of the service instance. Service in-
stances are tracked in the SO Registry component.
The SO is a self-contained tenant process that runs
within a container, managed by the CC whose prima-
ry responsibility is to manage, resources and external
services required to deliver the tenant’s service in-
stance.

The SO is implemented as a collection of imperative and
declarative code: this is named as the SO bundle. The im-
perative code is responsible for creating and managing
(e.g. scaling in and out) the resource and service instanc-
es. The declarative code is embodied by representations
of two types of related graphs:
• Service Template Graph (STG) defines services re-

quirements and how they could and should be com-
posed together. These requirements are hence repre-
sented as dependencies. The STG interface can be que-
ried through the Service Managers NBI.

• Infrastructure Template Graph (ITG) defines how re-
sources should be composed to be able to host Service
Instance Components (SICs). For example, an Analyt-
ics service requires two virtual machines: one to han-
dle compute execution and one to handle the storage
backend, both of which are connected through a net-
work. ITGs are handled by template documents,
which can be placed upon different infrastructure ser-
vice providers such as CloudSigma, Amazon EC2, as
well as OpenStack and Joyent Triton. Finally, the SO

Fig. 1. MCN Architecture Instantiation.

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 5

enables multi-region/zone deployments: it can either
hold multiple ITGs in the SO bundle or compute them
on the fly.
In particular, the SO in its turn consists of three key

components: the SO Execution (SOE) that is responsible
for procedural phases, the SO Decision (SOD) that is re-
sponsible for runtime decisions related to scaling out or in
and SO Resolver that is responsible for composition. In
order to operate, the Resolver component requires under-
standing the service dependencies a specific service re-
quires. These requirements are logically described by the
SO bundle STG.

In this paper we specifically propose elastic provision-
ing targeted to two MCN services: Monitoring as a ser-
vice (MaaS) and Rating, Charging and Billing as a service
(RCBaaS). Within the set of MCN implemented services,
we have decided to focus on these two because they are
widely used during normal system operations, as im-
portant support services that communicate with all the
other services of the system. Thus, MaaS and RCBaaS
must handle high workload conditions preserving scala-
bility and must ensure high availability requirement for
the correct functioning of the rest of the system.

MaaS enables the design, implementation, and test of
monitoring mechanisms across the four different do-
mains: radio access network, mobile core network, cloud
data center and applications. MaaS is considered as a full-
stack monitoring system equipped with the capabilities to
provide monitor and metering functionalities in a large
scope of telecommunication systems. Service stability of
MaaS is achieved by making use, as its monitoring mech-
anism basis, of the solid and established Zabbix open-
source project [29].

Zabbix is a software toolkit that provides an effective,
scalable and reliable monitoring, with a wide range of
monitoring performance indicators and metrics; it offers a
distributed infrastructure where Zabbix agents can collect
data locally on behalf of a centralized Zabbix server and
can report the data to the server. Zabbix provides agents
for a wide range of operating systems and supports both
active and passive checks to monitor data and CRUD op-
erations via JSON-RPC based API interface. MaaS re-
trieves information in polling mode using the Zabbix
APIs and exchanging data with Advanced Message
Queuing Protocol (AMQP) protocol based on the pub-
lish/subscribe model. MaaS provides an interface to re-
trieve at runtime the monitoring information from agents
associated with the services to monitor; this interface al-
lows services to dynamically subscribe and retrieve asyn-
chronous data from the IaaS. Each monitored service us-
ing MaaS implements the interaction interface with the
MaaS service and has to integrate the configuration of its
Zabbix agents per node to be monitored in its provision-
ing or deployment. The wrapper objects support methods
for retrieval of metrics without being locked-in to a spe-
cific realization of the MaaS.

Complementing MaaS in the composition, the RCBaaS
(i.e., Cyclops4) is a service that collects information for ac-
counting and billing purposes. RCBaaS is employed in

4 https://icclab.github.io/cyclops/

MCN as a support service that takes as input the service
consumption metrics, processes them, calculates the price
to be charged to the user, and generates the invoice for
payment. It allows to charge both End User (EU) and En-
terprise End User (EEU) or service operator itself in a
cloud, as-a service way. It also takes into account infor-
mation about anomalous events (e.g., service failures, re-
source consumption over given thresholds, etc.) in order
to correctly enforce different types of charging models.
RCBaaS is integrated with other MCN mechanisms and
components, such as the Rabbit Message Queue (Rab-
bitMQ) used to collect asynchronous messages generated
from different entities.

Once instantiated, RCBaaS subscribes to MaaS to re-
ceive monitoring data through the RabbitMQ server
(which collects information from RabbitMQ clients), dy-
namically instantiated on MaaS to mediate the interaction
towards RCBaaS. RabbitMQ clients receive monitoring
values from Zabbix, translate them in the RCB format,
and deliver messages to the RabbitMQ server used by the
RCBaaS.

4 DESIGN GUIDELINES AND ARCHITECTURE OF

OUR SERVICE INSTANCE MIGRATION SOLUTION

This section describes the design principles behind our
novel service state migration process, detailing the main
phases of it and their technical differences if compared
with the existing and related migration solutions in the
field. We start by presenting the model behind our state
migration and then illustrate in detail our primary design
decisions, as well as their rationale.

Our goal is to enable dynamic, transparent migration
of the whole state of an MCN telco service (typically rep-
resented by either persistent data in a database or simply
objects stored in persistent mass memory). That state mi-
gration is key for manifold reasons and allows to really
enhance system Development and Operations (DevOps)
under many points of view. To enable maximum flexibil-
ity, it is proper to maintain the implementation of state
migration mechanisms independent of the currently en-
forced migration policy, as widely accepted in the related
literature. In addition, the state migration process should

Fig. 2. High-level overview of our service state migration process.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

work independently of its trigger, e.g., motivated by Con-
tinuous Integration (CI)/Continuous Delivery (CD) opera-
tions, or generated by internal runtime resource monitor-
ing, e.g., due to a sufficiently long overload peak). For
instance, thanks to the support of our service instance mi-
gration solution, it is possible to modify a STG dynami-
cally to transparently migrate it from one location to an-
other and to maintain the state from the previous equiva-
lent service instance. From the CI/CD perspective this
works as i) modified STG and associated SO code pass
unit and/or integration tests (CI) and ii) new service de-
ployment executed transparently, including state migra-
tion (CD).

State migration operations are key for high-
performance and reliable continuous provisioning of ser-
vices that cannot suffer from downtime. The performance
objectives of various services, such as scalability and re-
sponsiveness, may be significantly improved by optimiz-
ing the placements of involved VMs; thus the role of re-
source allocation is central to avoid bottlenecks due to
congested links. In terms of reliability, fault tolerance is
another major concern, in particular for critical services.
State migration can significantly help in addressing fault-
tolerance requirements by minimizing the impact of fail-
ures on service execution and by anticipatedly moving
interested services in the case of failure predictions.

In our solution, the service state migration process is
composed by multiple steps, as depicted in Fig. 2. The
whole life-cycle of the physical host is observed by a
monitoring system that can activate a trigger when the
host is likely to go congested under an overload of incom-
ing requests. When a migration trigger is activated (see
below), our service state migration starts and our SO aims
at finding the most suitable destination region (among the
possibly heterogeneous ones offered by different cloud
providers – original support to migration in heterogene-
ous cloud providers). Let us quickly note that placement
decisions are taken at the service orchestration level and
are out of the scope of this specific paper (internal man-
agement goal of MCN CC, please see the example in the
following part of the section).

On migration trigger, an empty copy of the same ser-
vice is deployed and provisioned on the new and less
loaded destination, (re-)binding the new service with the
same references earlier attached to the origin service. Af-
ter this, our original core migration phase executes, by
pushing all the service state toward the destination in or-
der to replicate exactly the same situation of the origin
host. Finally, after all the service state has reconstituted in
the target destination, the old service instance is unbound
and disposed in order to release the previously utilized
resources promptly. Before restarting monitoring the
newly created service instance, we reset the collected
monitoring data in order to refresh the instance state by
deleting old measurements that are related to the previ-
ous service location and no longer valid.

The overall goal of our infrastructure support to state
migration is to coordinate a set of mechanisms that allow
moving the whole internal state of a service instance to
another instance created from scratch at runtime, with

null or very limited service interruption (also these conti-
nuity requirements are rarely addressed by the existing
state migration literature and represent an original tech-
nical aspect of our contribution). In addition to the
placement decision, we have designed and implemented
all the previously outlined orchestration and migration
activities, commonly used during service state migration,
by adopting a pre-copy approach. Initially, the service is
monitored using the Zabbix-based MaaS functionality as
the main potential trigger for migrations

In our solution, to properly manage the gathered mon-
itoring data, also in the perspective of further analysis
when overloading is detected, we have also added an ad-
hoc functionality between Zabbix and the selected trigger.
This functionality realizes either black-box and gray-box
analysis techniques, in a completely modular and trans-
parent way for the applications. In particular, in the fol-
lowing parts of the paper, we will consider our gray-box
model implementation to realize behaviour predictions
capable of smoothing peaks and fluctuations, by at the
same time amplifying the monitored resource metric
growth [30]. This is motivated by the fact that gray-box
modelling is recognized in the literature as a simple base-
line solution for multi-parametric systems control, which
acts as a low-pass filter to detect usage resources in order
to trigger events related to resource scarcity or specific
service placement problems. It tends to offer both high
hit-rate and good overall performance, even when the
model information is partial or incomplete [31]. In addi-
tion, the gray model is particularly suitable as it can ana-
lyse a system with only few discrete data points. This
permits to generate forecasts of next values even when
decision makers only have a limited set of historical data.
In particular, in our solution, these characteristics of gray-
box modelling allow us to start host observation just after
the VMs are created. In fact, in our prototype of the pro-
posed MCN infrastructure, we derive the one-step ahead
prediction via the gray model approach for the utilization
percentage of each monitored resource (Ures) as:

𝑈𝑟𝑒𝑠𝑡+1 = 𝑓𝐺𝑀(𝑈𝑟𝑒𝑠𝑡 , 𝑈𝑟𝑒𝑠𝑡−1, … , 𝑈𝑟𝑒𝑠𝑡−𝑘) , (1)
where 𝑓𝐺𝑀() is the gray model function and k is the

number of historical values that we consider for the pre-
diction, thus influencing model accuracy.

Hence, we combine all the one-step ahead predictions
(1) into a polynomial linear formulation with all the P pa-
rameters considering both the host resources, comprehen-
sive of CPU, memory, network and disk operations, and
application requirements present in the system SLA crite-
ria, including Round Trip Time (RTT) and throughput in
order to define the overall resource usage (𝑈ℎ𝑜𝑠𝑡) into the
equations (2):

𝑈ℎ𝑜𝑠𝑡𝑡+1 = 𝑥1 ∗ 𝑈𝑐𝑝𝑢𝑡+1 + 𝑥2 ∗ 𝑈𝑚𝑒𝑚𝑡+1 + 𝑥3 ∗ 𝑈𝑛𝑒𝑡𝑡+1

+ 𝑥4 ∗ 𝑈𝑑𝑖𝑠𝑘𝑡+1

+ 𝑥5 ∗ 𝑈𝑟𝑡𝑡𝑡+1 + 𝑥6 ∗ 𝑈𝑡ℎ𝑟𝑡+1 , (2)
where: 𝑈ℎ𝑜𝑠𝑡𝑡+1 is the overall resource usage on the

host one-step ahead; 𝑈𝑐𝑝𝑢𝑡+1 is the CPU usage one-step
ahead; 𝑈𝑚𝑒𝑚𝑡+1 is the memory usage one-step ahead;
𝑈𝑛𝑒𝑡𝑡+1 is the network bandwidth usage one-step ahead;
𝑈𝑑𝑖𝑠𝑘𝑡+1 is the read/write disk operations usage one-step
ahead; 𝑈𝑟𝑡𝑡𝑡+1 is the deviation from the minimal RTT

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 7

value one-step ahead; 𝑈𝑡ℎ𝑟𝑡+1 is the deviation from the
maximum throughput value one-step ahead; 𝑥𝑖 is the
weight for each resource and is used to augment or
weaken the relevance of specific resources to be able to
adjust the monitoring system in relation to the im-
portance of the single resource to monitor, depending on
the specific type of service (CPU-/memory-/storage-
intensive). For an example of proper 𝑥𝑖 selection, please
refer to the experimental result section. Of course, for 𝑥𝑖
the following equation holds:

∑ 𝑥𝑖 = 1 , (3)

𝑃

𝑖=1

Finally, we define a threshold 𝑇 that we compare with
the 𝑈ℎ𝑜𝑠𝑡𝑡+1 to detect if the host is overloaded and, hence,
to activate our trigger and the consequent migration pro-
cedure. In particular, in relation to 𝑈ℎ𝑜𝑠𝑡𝑡+1 we are able to
detect either to move just one single VM instance or to
migrate multiple VM instances due to high forthcoming
congestion:

(𝑈ℎ𝑜𝑠𝑡𝑡+1 − 𝑇) ∝ 𝑁𝑉𝑀 , (4)
where 𝑁𝑉𝑀 is the number of VM instances to migrate.
Let us stress that we keep out of the scope of our im-

plementation description here the decision of the target
place where to migrate the targeted service instance be-
cause it may depend on the internal management goal of
the MCN CC. Once the target destination place is identi-
fied, the state migration procedure can start. In particular,
we split service state migration time into epochs and eve-
ry epoch is related to a particular service state; note that,
even if not original per se from the algorith-
mic/methodological point of view, the epoch exploitation
approach is completely new in state migration for elastic
cloud provisioning of telco infrastructures. We define the
following epochs:
• E1: the interval to re-create the same environment onto

the new selected host;
• E2: the interval to perform the first data migration

phase (push phase);
• E3: the interval to perform the residual second data

migration phase (stop-and-copy phase);
• E4: the interval to release the unused resources.

According to this epoch definition, our solution ex-
ploits the following algorithm for service state migration:
• Step 1 (E1): create the new state skeleton, consisting of

𝑀𝑉𝑀 (independent from 𝑁𝑉𝑀) VM instances and pre-
pare the target place to receive the state to be moved
(operated by the SO).

- 1.1 VM instances creation and startup
- 1.2 VMs configuration to recreate the same envi-

ronment
• Step 2 (E2): freeze the database, with the associated

service state, and migrate the whole service state to-
wards the newly created VMs, while the old VMs con-
tinue to collect data and to be able to serve requests.
Thus, we adopt a modification of the pre-copy based
approach to migration. This is the initial “push phase”
where all the state for the captured time instant coin-

cident with the start of the E2 epoch is moved from the
origin service to the pre-created destination service.

- 2.1 push all the data collected in VMs (at the time
E1 starts)

- 2.2 change service references to retrieve the
“new” service from the new VMs

- 2.3 delete the data moved to be fully aware of the
data collected during Step 2 (not moved yet)

• Step 3 (E3): this is the “stop-and-copy phase” and
pushes the residual data collected during Step 2 to the
new VMs in order to update the service state with the
latest information

• Step 4 (E4): dispose the old overloaded VMs to release
the associated resources and lighten the workload on
the overloaded host.
We designed the above state migration procedure to

achieve several goals: (i) to minimize data losses and ser-
vice unavailability time, independently from the amount
of data and time of the migration; (ii) to integrate differ-
ent algorithms and techniques to manage the specific
temporal epochs in a more adaptive and distributed way
among different service instances, for example by intro-
ducing priority settings (high-priority sessions) or fault-
tolerance requirements.

In our specific use case, we decided not to further over-
complicate the existing MCN framework and, for simplic-
ity, we opted to manage requests for only one instance
(𝑀𝑉𝑀 = 𝑁𝑉𝑀 = 1), thus without distributed management.
However, the proposed design and implementation have
been made to be easily extensible towards distributed in-
stance management. When the push phase is terminated,
the service is active on the new VMs and the newly creat-
ed instance is the target service instance that serves all the
incoming requests from clients. The service is re-
established on the new host and the origin service in-
stance does not receive more incoming data.

As soon as the origin service instance is no longer op-
erational, we perform the stop-and-copy phase, pushing
all the residual data inserted on the old instance previous-
ly and belonging to the temporal epoch, towards the des-
tination service instance. In this way, we run out all the
old epochs data in a timely fashion in order to converge
and realign the service state and complete state migration
consistently. After the whole state has been moved, our
implementation deletes the stack resource of the old ser-
vice instance to release both migration-related internal
and application-related resources. Finally, before restor-
ing the monitoring component, we reset the buffered
monitoring values read from Zabbix to enable new future
triggering actions without old spurious data.

Let us highlight that we prototyped and experimented
the above solution by considering the migration of the re-
al MCN RCBaaS: during its whole service instance migra-
tion procedure, RCBaaS has demonstrated to be respon-
sive, with complete transparency for both system opera-
tions and end-users and with limited performance degra-
dation (see Section 6).

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Fig. 3 details the steps of our service state migration
process. In addition to starting the typical SM/SO activi-
ties to deploy and provision a new RCBaaS service (1, 2.1,
2.2, 2.3, and 2.4), the first step regarding the state migra-
tion is the triggering of the whole migration. The resource
usage values provided by Zabbix (3.1 and 3.2) are stored
into a sliding window array with a fixed buffer length
that can be easily configured programmatically. The buff-
ering of monitoring time-series of data samples enables
the exploitation of many algorithms for resource usage
analysis and prediction. In our case, we have implement-
ed a lightweight first-order gray model filtering module
(4) as an external triggering decision algorithm. When
this trigger has been activated, the steps already ex-
plained in Fig. 2 start: preparation of the target place to
receive data (5); data migration towards the target VMs
(6); stack disposals (7); reset of the buffered monitoring
(8). Finally, we return to store monitoring data from the
considered targets and restart the loop.

5 MOST RELEVANT IMPLEMENTATION INSIGHTS

Here we go in-depth into the technical details of how ex-
actly we have implemented our original stateful service
migration solution by concentrating on a few most chal-
lenging and original aspects. We start from the RCBaaS
division into smaller and more specific VM instances in
order to monitor accurately and effectively resource con-
sumption; this opportunity of VM separation may exhibit
in several use cases and application scenarios. Then, we
focus on how to efficiently implement resource monitor-
ing in MCN. Finally, we concentrate on efficient data mi-
gration with no impact on service continuity.

5.1 Preliminary Work on Service VM Separation

RCBaaS is composed by two main components that in-
teract very frequently: Cyclops [32] and InfluxDB [33].

Cyclops is the core component of RCBaaS, responsible
for the service logic for accounting and billing purposes.
Cyclops is divided into three micro-services: User Data
Records (UDR) that collects the usage data from a source,
such as OpenStack, CloudStack, SaaS, PaaS, etc., and
stores it in the database; Rating and Charging (RC) that
uses the records generated by the UDR to calculate, in re-
lation to the cloud resource rate, the charge data records;
Billing that generates an invoice.

InfluxDB is an open-source time-series database (par-
ticularly suitable to keep track of large amounts of sensor
data), widely used in particular in the context of real-time
analytics. In MCN it is the backend of RCBaaS as the
monitoring metrics repository to keep the history of all
service measurements.

To apply our service state migration procedure and
mechanisms in a practical valuable case, we have focused
on the RCBaaS monitoring service as a monolithic VM for
the sake of maximum separation. As a first step, to enable
the state transfer migration process, we split it into dis-
joint and dynamically bound VMs. The RCBaaS-VM per-
forms the core operation of the monolithic service and

contains only the Cyclops components. The InfluxDB-VM
contains the backend component where data are stored.
These two VMs are introduced to act on the state datas-
tore (that is our original component that actually stores
the service state), in our case the InfluxDB instance, with-
out requiring any change on the RCBaaS, thus actually
behaving as a stateless component in this uncoupled ver-
sion.

This specific case can be generalized in several applica-
tion domains and for several practical services. To effec-
tively and efficiently use our solution for stateful service
migration, it is recommendable to identify a few coarse-
grained macro-blocks to be the migration targets and pos-
sibly to isolate service state into a single (or very few) of
them, thus benefitting from stateless migration in all oth-
er cases.

Fig. 3. State migration process

class MyList(list):

 def append(self, item):

 list.append(self, item)

 if len(self) > myparameters.WINDOW_SIZE: self[:1]=[]

class SOD(service_orchestrator.Decision, threading.Thread):

 def getGrayModelValues(gateway, composedList):

 values = []

 for list_py in composedList:

 list_java = ListConverter().convert(list_py, gateway._gateway_client)

 nextValue = gateway.entry_point.nextValue(list_java)

 values.append(float("{0:.4f}".format(nextValue)))

 return values

 def monitoring(self):

 self.monitor = RCBaaSMonitor(myparameters.MAAS_DEFAULT_IP)

 self.hosts_cpu_load = []

 self.hosts_cpu_load.append(MyList())

 metrics = self.monitor.get(myparameters.ZABBIX_INFLUXDB)

 self.hosts_cpu_load[0].append(metrics[0])

 if len(self.hosts_cpu_load[0]) >= myparameters.ZABBIX_MIN_READING:

 cpu_load_GM = getGrayModelValues(self.gateway, self.hosts_cpu_load)

 if cpu_load_GM > myparameters.TRIGGER_VALUE:

 print "Trigger activated. I'm going to move the VM state."

 ...

 time.sleep(myparameters.ZABBIX_UPDATE_TIME)

Fig. 6. SO Monitoring Code Snippet.

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 9

We cleanly split the RCBaaS service by using Open-
Stack Heat, which implements an orchestration engine
that allows to launch multiple composite cloud applica-
tions based on Heat template files. In particular, we
properly configured the Heat template to create two dif-
ferent VMs for Cyclops and InfluxDB when launched and
to execute two script files located on the Cyclops-VM af-
ter the creation, in order to automatically configure the IP
address of the InfluxDB-VM to which RCBaaS sends its
data for storage purposes. Fig. 4 outlines an excerpt of the
script code used on the RCBaaS VM, which edits 3 con-
figuration files, one for each Cyclops micro-service.

5.2 Monitoring

The monitoring system is mainly based on two main
components: MaaS and our gray model. MaaS runs a
Zabbix server that communicates with the distributed
monitoring agents within the VMs that are instantiated
during service provisioning. MaaS aggregates the re-
source information retrieved from the agents. Each moni-
toring agent is designed to collect networking statistics, to
normalize and process the raw monitoring data, and to
send its processing results to the Zabbix server of MaaS.
Every deployed service that needs to integrate with MaaS
for resource monitoring purposes requires the installation
and configuration of a Zabbix agent, as shown in Fig. 5.
This is automated through a proper Heat template file to
allow active resource monitoring.

In the SO implementation, the monitoring information
required is set to allow the exploitation of our gray mod-
el. The parameters to activate the trigger are set here as
well and they direct the activation of state migration. Fig.
6 shows a snippet of the SO implementation for the moni-
toring part. We check the CPU load as the value to moni-
tor for determining host overload. Other metrics may be
used with simple proper configuration, always via Heat
files. The CPU load considers the queue length of pro-
cesses waiting to be processed, i.e., a common and wide-
spread parameter to detect host workload. We set 10 as
the CPU load threshold for the InfluxDB-VM and, given
that the VM has 2 virtual CPUs, it means the trigger is ac-
tivated when at least 5 processes per single core are wait-
ing to be processed. The CPU load value to be considered
is returned by the gray model using the last five values
read from MaaS and is stored into a sliding window ar-
ray. At startup, we consider 3 minimum readings to in-
voke our gray model, in order to avoid false positives and
thus to prevent from trigger activation caused by few
anomalous readings. Finally, the monitoring values from
MaaS are retrieved every 1 minute, which is the maxi-
mum sensitivity configurable in Zabbix (lower bound on
the period for refreshing monitoring data). This setting

has been selected to have a relatively fine-grained perio-
dicity and consequently good responsiveness.

5.3 Service Instance Migration

The service instance migration step consists of two
phases in the presented RCBaaS case: i) a complete In-
fluxDB dump from the old to the new instance; ii) storage
and migration of new data inserted on the old database
instance while the migration occurs and after the dump
operation. Regarding the database dump, it is the core
operation of the state migration to move the data of the
old InfluxDB instance to the new instance. To reduce the
duration of this phase, we adopt compression techniques
for the old InfluxDB that, after migration, is extracted and
put into the target InfluxDB data folders.

The dump operation is the most critical one under dif-
ferent perspectives. It could have a non-negligible dura-
tion, even tens of seconds, in relation to the amount of da-
tabase instances and records to transfer, due to both ex-
ternal operations (e.g., data compression, movement, ex-
traction, and database restart) and internal database op-
erations to synchronize the new state.

Therefore, in order to minimize database unavailabil-
ity and to preserve overall service continuity, we have
originally designed and implemented the second phase.
As soon as the old data have been copied into the archive,
all dumped data in the old databases are dropped, to be
sure that successively inserted data have not been trans-
ferred during migration and, as a consequence, to further
relieve the old database performance.

When the database dump has completed and the tar-
get InfluxDB has been configured and made available, we
select all the new data at the old instance and move them
to the target InfluxDB, merging with the data already mi-
grated during the dump. Delving into some finer imple-
mentation details, this mechanism required to save these
“during-migration” entries as a JSON file, and then to
convert them into a LineProtocol format file used by In-
fluxDB to insert data on-the-fly5. This copy of the new da-
ta to the target InfluxDB instance completes the data mi-
gration step.

Fig. 7 graphically summarizes all the operations per-
formed during our data migration process, by distin-
guishing the actions executed on the old and those run on
the new InfluxDB-VM instances. In particular, the first
three blocks from the left refers to the database dump op-
eration (phase i) and the last two blocks to the storage of
new data inserted during the migration process (phase ii).

5 https://docs.influxdata.com/influxdb/v0.9/write_protocols/line/

ip=$1

echo "-> Cyclops-udr configuration file"

python string_substitution.py /home/ubuntu/cyclops-udr/src/main/webapp/WEB-

INF/configuration.txt InfluxDBURL= http://$ip:8086

echo "-> Cyclops-rc configuration file"

python string_substitution.py /home/ubuntu/cyclops-rc/src/main/webapp/WEB-

INF/configuration.txt InfluxDBURL= http://$ip:8086

echo "-> Cyclops-billing configuration file"

python string_substitution_js.py /home/ubuntu/cyclops-udr/install/openstack/config/config.js

url: ' "http://'$myip':8086/db/udr_service",' ' "http://'$ip':8086/db/grafana",'0

Fig. 4. Cyclops configuration.

apt-get install -y zabbix-agent

sed -i -e 's/ServerActive=127.0.0.1/ServerActive=160.85.4.28:10051/g' –e

's/Server=127.0.0.1/Server= 160.85.4.28/g' -e 's/Hostname=Zabbix server/#Hostname=/g'

/etc/zabbix/zabbix_agentd.conf

service zabbix-agent restart

Fig. 5. Zabbix Agent Configuration in an InfluxDB-VM heat tem-
plate.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Fig. 8 shows an excerpt of the code used inside the SO
component to invoke the migration script and to move
data between the two instances. The command sent to the
remote host is implemented through a Python library: it is
possible to access the new instance and execute, from the
SO implementation, the script already prepared on the
newly created InfluxDB-VM instance, by passing the IP
address of the old instance to migrate as a parameter.

6 IN-THE-FIELD EXPERIMENTAL EVALUATION AND

SIMULATION WORK

As already stated, one of the key contributions of the
research work presented here is that our service state mi-
gration solution has been implemented and completely
integrated in the articulated MCN architecture and infra-
structure prototype. As a valuable side-effect, differently
from what available in the existing literature, we are able
to report in-the-field experimental results about how our
solution prototype behaves over a real deployment envi-
ronment (Section 6.1).

However, several technical elements make hard to re-
port here a technically sound performance evaluation
comparison with other similar solutions in the literature
and based on in-the-field experimentation. In particular,
the primary technical barriers and complexity are i) the
impossibility/difficulty of integrating existing solutions
into the MCN architecture or into a similar orchestration
framework for carrier-grade virtualized services (e.g., be-
cause of lack of released source codes), ii) the need to
compare the E2E performance and thus to consider “simi-
lar techniques” when supporting RCBaaS, which is un-
feasible, and iii) the impossibility/difficulty to be de-
ployed over the same cloud support stack (not frequently
based on OpenStack).

Anyway, by considering the most relevant related lit-
erature in terms of reported performance results, some
existing proposals for live stateful migration consider ei-
ther pre-copy or post-copy approaches, but only a very
few of them propose a hybrid solution, similarly to us.
Generally speaking, pre-copy and post-copy approaches
have demonstrated worst performance in terms of laten-
cy, unavailability time, and errors (abortion of all the ac-
tive and incoming transactions at the moment of the mi-
gration) [34, 35]. Hybrid solutions can provide better per-
formance and downtime because they are more flexible
and allow continuing to keep the service active while the
infrastructure performs migration management. For in-
stance, Zephyr [35] has shown to achieve a total time to
migrate a tenant (with one db of 10^6 rows) of around 10-
18s; to this, an additional latency has to be considered as

perceived by final users. [36] proposes a live VM migra-
tion based on checkpointing/recovery and trace/replay
techniques. The migration overhead and delay are much
higher than Zephyr and, in WAN networks, the solution
presented in [36] introduces a non-negligible latency
(magnitude order of seconds for all the benchmarks used)
to serve requests during migration management (if com-
pared with so-called “regular operations”, in absence of
migration occurrence). Finally, [37] evaluates the perfor-
mance of live VM migration, in particular to quantify the
slowdown/downtime experienced by end user applica-
tions during migrations. With 600 concurrent users, the
downtime is in the order of some seconds and, in particu-
lar, the collected performance indicators show a strong
dependency on the number of users to serve. In our solu-
tion, migration performance indicators are not related to
the users number because the RCBaaS implementation is
organized into different VMs with different tasks, thus
clearly decoupling service management for users (Cy-
clops VM) and for data (InfluxDB VM). Note that all the
above solutions do not deal with high workloads that are
typical of carrier-grade telco applications, differently
from our MCN-integrated solution.

Because of the technically barriers mentioned above, in
order to improve anyway the performance evaluation re-
ported here, we also include in this section the results of
the simulation work accomplished to compare the per-
formance of our MCN state migration with “more tradi-
tional” reactive-only or proactive-only approaches to state
migration (Section 6.2).

Fig. 9. MCN E2E Deployment Scenario.

try:

 ssh = paramiko.SSHClient()

 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 key = BUNDLE_DIR + myparameters.MIGRATION_KEY

 ssh.connect(self.so_e.influxdb_ip, username=myparameters.MIGRATION_USERNAME,

 key_filename=key)

 command1='cd '+myparameters.MIGRATION_SCRIPT_FOLDER+';’

 command2=' bash '+myparameters.MIGRATION_SCRIPT_NAME+'

 '+self.so_e.influxdb_ip_old

 command=command1+command2

 stdin, stdout, stderr = ssh.exec_command(command)

 ssh.close()

 break

 except paramiko.ssh_exception.NoValidConnectionsError:

 print "VM not ready"

 time.sleep(2)

Fig. 8. SO Data Migration.

Fig. 7. Essential steps of the proposed data migration process.

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 11

6.1 In-the-field Experimental Measurements of Per-

formance Indicators
To better understand the complete MCN testbed and

to have a precise idea of the overall complexity of typical
MCN deployment environments, we quickly introduce an
End-to-End (E2E) MCN deployment scenario and omit
the details about all MCN services, for the sake of brevity
and focus on our novel approach. The integrated E2E
MCN deployment scenario, shown in Fig. 9, creates a
very heterogeneous and broad-based cloud platform
composed of a high number of services and components,
which have been evaluated following several different
tests. It should be noted that a common methodology [38]
has been used to evaluate a complex of scenario includ-
ing: Digital Signage System (DSS) to evaluate the over-
the-top applications for playing content through digital
signature services; IP Multimedia System (IMS) to evalu-
ate the support of video and voice for mobile users; Fol-
low-Me-Cloud (FMC) to better demonstrate the capabili-
ties of mobility prediction and dynamic content place-
ment, particularly important to show how information-
centric networking technologies can be fostered by pre-
diction and how the FMC concept is supported.

In these very wide and complex scenarios, the im-
portance of each component greatly varies in relation to
the specific use case considered. In the following we will
focus only on the RCBaaS service. RCBaaS is the compo-
nent for state migration management, thus, we will show
only the experimental results that strictly highlight in iso-
lation the behavior of our state migration functionality
among all the functionalities present in MCN.

We performed several tests to cover all the steps and
phases discussed in the previous sections, by deploying
stacks on the OpenStack platform and using RegionOne,
as the default region. OpenStack “Bart” is a testbed pro-
vided by MCN consortium that runs the OpenStack ser-
vices, based on Kilo version. In particular, for sake of per-
formance evaluation, we desired to stress the RCBaaS uti-
lization with a wide range of different workloads in order
to observe the performance of the newly introduced func-
tion. Important was the perceived limited unavailability
time, notwithstanding dynamic state migration and syn-
chronization. All performance tests reported in this sub-
section refer to average values that we measure across
multiple runs, each exhibiting an overall low variance
(<5%). In addition, based on preliminary experimenta-
tions and evaluations, for the reported case of RCBaaS,

we have set the weights of equation 2 as x1=x4=1/3, and
x2=x3=x5=x6=1/10. In fact, in this specific case, CPU usage
and disk utilization have shown to be the most effective
indicators to trigger our migration facility: on the one
hand, CPU has shown to be the primary motivation of
overall system slow-down in overloaded RCBaaS; on the
other hand, disk performance is crucial in the targeted
E2E scenario because the database and persistence sup-
port are the second bottlenecks after CPU, with their
overload propagating negative effects on the whole
RCBaaS, as also highlighted by the following results. As a
general consideration, we suggest a methodological ap-
proach where weights are preliminary determined in a
first approximation based on identified bottlenecks and
then counterchecked/refined with a few experimental
runsto determine local optima; the determination of their
globally optimal values is out of the scope of this paper.

Table I shows the performance related to: service ini-
tialization, Zabbix monitoring, the gray model usage, the
new target stack creation, and the RCBaaS-VM creation.
Let us note that only the monitoring performance, in our
case negligible, may potentially cause performance issues
because they are repeated continuously during the service
life-cycle. The other reported operations are only per-
formed at startup, thus they do not introduce any latency
during system operations at runtime.

Fig. 10 shows the performance of the data migration
for different amounts of data. We report average values
measured on multiple runs because the overall perfor-
mance varies slightly from test to test mainly depending
to the network conditions and the load on the physical
host where the VM is running.

We divide the overall latency into several contribu-
tions that allow us to distinguish the different phases; in
particular, we measure and define main timing as fol-
lows:
• Tvmconn: time the SO takes to connect to the InfluxDB-

VM, or in other words, the latency time between when
the trigger becomes active and the data migration
starts;

• Tcompress_move: time to compress data into a tar.gz archive
and move to the new VM instance;

• Tdelete: time to delete all the data from the old InfluxDB-
VM instance, directly proportional to the number of
database to delete;

• Textract: time to extract the archive into the InfluxDB
folders of the new VM instance;

• Trestart: time to restart the InfluxDB service in order to
get the update about the new data;

• Tsync: time used by Influx process for internal synchro-
nization after the dump.
Other time latencies are related to the storage and in-

sertion of the new data during the migration, that is the
time necessary to: get all measurements, retrieve data in-
serted into a JSON file, convert the JSON file into the
LineProtocol format and insert the data into the data-
bases. We do not report these latencies in the chart, Fig.
10, because we assume the amount of data inserted dur-
ing the migration is limited and, thus, the associated time
can be migrated (in the order of 0.1-0.2s to move a dozen

TABLE I

 Operation Time (s)

At Startup MaaS monitoring setup (Zabbix) 9.5

Setup Gray Model Java classes 3.5

Monitoring Read Zabbix values 0.5

Calculate Gray Model value < 0.1

Stack Create a new stack 45

RCBaaS VM Cyclops-UDR deploy 25-26

Cyclops-RC deploy 15

Cyclops-Billing deploy 30-32

Total time to setup the VM 90-100

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

of records).
Let us stress that during the overall state migration

procedure the database unavailability, considering the
latest assumption that ignores the new data time retrieval,
is limited to the process related to the measurements dele-
tions (Tdelete), proportional to the number of databases pre-
sents but always very low and, for typical execution and
average migration, below 1s, that grants relatively negli-
gible unavailability, thus proving the effectiveness of the
proposed state migration function and its wide applica-
bility to stateful services service state migration.

Summing up, depending on the dimension of the state
to be migrated, the overall service migration process time
can go from 112 seconds for up to two millions of records
(namely, 100 seconds to setup the target VM and 12 sec-
onds for data migration) to 590 seconds (for 100 millions
of records). In any case, we are able to achieve a fully
scalable behavior with good overall performance, mainly
limited by the InfluxDB internal operations (Tsync), that is
the real bottleneck of the solution, but it does not affect
the unavailability time but only the duration time of the
migration.

6.2 Simulation Results about Migration Latency
and Data Loss Compared with Baseline

For additional quantitative evaluations and compari-
sons, we employed CloudSim [39], an extensible and
widely adopted simulation toolkit that enables the model-
ling and simulation of cloud computing environments. In
particular, the CloudSim simulation framework supports
(and is recognized as suitable for) the modelling and crea-
tion of infrastructures and application environments for
distributed multiple clouds, as in our testbed of Section
6.1. In particular, we map the RCBaaS service infrastruc-
ture into the simulator by creating:
• two datacenters, used to migrate our VMs to;
• one host per datacenter, with 2GB RAM and 250GB

storage each;
• two VMs for each host, with 512MB RAM, 100GB

storage, and 1 CPU each;
• one process per VM representing Cyclops and In-

fluxDB components.
In this simulated environment, we extensively com-

pared our hybrid solution with two baseline approaches,
i.e., reactive-only and proactive-only. The reactive base-
line adopts the approach of migrating all data at once
when the host is already overloaded. Thus, it is charac-
terized by small migration time (because it does not in-
clude data reconciliation), but also may cause significant
data loss in case of high amount of data received during
the migration process. The proactive approach, instead
and dually, moves the data in advance before the service
migration takes place and then reconciles the new insert-
ed data after service migration. This generates small data
loss but higher migration time if data variability is high.

Fig. 11 and 12 show, respectively, the results about the
time required to complete migration with the proactive
baseline, and the data loss during migration with the re-
active baseline. The migration time for the reactive ap-
proach and the data loss in the proactive one are not re-
ported in the figures because they are almost invariant

when modifying data variability and equal to the best
cases of the other baseline approach.

Let us note that the results previously reported in Fig.
10 have been obtained by considering an average data
variability, i.e., 1B/s, in our real testbed. Our hybrid mi-
gration solution works more proactively than the reactive
baseline, by keeping at the same time a negligible data
loss. In fact, as shown in Fig. 11 and 12: under 1kB/s of
data variation rate, if the time constraints of the support-
ed services allow them, proactive approaches show to
grant low migration time and data loss; above 1kB/s, the
migration time distance between the two baselines be-
comes relevant and a hybrid solution should consider the
best tradeoff to adopt depending on the specific charac-
teristics and requirements of the application scenario.

Fig. 11: Migration time for Proactive (P) baselines.

Fig. 12. Data loss for Reactive (R) baselines.

Fig. 10. Performance Evaluation of RCBaaS State Migration.

P. BELLAVISTA ET AL.: SERVICE STATE MIGRATION FOR ELASTIC PROVISIONING OF TELCO SERVICES IN MOBILE CLOUD NETWORKING 13

In other words, the results in Fig. 11 and 12 highlight
the relevance of being able to dynamically adapt the mi-
gration behavior to expected data variability, as in our
proposed prototype where we use the delta number of
records inserted into the database between two consecu-
tive time intervals.

Finally, Fig. 13 reports about how we have modeled
the workload in the targeted datacenter in our simula-
tions, by showing how the workload changes in relation
to the number of users and the amount of data stored in-
to the database, and ii) under which circumstances the
datacenter is overloaded and our migration support is
likely to be triggered. In fact, by considering the charac-
teristics of our RCBaaS scenario and also based on our in-
the-field experimentation of it, in our simulations the
datacenter workload shows strong dependence on data-
base storage (percentage of overall host storage) and is
limitedly affected by the number of users who concur-
rently invoke the service.

Fig. 13. Datacenter workload for our RCBaaS simulations.

7 CONCLUSIONS AND ONGOING WORK

The implementation and integration work accom-
plished for service state migration within the MCN pro-
ject has demonstrated that it is possible to achieve cost-
effective prototyping with full compliance with industry-
mature standards and frameworks in the field. We have
already validated our approach experimentally and per-
formed a large experimental campaign of performance
indicators measurements. The reported results confirm
that the proactive triggering mechanism adopted in our
solution can significantly minimize the service down time
(crucial key performance indicator for migration of criti-
cal telco services) in the cases of very unexpected and ab-
rupt traffic peaks, by imposing a very limited overhead
on the overall support infrastructure.

Fueled by these significant results, we are working on
two main ongoing research directions. On the one hand,
we are deploying the realized solution, already widely
tested in the geographically-distributed MCN cloud
testbed, in a federated cloud environment with heteroge-
neous orchestrators that need to interoperate across dif-
ferent domains. On the other hand, we are running exten-
sive experiments to thoroughly assess the impact of ab-
rupt external load peaks, out of the direct control of our
monitoring infrastructure, to mitigate the potentially dis-
ruptive effect on ongoing service state migration sessions.

ACKNOWLEDGEMENTS

We want to thank the European Commission for co-
founding the FP7 Large-scale Integrating Project (IP) Mo-
bile Cloud Networking (MCN) project under the 7th
Framework Programme, grant agreement no. 318109.

REFERENCES

[1] A. Edmonds, T. Metsch, A. Papaspyrou, A. Richardson, “Toward an
Open Cloud Standard,” in IEEE Internet Computing, vol. 16, no. 4, pp.

15-25, Jul. 2012.

[2] ETSI, “Network Functions Virtualisation (NFV); Architectural Frame-
work”, in GS NFV 002 V1.1.1, Oct. 2013.

[3] M. Stine, “Migrating to Cloud-Native Application Architectures”,

O’Reilly, Mar. 2015.
[4] B. Sousa, et al., “Toward a Fully Cloudified Mobile Network Infra-

structure”, in IEEE Transactions on Network and Service Management,

vol. 13, no. 3, pp. 547-563, Sept. 2016.
[5] C. Clark, et al., “Live Migration of Virtual Machines”, in Proceedings

of 2nd USENIX Symp. Networked Systems Design & Implementation
(NSDI), 2005.

[6] M. R. Hines, U. Deshpande, K. Gopalan, “Post-copy live migration of

virtual machines”, in ACM SIGOPS Operat Syst Rev 43(3): 14–26,
2009.

[7] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, “Information and control

in gray-box systems”, in Proceedings of the 18th ACM Symp. Operating
systems principles (SOSP), pp. 43–56, 2001.

[8] OpenStack Heat. Available online at:

https://wiki.openstack.org/wiki/Heat.
[9] Nirmata. Available online at: http://nirmata.com.

[10] Hurtle. Available online at: http://hurtle.it.

[11] OASIS (Topology and Orchestration Specification for Cloud Applica-
tions). Available online at: http://docs.oasis-

open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html.

[12] T. Binz, G. Breiter, F. Leymann, T. Spatzier, “Portable Cloud Services
Using TOSCA”, in IEEE Internet Computing, vol. 16, no. 3, pp. 80-85,

2012.

[13] Cloudify. Available online at: http://getcloudify.org.
[14] M. F. Bari, et al., "CQNCR: Optimal VM Migration Planning in Cloud

Data Centers", in Proceedings of the IFIP Networking Conf., 2014.

[15] F. Callegati, W. Cerroni, “Live Migration of Virtual Network Functions
in Cloud-Based Edge Networks”, in Proceedings of IEEE SDN for Fu-

ture Networks and Services (SDN4FNS), pp. 1-6, 2013.

[16] F. P. Tso, G. Hamilton, K. Oikonomou, D.P. Pezaros, “Implementing
Scalable, Network-Aware Virtual Machine Migration for Cloud Data

Centers”, in Proceedings of IEEE 6th Int. Conf. Cloud Computing,

2013.
[17] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data

Center Networks with Traffic-aware Virtual Machine Placement”, in

Proceedings IEEE INFOCOM, pp. 1–9, 2010.
[18] V. Mann, et al., “Remedy: Network-aware Steady State VM Manage-

ment for Data Centers”, in Proceedings of the 11th Int. IFIP TC6 Conf.

Networking, vol. 7289, pp. 190–204, 2012.
[19] D. Jayasinghe, et al., “Improving Performance and Availability of Ser-

vices Hosted on IaaS Clouds with Structural Constraint-aware Virtual

Machine Placement”, in Proceedings of the IEEE Int. Conf. on Services
Computing, pp. 72–79, 2011.

[20] T. Wood, et al., “Sandpiper: Black-box and Gray-box Resource Man-

agement for Virtual Machines”, in Computer Networks, vol. 53, issue
17, pp. 2923–2938, 2009.

[21] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:

Lightweight Elasticity in Shared Storage Databases for the Cloud Us-
ing Live Data Migration.”, in Proceedings of the VLDB Endowment,

vol. 4, issue 8, pp. 494-505, 2011.

[22] A. J. Elmore, S. Das, D. Agrawal, A. El Abbadi, “Zephyr: Live Migra-
tion in Shared Nothing Databases for Elastic Cloud Platforms”, in Pro-

ceedings of the ACM SIGMOD Int. Conf. Management of Data, pp.

301-312, 2011.
[23] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, P. J. Shenoy. "Cut Me

some Slack: Latency-aware Live Migration for Databases”, in Proceed-

ings of the 15th Int. Conf. Extending Database Technology, pp. 432-
443, 2012.

[24] O. Schiller, N. Cipriani, and B. Mitschang, “ProRea: Live Database

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Migration for Multi-Tenant RDBMS with Snapshot Isolation”, in Pro-
ceedings of the 16th Int. Conf. Extending Database Technology, pp. 53-

64, 2013.

[25] E. Cecchet, R. Singh, U. Sharma, P.J. Shenoy, “Dolly: Virtualization-
driven Database Provisioning for the Cloud”, in Proceedings of the 7th

ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments

(VEE), 2011.
[26] S. Sakr, “Cloud-hosted Databases: Technologies, Challenges and Op-

portunities”, in Cluster Computing, vol. 17, issue 2, pp. 487–502, 2014.

[27] T.M. Bohnert and A. Edmonds, “MCN D2.2: Overall Architecture
Definition, Release 1”, mobile-cloudnetworking.eu/site/index.php?

process=download&id=124&code=93b79f8f5b99f67a6cdc28369c05b6
5f624cfee7, Oct 2013.

[28] A. Edmonds and T.M. Bohnert, “MCN D2.5: Final Overall Architec-

ture Definition, Release 2,” mobile-cloudnetworking.eu/site/index.php?

process=download&id=263&code=aa37ba15e0479f1ecb7a696876
ab498d7f3ff0ef, April 2015.

[29] "Zabbix: An Enterprise-Class Open Source Distributed Monitoring

Solution", available online at: http://www.zabbix.com, 2015.
[30] H.L. Wang, “Gray Cloud Model and Its Application in Intelligent Deci-

sion Support System Supporting Complex Decision”, in Proceedings of

the Int. Colloquium on Computing, Communication, Control, and
Management, vol. 1, pp. 542–546, 2008.

[31] P. Bellavista, A. Corradi, C. Giannelli, “Evaluating Filtering Strategies

for Decentralized Handover Prediction in the Wireless Internet”, in
Proceedings 11th IEEE Symp. Computers and Communications, 2006.

[32] Cyclops. Available online at: http://icclab.github.io/cyclops.

[33] InfluxDB. Available online at: https://influxdata.com.
[34] T. Hirofuchi, et al., "Reactive Consolidation of Virtual Machines ena-

bled by Postcopy Live Migration", in Proceedings of the 5th ACM Int.

Workshop on Virtualization Technologies in Distributed Computing,
2011.

[35] A.J. Elmore, et al., "Zephyr: Live Migration in Shared Nothing Data-

bases for Elastic Cloud Platforms", in Proceedings of the 2011 ACM
SIGMOD Int. Conf. Management of Data, 2011.

[36] H. Liu, et al., "Live Virtual Machine Migration via Asynchronous Rep-

lication and State Synchronization", IEEE Transactions on Parallel
and Distributed Systems, vol. 22, issue 12, pp. 1986-1999, 2011.

[37] W. Voorsluys, et al., "Cost of Virtual Machine Live Migration in

Clouds: A Performance Evaluation", in Proceedings of the IEEE Int.
Conf. Cloud Computing, 2009.

[38] B. Sousa, L. Cordeiro, P. Simoes, A. Edmonds, S. Ruiz, G. Carella, M.

Corici, N. Nikaein, A. S. Gomes, E. Schiller, T. Braun, T.M. Bohnert,
“Towards a Fully Cloudified Mobile Network Infrastructure,” IEEE

Trans. Network Service Management, Aug. 2016.

[39] R.N Calheiros, et al. "CloudSim: a Toolkit for Modeling and Simula-
tion of Cloud Computing Environments and Evaluation of Resource

Provisioning Algorithms”, in Software: Practice and Experience, pp.

23-50, 2011.

Paolo Bellavista (SM’06) graduated from the

University of Bologna, Italy, where he re-

ceived a Ph.D. degree in computer science

engineering in 2001. He is now an associate

professor at the University of Bologna, Italy.

His research activities span from mobile

agent-based middleware solutions and per-

vasive wireless computing to location/context-

aware services and management of cloud

systems. He serves on the Editorial Boards of IEEE TNSM, IEEE

TSC, Elsevier PMC, Springer WINET, and Springer JNSM.

Antonio Corradi (M’77) graduated from
University of Bologna, Italy, and received MS
in electrical engineering from Cornell Univer-
sity, USA. He is a full professor of computer
engineering at the University of Bologna. His
research interests include distributed sys-
tems, middleware for pervasive and hetero-
geneous computing, infrastructure for ser-
vices and network management.

Andy Edmonds received the M.Sc. degree in

distributed systems from Trinity College Dublin.

He is a Senior Researcher with the Zürich Uni-

versity for Applied Sciences. He was in industri-

al and academic positions in Siemens, Infineon,

Intel, and the Distributed Systems Group, Trinity

College in Dublin. He has been involved in sev-

eral European FP6 and FP7 projects. He’s is been on the FP7 MCN

project, as Deputy Technical Coordinator. His research interests in-

clude distributed system architectures, service-oriented architec-

tures, and cloud computing.

Luca Foschini (M’04) graduated from Uni-

versity of Bologna, Italy, where he received

PhD degree in computer science engineering

in 2007. He is now an assistant professor of

computer engineering at University of Bolo-

gna. His interests include pervasive wireless

computing environments, system and service

management, context-aware services, and

management of Cloud computing systems.

Alessandro Zanni graduated from University
of Modena and Reggio Emilia, Italy, in 2011.
He is currently a candidate for a PhD degree
in computer science engineering at University
of Bologna, Italy. His research interests in-
clude pervasive computing, middleware for
cloud-sensors system, Internet of Things and
management of cloud computing systems.

Thomas Michael Bohnert is a Professor with the
Zürich University of Applied Sciences and the
Head of the ICC Laboratory. His interests are fo-
cused on enabling ICT infrastructures, ranging
across mobile/cloud computing, service-oriented
infrastructure, and carrier-grade service delivery
(Telco + IT). He was with SAP Research, SIE-
MENS Corporate Technology. He serves as an
Regional Correspondent (Europe) for the IEEE

Communication Magazine News section (GCN). He is the founder of
the IEEE Broadband Wireless Access Workshop and holds several
project and conference chairs. He acts as MCN’s Technical Coordi-
nator.

	Copertina_postprint_IRIS_UNIBO (2) - Copy
	TSC-pre-editorial.pdf

