
ABSTRACT

Portable infrared-based instruments have made 
significant contributions in different research fields. 
Within the dairy supply chain, for example, most of 
portable devices are based on near-infrared spectros-
copy (NIRS) and are nowadays an important support 
for farmers and operators of the dairy sector, allowing 
fast decision-making, particularly for feed and milk 
quality evaluation and animal health and welfare moni-
toring. The affordability, portability, and ease of use of 
these innovative devices have been pivotal factors for 
the implementation in dairy farms. In fact, pocket-sized 
devices enable non-expert users to perform quick, low 
cost and non-destructive analysis on various samples 
without complex preparation. As bovine colostrum 
(BC) quality is mostly given by the Ig G (IgG) level, 
evaluating the ability of portable NIRS tools to mea-
sure antibodies concentration is advisable. In this study 
we used the wireless device SCiO manufactured by 
Consumer Physics Inc. (Tel Aviv, Israel) to collect BC 
spectra and then attempt to predict IgG concentration 
and gross and fine composition in individual samples 
collected as soon as possible after calving (<6 h) in 
primiparous and pluriparous Holstein cows farmed in 
9 Italian farms. Chemometric analyses revealed that 
SCiO has promising predictive performance for colos-
tral IgG concentration, total Ig concentration, fat, and 
AA (R2

CV ≥ 0.75). Excellent accuracy was observed for 
dry matter, protein, and S prediction in cross-valida-
tion and good prediction ability in external validation 
(R2

CV ≥ 0.93; R2
V ≥ 0.82). Nonetheless, SCiO’s ability 

to discriminate between good- and low-quality samples 
was satisfactory. The affordable cost, the accurate pre-
dictions, and the user-friendly design coupled with the 
increased interest in colostrum quality within the dairy 

sector may boost the collection of extensive BC data for 
management and genetic purposes in the near future.
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instrument, spectroscopy, passive transfer of immunity

INTRODUCTION

In the dairy sector, infrared spectroscopy-based tech-
nologies are acknowledged to be moderately to highly 
accurate, have been widely accepted by stakeholders, 
and are implemented for various purposes. As cheap, 
sometimes portable, and easy to use, infrared-based 
tools have boosted the improvement of knowledge and 
transition toward better management practices, includ-
ing animal health and welfare monitoring. In the case of 
milk and dairy products, the spectral hotspots mostly 
belong to the near- (800–2,500 nm) and mid-infrared 
(2,500–25,000 nm) regions. If on one hand mid-infrared 
spectroscopy is used worldwide for the collection of 
milk composition traits to be used as phenotypes for 
milk payment and genetic evaluation, near-infrared 
spectroscopy (NIRS) is the most popular technology 
for rapid quality assessment of solid and semi-solid 
material like feed and foodstuff (curd, cheese, yogurt, 
etc.). The repeatability, reproducibility, and overall ac-
curacy of benchtop instruments is so good that NIRS 
has been recognized as a gold standard for gross com-
position (ISO 21543:2020) of milk and derived products 
for official use.

In recent years, portable NIRS instruments have 
been promoted under the umbrella of precision live-
stock farming, paving the way for rapid and customized 
decision-making in dairy farms (Evangelista et al., 2021; 
Pu et al., 2021). In fact, benchtop instruments as well 
as the pocket-size devices can ensure a rapid and non-
destructive analysis of a variety of matrices, which can 
be performed by non-expert users after brief training. 
Furthermore, preparation of samples is minimum and 
easy. In terms of accuracy, portable devices are gener-
ally less performing than benchtop ones. This is due 
to the usually worse wavelength reproducibility, lower 
resolution, reduced spectral range (Sun et al., 2020; 
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Mishra et al., 2021), and to the quality of pre-existing 
models already installed. Prediction accuracy of NIRS 
instruments is, in fact, related to the goodness of the 
built equation(s) which has to be robust and developed 
in such a way as to avoid overfitting. The majority of 
micro-spectrometers – e.g., SCiO (Consumer Physics 
Inc., Tel Aviv, Israel), NIRONE 2.2 (Spectral En109 
gines, Finland), or F750 (Felix Instrument, Camas, 
USA) – are designed to allow technicians to develop 
and install customized prediction models (Ryckewaert 
et al., 2022). Moreover, they are specifically designed 
to be suitable for operation by non-expert users, such 
as farmers, through pre-developed software/APP that 
ensures ease of use (Beć et al., 2020). At the same time, 
NIRS predictions are directly affected by the precision 
of the reference method used (Sørensen, 2002; Blanco 
and Peguero, 2010) and by the intrinsic characteris-
tics of the samples undergoing analysis. In fact, the 
most reliable outcomes are obtained under standard 
conditions, i.e., in the presence of appropriate sample 
collection, manipulation, and scanning following the 
manufacturer’s instructions.

Given its importance for neonatal calves and its 
recent industrial applications, bovine colostrum (BC) 
nowadays represents one of the most interesting semi-
solid matrices to be analyzed with low-cost portable 
tools within the whole dairy supply chain, not only 
at farm level (Costa et al., 2023). It has been demon-
strated that BC composition is highly variable in the 
first hours after calving; in particular, this is the case 
for the narrow-sense quality of BC, mostly given by 
the concentration of Ig, particularly of the isotype G 
(IgG). Although for different reasons, from both pro-
ducers’ and farmers’ standpoint, IgG is the most im-
portant criterion to evaluate BC quality. In fact, high 
concentration of IgG in BC coupled with good feeding 
and management practices reduces the risk of passive 
transfer failure in neonatal calves. At the same time, 
commercial manufacturers of food or pharmaceutical 
items containing BC are willing to pay “more” if the 
concentration of antibodies in the supplied volume is 
good (Costa et al., 2023). Conventionally, veterinar-
ians and farmers consider BC with IgG <50 g/L as of 
insufficient quality for calves feeding, especially at first 
meal. This threshold has international validity (Godden 
et al., 2019). To optimize calves’ survival in a precision 
feeding view, the possibility to measure the IgG level of 
both pooled or individual BC with portable NIRS tools 
becomes thereby interesting in this scenario.

The aim of the present study was to evaluate the 
predictive ability of a wireless hand-held near-infrared 
spectrometer (SCiO, Consumer Physics Inc., Tel Aviv, 
Israel), for at-farm evaluation of BC IgG concentration, 
gross and fine composition through home-made equa-

tions. The possibility to record sufficiently accurate IgG 
data in the field would, in fact, improve the knowledge 
about the farm BC quality, putting the basis for the 
definition of strategic precision feeding in non-suckling 
calves.

MATERIALS AND METHODS

Sampling

Ethical approval was not required for the present 
study as per institutional guidelines/local legislation, 
since only farmers interacted with the cows. The 
animals’ owners involved in the study signed a writ-
ten informed consent, joined the experiment on a 
voluntary basis, and were associated with the Veneto 
Region Breeders Association (ARAV, Vicenza, Italy). 
Individual samples of 709 purebred Holstein cows, 215 
primiparous and 494 pluriparous, that calved between 
spring 2019 and spring 2020 were collected from 9 com-
mercial farms located in North-East Italy as described 
by Costa et al. (2022) and Goi at al. (2023a). Overall, 
the selected farms were characterized by an intensive 
farming system, free stall barn, total mixed ration 
administration, twice-a-day milking, and no access to 
pasture. The experimental design covered the variabil-
ity of calving season and parity order, which ranged 
from 1 to 8 and averaged 2.47 ± 1.42. In line with 
the experimental protocol, calves were separated from 
dams immediately after birth, suckling was absent, and 
only the first colostrum (120 mL) was collected from 
each cow between 0 and 6 h after calving. The tubes 
used were sterile, made of polypropylene, and free of 
preservative (SMIPA srl, Vicenza, Italy); once filled, 
they were stored at −20°C (Costa et al., 2021a). Vac-
cination before calving against Rotavirus, Coronavirus, 
and E. coli was not performed in the donor cows to 
avoid presence of hyperimmune colostrum (Dunn et al., 
2017; Costa et al., 2023).

Reference Analyses. The procedure carried out to 
perform the reference analyses is the same as described 
by Goi et al. (2023a, 2023b) following the workflow 
illustrated in Figure 1. Briefly, protein was measured 
by using the Kjeldahl method 991.20 (AOAC, 2000), 
fat content was determined according to Verbands 
Deutscher Landwirdschaftlicher Untersuchungs und 
Forschungsanstalten (VDLUFA) VI C15.2.1 method 
(VDLUFA, 2013), while lactose was quantified through 
high-performance liquid chromatography (Aminex 
HPX 87H column, 300 mm × 7.8 mm; Bio-Rad). Lac-
tose concentration was determined through a chroma-
tography software (ChromNAV v. 2.0, Jasco).

The concentration of Ig (isotype G, A, and M) was 
assessed using the bovine-specific radial-immunodiffu-
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sion (RID) assay purchased from Triple J Farms (Bell-
ingham, WA, US), whose repeatability has been tested 
by intra- and inter-assay CV, as described in detail by 
Costa et al. (2021b) and Goi et al. (2023a). The total 
Ig concentration (IgTot) was calculated as the sum 
of all isotypes exclusively for the samples with the 3 
concentrations known.

Following the procedure already described by Goi et 
al. (2023b), for mineral quantification, a 2 mL aliquot 
was mineralized and then analyzed using ICP-OES 
SPECTRO ARCOS (SPECTRO Analytical Instru-
ments GmbH, Kleve, Germany), whereas for AA 
quantification, a 15 mL aliquot of each sample was 
lyophilized, underwent acid hydrolysis and pre-column 
derivatization, and then was separated by a reversed-
phase instrument of high-pressure liquid chromatogra-
phy and analyzed by UV detection.

Development of NIRS Models

Spectra of BC were recorded through SCiO (Con-
sumer Physics Inc., Tel Aviv, Israel) which works in 
reflectance mode in the wavelength region between 740 
and 1070 nm, at intervals of 1 nm. For this purpose, for 
each sample 50 mL of thawed BC was put in a sterile 
tube and left at room temperature for 1 h to stan-
dardize scanning conditions. Subsequently, before the 
scan, the tube was inverted to homogenize the sample. 
SCiO, equipped with a manufacturer-provided adapter 
featuring a ceramic bottom to scatter back the light 
emitted from the source toward the detector while pass-
ing through the matrix, was inserted directly into the 
test tube to record the spectra in transflectance mode. 
The instrument was also cleaned with sterile water and 
dried with a disposable towel between each sample.

For each sample, 3 spectra were stored and then 
the average was calculated. Spectral data points were 
converted from transflectance (Transfl) to absorbance 
(Abs) using the formula: Abs = log10(1/Transfl) and 
then used for the calibration once paired with the ref-
erence data. Reference outliers (values exceeding ± 3 
SD from the mean) and spectral outliers (Mahalanobis 
distance >3) where discarded before developing cali-
bration models.

For all the traits, chemometric analyses were per-
formed using WinISI 4.10 software (Infrasoft Interna-
tional, Port Matilda, PA, USA) through a modified 
partial least squares (mPLS) regression algorithm. 
Preliminarily, different scatter corrections were tested 
on spectral data: none, detrend, standard normal vari-
ate, standard normal variate and detrend, and multi-
plicative scatter correction. Each of the mentioned pre-
treatment was tested in combination with mathemati-
cal treatments: 0,0,1,1; 1,4,4,1; 1,5,5,1; 1,8,8,1; 2,5,5,1, 

where the first digit is the derivative, the second digit 
is the gap over which the derivative was calculated, 
the third digit is the gap for the first smoothing, and 
the fourth is the gap for the second smoothing. Three 
steps of outliers’ elimination were performed after each 
mPLS round (n = 3), at the end of which the samples 
whose predicted value differed more than ± 3 SECV (T-
statistic >3) from the reference value were excluded.

The entire data set was first divided for each trait 
to create the training set, selecting randomly 75% of 
data, while the remaining 25% represented the external 
validation – or testing – set. The mean and SD of the 
2 sets were ensured to be similar. The prediction equa-
tions were developed on the training set and internally 
tested performing a 5-fold cross-validation. To avoid 
overfitting, the number of latent variables (LV) which 
minimized the root-mean-square error of cross-valida-
tion were included in the model. In terms of predictive 
performance, the model with the lower standard error 
of cross-validation (SECV) and the greater coefficient 
of determination of cross-validation (R2

CV) was elected 
as the best and underwent external validation. After 
that, for each trait the final model was applied to 
the external samples (testing set) where the reference 
values were masked. Performance in external valida-
tion was evaluated based on the greater coefficient of 
determination of external validation (R2

V) and the 
greater residual predictive deviation (RPD). Residuals 
normality was inspected and the TTEST procedure of 
SAS v. 9.4 (SAS Institute, NC, USA) was adopted to 
test that the bias did not statistically differ from zero.

A discriminant analysis was used on the entire set 
net of outliers to evaluate the classification ability of 
SCiO based on spectral wavelengths of BC. For this 
purpose, the PROC STEPDISC available in SAS v. 
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Figure 1. Workflow adopted according to the colostrum samples 
destination: (a) spectra collection through SCiO, (b) gross composi-
tion analyses with gold standards, (c) determination of Ig isotypes 
concentrations via radial-immunodiffusion assay, and (d) quantifica-
tion of mineral and AA content.
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9.4 (SAS Institute, Cary, NC, USA) was used for a 
preliminary backward elimination of spectral regions. 
This step was followed by the PROC DISCRIM where 
‘low quality’ and ‘good quality’ samples were identified 
using 3 IgG thresholds: 50, 60, and 70 g/L. The model 
performance included the specificity, sensitivity, the 
overall percentage of samples correctly classified, and 
the Matthews correlation coefficient (MCC) which was 
calculated based on the number of true positives (TP), 
false positives (FP), true negatives (TN) and false 
negatives (FN) as follows:

 MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×

+( ) +( ) +( ) +( )
.

Diagnostic Accuracy

The Receiver Operating Characteristic (ROC) curve 
was used to evaluate the diagnostic accuracy of the 
predicted IgG for the external validation set by using 
PROC LOGISTIC (SAS v. 9.4, SAS Institute, Cary, NC, 
USA). The same thresholds used for the discriminant 
analysis were adopted and the area under the curve 
(AUC; Šimundić, 2009) was finally used to evaluate the 
classification ability of the infrared-predicted IgG.

RESULTS AND DISCUSSION

In the present study, the predictive ability of SCiO 
for IgG and BC composition traits was tested using 
samples (n = 709) collected in 9 farms. The BC collec-
tion was done by the farm staff, preliminarily trained, 
using the same protocol and within 6 h from calving.

As the reference data derived from various analyses, 
i.e., different kits/devices/procedures, the final number 
of records available slightly differ across traits. Table 1 
shows the number of samples with matching reference 
value and spectrum, net of outliers. In the case of RID, 
for example, 3 kits were available – one for each iso-
type. The final number of records for IgG, Ig of isotype 
A (IgA) and M (IgM), and IgTot (Table 1) differed; 
samples may be excluded due to not readable and non-
circular RID rings, final calculated concentration out of 
the kit detection range, and missing/lost aliquot (Costa 
et al., 2021b).

Descriptive statistics indicates that IgG was the pre-
dominant fraction and was highly variable, ranging be-
tween 0.68 and 198.90 g/L. Nevertheless, this fraction 
was less variable compared with the other 2 isotypes. 
Overall, 75 samples were considered as of insufficient 
quality, having IgG <50 g/L, thus the vast majority 
presented a concentration above the conventional cut-

off (Godden et al., 2019). Regarding gross composition, 
descriptive statistics are in line with findings of Gopal 
and Gill (2000) and Godden (2008). The highest CV 
was that of fat (67%) and the lowest CV (<19%) was 
obtained for ash and dry matter. The average fat con-
tent (4.64%; Table 1) is in agreement with Elfstrand et 
al. (2002; pooled samples from Swedish Friesian cows) 
but slightly lower than the average content reported by 
Kehoe et al. (2007; 6.70%) on individual BC samples 
collected within 4 h from calving in 55 cows. As re-
viewed by Costa et al. (2023), when comparing BC of 
different studies, it is important to highlight that dis-
similarities may be due to the collection time interval 
after birth and the gold standard used for the analysis.

Distribution of AA and minerals values for each pa-
rameter was normal except for Fe (Table 1), which was 
indeed logarithmically transformed to obtain a normal 
distribution of the data points before performing the 
chemometric analysis. The most and least abundant 
AA were Leu (294.95 ± 121.51 mg/100g as is) and Met 
(48.23 ± 20.91 mg/100g as is), respectively. The rank-
ing of AA in terms of concentration was the same as the 
one reported by Puppel et al. (2019) for BC, except for 
Arg whose concentration in the cited study was greater 
than Met. Small differences in terms of variability were 
noticed among the AA analyzed, as their CV ranged 
from 39.89% (Ile) to 45.44% (Thr). As regards the 
minerals, Ca and P were the most abundant with a 
concentration of around 2 g/kg as is of BC, followed by 
S and Zn whose concentration was around 1.4 g/kg as 
is (Table 1). Minerals present in low quantity were Na 
and Mg, followed by the 2 minor minerals (Zn and Fe). 
In general, the mineral content of BC in this study re-
sembled the values reported by of Playford and Weiser 
(2021) about Ca, P, K, Na, Mg, and Zn. In contrast, 
Kehoe et al. (2007) – using BC of 55 cows – found 
greater average mineral concentrations compared with 
this study, i.e., the average of Ca, P, S, K, Na, Mg, Zn, 
and Fe was 4716.10, 4452.10, 2595.67, 2845.89, 1058.93, 
733.24, 38.10, and 5.33 mg/kg as is.

Within the present study, CV of major minerals was 
generally lower than that of AA, moving from 14.87% 
(K) to 27.42 (Mg). On the contrary, minor minerals 
like Zn an Fe varied widely (CV of 36.51 and 46.45%, 
respectively). As indicated for gross composition, it is 
often difficult to fairly compare BC components deter-
mined in different studies. The concentration of fine 
composition traits like minerals and AA is known to be 
strongly affected by the sampling protocol used, feeding 
and husbandry system, and parity of the donor cow 
(Costa et al., 2021b).

Goi et al.: POCKET NIRS FOR COW COLOSTRUM
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SCiO for Ig and Gross Composition

The advantages and applications of a rapid and 
inexpensive assessment of BC composition through 
infrared spectroscopy using benchtop instruments have 
been already discussed in literature (Navrátilová et al., 
2006; Rivero et al., 2012; Franzoi et al., 2022; Goi et 
al., 2023a; Goi et al. 2023b). However, only few studies 
have investigated the application of portable devices 
for analysis of mammary gland secretions, either BC or 
milk. While portable devices have been used to detect 
adulterants in milk and to assess milk fat and fatty ac-
ids content (Santos et al., 2013; Amr et al., 2018; Llano 
Suárez et al., 2018), none has demonstrated doable and 
useful applications on BC so far.

Portable spectrometers can be used on-line and are 
time-saving when it comes to visualize and interpret 
outputs of the analysis. Obtaining real-time informa-
tion on mammary gland secretions composition allows 
the farmer to evaluate the quality of the freshly col-
lected BC or milk and immediately determine the most 
appropriate destination. In the case of BC, for example, 
banking is a popular management strategy especially 

in well managed herds. Having the possibility to de-
termine the narrow-sense quality of BC to be stored 
is pivotal for calves’ health and precision feeding. Po-
tentially, infrared analysis can be performed quickly on 
the BC produced at first and subsequent milkings, e.g., 
transition milk.

The average raw absorbance spectra (740 – 1,070 nm) 
of BC is depicted in Figure 2 with its SD. The pattern 
presents a weak peak around 840 nm and a broad peak 
around 980 nm. The former is due to a combination 
of C-H vibrations and can be ascribed to any of the 
main milk components, whereas the latter arises from 
symmetric and asymmetric vibration of water (Šašić 
and Ozaki, 2001). As indicated by the dashed lines, a 
slightly wider variation was observed in correspondence 
of the water absorption band, likely due to the differ-
ence in solids content, especially lipids. As explained 
above, the BC fat content was much more variable than 
other constituents and can cause a shift in the spectrum 
(Rivero et al., 2012).

Table 2 and 3 report the predictive performances 
of the developed equations in cross- and external 
validation respectively, for the Ig fractions, gross com-

Goi et al.: POCKET NIRS FOR COW COLOSTRUM

Table 1. Descriptive statistics of bovine colostrum Ig1 fractions, composition traits, AA, and minerals 
concentration measured with the reference method after outliers’ elimination

Trait n Mean SD Min Max CV

Major compounds       
IgG, g/L 647 91.97 35.37 0.68 198.90 38.45
IgA, g/L 555 4.65 2.73 0.13 13.95 58.65
IgM, g/L 632 5.08 2.42 0.18 11.89 47.65
IgTot, g/L 554 102.88 36.00 17.96 196.86 34.99
Dry matter, % 685 24.04 4.52 10.30 36.61 18.82
Protein, % 688 14.49 3.73 4.26 25.22 25.72
Fat, % 679 4.64 3.10 0.12 14.67 66.79
Ash, % 683 1.14 0.18 0.63 1.68 15.58
Lactose, mg/100mg 701 2.37 0.53 0.74 4.06 22.34
AA, mg/100g as is       
Leu 684 294.95 121.51 20.38 670.74 41.20
Lys 681 281.45 116.26 20.42 646.55 41.31
Thr 683 225.94 102.66 12.26 546.76 45.44
Val 682 189.07 82.32 12.63 429.99 43.54
Phe 682 139.32 55.83 10.04 312.12 40.07
Arg 681 129.14 56.87 6.71 292.56 44.04
Ile 681 104.34 41.62 9.14 232.46 39.89
His 684 96.88 40.23 4.45 223.24 41.53
Trp 681 69.00 31.08 4.14 165.40 45.04
Met 682 48.23 20.91 5.10 111.43 43.35
Minerals, mg/kg as is       
Ca 683 2188.94 520.64 631.48 3694.25 23.79
P 684 1957.27 398.75 835.12 3113.15 20.37
S 686 1445.68 380.05 403.91 2533.64 26.29
K 684 1420.99 211.32 729.96 2068.66 14.87
Na 678 557.51 144.29 250.39 1082.69 25.88
Mg 681 339.08 92.96 107.13 637.18 27.42
Zn 681 20.28 7.41 2.86 42.23 36.51
Fe 672 1.37 0.64 0.32 5.09 46.45
Fe2 672 0.10 0.17 −0.50 0.71 172.17
1isotypes G (IgG), A (IgA), and M (IgM) and their sum (IgTot).
2log-transformed.
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position, AA, and minerals along with the number of 
samples used in the final models. Overall, considering 
the Ig isotypes and the gross composition, the outliers 
eliminated have always been ≤12.1%, with the excep-
tion of fat, which suffered a slightly higher elimination 
of samples (14.7%). Outliers can be either in spectral 
data, chemical (reference) values, or both (Wang et 
al., 2018). In the case of BC, the number of outliers 
detected could be attributed to the viscosity of the 
matrix, which likely influenced the reflection of light on 
the ceramic surface of the adapter used in scanning the 
samples with the instrument (Williams, 2007). In the 
case of cross-validation of IgG (Table 2), for example, 
34 of the 38 discarded samples had an outlier spectrum. 
Performing cross-validation on the entire data set, the 
number of LV oscillated between 5 and 10 and the 
mostly used scatter correction was detrend along with 
first derivative. On the other hand, the range of LV 
used for the external validation was almost the same as 
in the cross-validation being between 4 and 10, while 
the accuracy is slightly changed as expected (Table 3). 
In this case the standard normal variate alone or with 
detrend were the most frequently used corrections, with 
first or second derivative. In this study, SCiO demon-
strated its ability to predict BC composition. In par-
ticular, according to the classification of R2 and RPD 
made by Williams (2003; 2014), an approximate and 
sufficient ability to quantify IgG (R2

CV = 0.78; RPD 
= 2.1) was observed in cross-validation (Table 2). The 
same can be said for IgTot (Table 2). More precisely, 
the formal interpretation of the RPD suggests that the 
models have the potential for qualitative evaluation or 
rough screening solely (Williams, 2003, 2014), limiting 
therefore the potential of SCiO for the IgG concentra-
tion assessment of such an important mammary gland 
secretion. Thus, considering the matrix’s relevance in 
the farm for a good calves management and having in 
mind its complexity (e.g., viscosity) per se, achieving 
that level of accuracy in practice is deemed sufficient 
also for the compounds quantification (Williams, 2003, 
2014). Moreover, attention should be given to the fact 
that pocket-sized instruments are designed to accept a 
relatively limited overall performance compared with 
benchtop ones, but with a benefit in terms of cost-ef-
fectiveness. Therefore, the accuracy of models obtained 
with spectral data from portable instruments may often 
not coincide and be inferior to that of laboratory instru-
ments, but this is a necessary compromise to tailor the 
instruments to their specific field of application (Beć 
et al., 2022), in this particular case for use by private 
practitioner veterinarians or farmers.

Likely due to the low concentrations compared with 
IgG and IgTot, both IgA and IgM did not achieve a 
satisfactory prediction accuracy (R2

CV < 0.66). The 

result for IgG is almost the same as that obtained by 
Elsohaby et al. (2018) with laboratory mid-infrared 
spectroscopy analysis on 60 cows within 1 h from calv-
ing, but lower than the accuracy reported by Rivero 
et al. (2012) scanning colostrum samples with the 
NIR Systems 6500 monochromator, a benchtop instru-
ment. The performance related to the prediction of Ig 
remained unchanged when validating the models on 
the validation subset, with sufficient accuracy for an 
approximate quantification of the IgG (R2

V = 0.80) and 
IgTot content (R2

V = 0.70), while not satisfactory for 
the other 2 fractions (Table 3). This indicates that the 
developed models are able to be applied to samples 
with unknown values without noticing a change in 
precision. Also Franzoi et al. (2022), predicting IgG 
content using the DS2500 near-infrared benchtop spec-
trometer (400–2500 nm; FOSS, Hillerød, Denmark) 
showed no significant changes in prediction accuracy 
between cross- and external validation. Dry matter 
and protein content achieved excellent prediction ac-
curacy in cross-validation, with R2

CV ≥ 0.95 and RPD 
≥4.4, with this promising performance in agreement 
with the correlation coefficients reported by Navráti-
lová et al. (2006) for BC (Table 2). In that study, a 
benchtop NIRS instrument was used to evaluate its 
predictive ability scanning 90 colostrum samples col-
lected from 18 cows over a wide time interval. A slight 
decrease of the accuracy was detected when validating 
externally the performances of the models (R2

V ≥ 0.89 
and RPD ≥3.1), nevertheless indicating the adequacy 
of the predictive model to perform a quality control 
with a punctual determination of the traits (Table 
3). Unfortunately, Navrátilová et al. (2006) did not 
perform the external validation to compare the data. 
Although the model developed for fat presented a lower 
accuracy compared with the other traits and compared 
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Figure 2. Average raw spectrum (n = 709, solid line) obtained 
using SCiO spectrometer. Dashed lines indicate the phenotypic vari-
ability observed (±1 standard deviation from the mean).
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with Navrátilová et al. (2006), still the R2
CV (0.86) and 

RPD (2.7) guarantee a satisfactory prediction. Apply-
ing an external validation, fat experiences a significant 
reduction in the R2

V and RPD values (0.54 and 1.3, 
respectively), indicating that the model cannot provide 
a robust prediction (Williams, 2003; 2014). The scarce 
prediction performance can be attributed to the high 
variability of the reference data; the high content of 
solids in BC and the dilution may have affected the 
spectra. The rather low accuracy of lactose prediction 
indicates that only a discrimination between low and 
high concentration could be made (R2

CV = 0.65; R2
V 

= 0.61), whereas ash content did not achieve sufficient 
accuracy in both cross- (R2

CV = 0.27) and external 
validation (R2

V = 0.19); despite this, implementation of 
SCiO in the field is not or only marginally affected. In 
fact, still the most important parameter for the narrow-
sense BC quality remains the IgG. This is true for both 
farmers and manufacturers interested in using BC as 
ingredient for industrial purpose (Costa et al., 2023). 

However, apart from the IgG, assessment of the gross 
composition would allow the real-time adjustment of 
the BC administered to calves, especially under a preci-
sion feeding view.

Prediction of Fine Composition Traits

To the authors' knowledge no studies have attempted 
to predict essential AA and minerals content of BC 
using portable NIRS devices (Costa et al., 2023). How-
ever, with fine composition we refer to traits important 
for the broad-sense quality of BC, including substances 
fundamental for the neonate growth and health. Ac-
cording to the results, it is possible to predict AA and 
minerals content; performance obtained in cross-valida-
tion on the total data set and in external validation on 
the data set divided into training and testing sets are 
summarized in Table 2 and 3, respectively. The outliers 
detected during the calibration process were below 13% 
for all the traits, excepting K and Na. The number 
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Table 2. Fitting statistics1 of modified partial least square regression analysis in 5-fold cross-validation for 
bovine colostrum Ig2, gross composition, AA, and minerals (% on kg as is) on the entire set

Trait  sc−mt4 Out LV SEC R2
C SECV R2

CV RPD

Major compounds          
IgG, g/L  D−2,5,5,1 5.9 6 15.74 0.80 16.50 0.78 2.12
IgA, g/L  D−1,4,4,1 12.1 6 1.77 0.48 1.84 0.44 1.33
IgM, g/L  D−1,8,8,1 7.6 5 1.80 0.43 1.82 0.41 1.30
IgTot, g/L  None−1,5,5,1 9.9 7 17.30 0.76 17.64 0.75 2.02
Dry matter, %  D−2,5,5,1 9.8 7 0.92 0.95 0.97 0.95 4.41
Protein, %  None−2,5,5,1 7.3 10 0.72 0.96 0.78 0.96 4.72
Fat, %  SNV−1,4,4,1 14.7 5 1.06 0.87 1.08 0.86 2.68
Ash, %  SNVD−0,0,1,1 10.7 7 0.14 0.30 0.15 0.27 1.17
Lactose, mg/100mg  D−1,8,8,1 11.4 9 0.27 0.68 0.29 0.65 1.69
AA, mg/100g as is          
Leu  SNVD−1,5,5,1 11.0 7 44.09 0.85 45.63 0.84 2.59
Lys  D−2,5,5,1 7.2 8 45.51 0.83 47.35 0.82 2.43
Thr  SNV−1,4,4,1 11.0 7 38.77 0.84 39.71 0.83 2.49
Val  MSC−1,4,4,1 12.5 7 31.09 0.84 31.69 0.83 2.46
Phe  SNV−1,5,5,1 11.6 8 19.63 0.86 20.07 0.86 2.69
Arg  MSC−1,4,4,1 11.6 8 20.95 0.85 21.78 0.84 2.57
Ile  MSC−1,5,5,1 11.2 8 17.05 0.81 17.55 0.80 2.32
His  MSC−1,4,4,1 11.8 7 15.82 0.82 16.13 0.82 2.39
Trp  D−0,0,1,1 10.1 11 12.50 0.82 12.98 0.81 2.38
Met  MSC−1,5,5,1 10.6 9 9.42 0.77 9.81 0.75 2.10
Minerals, mg/kg as is          
Ca  MSC−1,4,4,1 9.22 6 403.28 0.37 412.68 0.34 1.24
P  SNV−1,5,5,1 9.94 5 316.79 0.34 320.57 0.32 1.21
S  D−2,5,5,1 8.75 7 92.80 0.94 97.41 0.93 3.80
K  MSC−0,0,1,1 20.03 6 189.58 0.10 192.23 0.07 1.04
Na  SNV−1,8,8,1 17.11 6 118.98 0.12 121.11 0.09 1.05
Mg  MSC−1,4,4,1 10.28 6 65.02 0.46 66.11 0.44 1.34
Zn  SNV−1,5,5,1 9.84 6 5.49 0.41 5.61 0.38 1.27
Fe3  None−2,5,5,1 10.57 9 0.10 0.50 0.11 0.43 1.33
1sc−mt = scatter correction − mathematical treatment; Out = percentage of outliers; LV = latent variables; 
SEC = standard error of calibration; R2

C = coefficient of determination of calibration; SECV = standard error of 
cross-validation; R2

CV = coefficient of determination of cross-validation; RPD = residual predictive deviation.
2isotypes G (IgG), A (IgA), and M (IgM) and their sum (IgTot).
3log-transformed.
4Detrend (d), Multiplicative scatter correction (MSC), No scatter correction (None), Standard normal variate 
(SNV), Standard normal variate+Detrend (SNVD).
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of LV of the best prediction models ranged between 5 
and 11 in cross-validation and between 2 and 10 in ex-
ternal validation. The most applied pre-treatment was 
multiplicative scatter correction for AA and standard 
normal variate for minerals, both preferring first rather 
than second order of derivatization. Most of the AA ob-
tained good prediction accuracy when cross-validation 
was performed (R2

CV ≥ 0.82; Williams, 2003); in par-
ticular, Phe, Leu, Arg, and Thr reached a RPD ≥2.5 
which represents the cut-off to consider a calibration 
model suitable for application in the field as a screening 
method (Williams, 2014). At the same time, it is worth 
considering that the conventional RPD classification is 
not adapted to the dairy sector. In fact, as reported by 
Grelet et al. (2021), even models showing RPD below 
2.5 can be viewed as interesting. In dairy, the high cost 
of reference analyses and the difficulty of obtaining a 
high number of reference data should be considered 
when evaluating infrared prediction models.

Using milk, McDermott et al. (2016) predicted the 
Lys, Val, and Arg content via mid-infrared spectros-
copy, which resulted in low correlations in cross-valida-
tion (0.69, 0.69, and 0.66, respectively). As expected, 
all AA suffered a slight reduction in accuracy when 
the models were applied to samples whose composition 
was masked. Thr, Phe, Arg, Leu, Trp, and His have 
maintained a level of accuracy sufficient to be used in 
a sample screening perspective (RPD ≥2), while the 
application of the equations for other AA is not recom-
mended to be applied on external data sets.

Among minerals, only the equation for S achieved 
excellent precision in predicting the reference value 
which allows us to apply the model in quality control 
(R2

CV = 0.93; RPD = 3.8). This is likely due to the 
presence of S in the structure of AA, making easy 
its identification with NIRS. In fact, only substances 
linked to organic molecules or associated to hydrated 
inorganic substances can be identified and predicted 
with infrared technologies (Clark et al., 1987). There-
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Table 3. Fitting statistics1 of modified partial least square regression analysis in external validation for bovine 
colostrum Ig2, gross composition, AA, and minerals

Trait  Sc−mt4 next LV SEV R2
V RPD

Major compounds        
IgG, g/L  D−1,4,4,1 150 10 16.05 0.80 2.22
IgA, g/L  SNV−1,5,5,1 134 7 1.94 0.46 1.41
IgM, g/L  SNV−1,8,8,1 149 5 1.94 0.37 1.25
IgTot, g/L  None−2,5,5,1 137 4 19.98 0.70 1.82
Dry matter, %  D−2,5,5,1 169 6 1.51 0.89 3.07
Protein, %  None−1,5,5,1 163 10 1.10 0.92 3.39
Fat, %  SNVD−2,5,5,1 170 4 2.43 0.54 1.28
Ash, %  MSC−2,5,5,1 171 5 0.16 0.19 1.10
Lactose, mg/100mg  D−0,0,1,1 167 10 0.33 0.61 1.65
AA, mg/100g as is        
Leu  SNV−1,4,4,1 168 7 58.82 0.77 2.06
Lys  SNVD−0,0,1,1 162 10 62.15 0.72 1.90
Thr  SNV−1,4,4,1 164 7 43.94 0.82 2.34
Val  SNVD−1,8,8,1 171 7 47.15 0.69 1.77
Phe  SNV−1,4,4,1 165 7 24.05 0.82 2.34
Arg  SNV−2,5,5,1 163 5 27.51 0.76 2.10
Ile  MSC−1,8,8,1 161 9 21.49 0.73 1.97
His  D−2,5,5,1 165 5 20.16 0.73 1.99
Trp  D−2,5,5,1 168 4 15.61 0.75 2.03
Met  SNV−1,4,4,1 164 8 11.01 0.72 1.92
Minerals, mg/kg as is        
Ca  None−1,5,5,1 162 6 444.37 0.26 1.18
P  SNVD−0,0,1,1 162 7 354.18 0.25 1.13
S  D−1,4,4,1 163 7 166.10 0.82 2.31
K  MSC−2,5,5,1 167 2 214.68 0.03 0.99
Na  MSC−0,0,1,1 170 7 145.92 0.04 1.00
Mg  MSC−2,5,5,1 171 4 71.02 0.44 1.33
Zn  SNVD−1,4,4,1 171 6 6.23 0.34 1.21
Fe3  SNV−2,5,5,1 163 6 0.14 0.36 1.25
1sc−mt = scatter correction − mathematical treatment; next = number of samples used to perform the external 
validation net of spectral outliers; SEV = standard error of external validation; R2

V = coefficient of determina-
tion of external validation; RPD = residual predictive deviation.
2isotypes G (IgG), A (IgA), and M (IgM) and their sum (IgTot).
3log-transformed.
4Detrend (d), Multiplicative scatter correction (MSC), No scatter correction (None), Standard normal variate 
(SNV), Standard normal variate+Detrend (SNVD).
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fore, minerals can be detected when they are found 
in organic complexes or chelates and this is the case 
of the sulfhydryl groups found in proteins (Büning-
Pfaue, 2003). All the other minerals considered in the 
study obtained an insufficient prediction (R2

CV < 0.45), 
which could again be related to the inorganic form or 
the low concentration in the samples. Soyeurt et al. 
(2009) obtained more accurate prediction models for 
Ca, P, K, Mg, and Na, being satisfactory for Ca and 
P (R2

CV > 0.82), nevertheless they used milk spectra 
collected in the mid-infrared regions. Also, Visentin et 
al. (2016) predicted milk minerals content using mid-
infrared spectroscopy without reaching successful accu-
racy (R2

CV ≤ 0.62). Performing the external validation 
minerals have maintained an unsatisfactory precision 
(R2

V < 0.45), excepting for S which despite having un-
dergone a reduction in accuracy, remains the only ele-
ment that can still be estimated with the portable near-
infrared spectrometer for screening (R2

V = 0.82; RPD 
= 2.3). Figure 3 provides a visual representation of the 
accuracy changes for all the predicted traits between 
cross-validation (R2

CV) and external validation (R2
V) 

using a traffic light classification system. Residual of 
all prediction equations were normally distributed, and 
bias did not differ statistically from zero.

Although applications of portable NIRS instruments 
for the analysis of milk have been described in the lit-
erature (de la Roza-Delgado et al., 2017; Modroño et 
al., 2017), a direct comparison is not recommended as 
the spectral range on which the samples were scanned 
do not coincide due to the large number of tools present 
in the field or tested under experimental conditions. 
For instance, de la Roza-Delgado et al. (2017) collected 

spectra of raw milk from reflectance spectra between 
1600 and 2400 nm, whereas Modroño et al. (2017) used 
a miniaturized spectrometer working in the range of 
910–1676 nm. In any case, the ability of portable de-
vices for BC quality discrimination and prediction of 
AA and minerals was investigated for the first time in 
the present study.

The procedure to evaluate the spectral ability to dis-
criminate samples of good and low quality was carried 
out on the entire set net of outliers considering 3 differ-
ent IgG concentrations, including the 50 g/L which is 
the concentration usually considered worldwide as the 
minimum for an adequate passive transfer of immunity 
in neonatal calves (Godden et al., 2019). The MCC 
calculated was equal to 0.25, 0.27, and 0.32 for IgG 
at 50, 60, and 70 g/L, respectively. In biochemistry, 
similar MCC values suggest that models are far from 
being considered as usable for punctual IgG prediction, 
however, it has to be considered that MCC ranges from 
−1 and 1, where values greater than 0 are indicative of 
a prediction in the correct direction (Chicco and Jur-
man, 2023). The confusion matrix which describes the 
classification performance of SCiO of the total number 
of samples is shown in Table 4 along with specificity 
and sensitivity which were equal to 61.33 and 74.48% 
for 50 g/L, 62.16 and 71.83% for 60 g/L, and 67.05 and 
68.37 for 70 g/L. In particular, when setting the cut-off 
at 50 g/L the ‘low quality’ samples accounted for 12% 
of all samples and 4 wavelengths were retained, namely 
740, 747, 939, and 1010 nm. In other words, 46 samples 
of ‘low quality’ and 426 samples of ‘good quality’ were 
correctly classified. This threshold, however, was quite 
strict for this study due to the low amount of ‘low qual-
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Figure 3. Traffic light classification1 of predictive performance in (a) cross- and (b) external validation for the colostrum traits analyzed. 
1 Based on ranges given by Williams (2003): coefficient of determination <0.50 (not recommended; red), 0.50-0.65 (exclusively for detection of 
extreme values/ comparison of groups; orange), 0.66-0.81 (approximate screening; yellow), 0.82-0.90 (good quantitative screening; light green), 
> 0.91 (excellent; dark green).
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ity’ samples, with IgG below 50 g/L. Therefore, higher 
cut-offs were tested, i.e., at 60 and 70 g/L where the 
‘low quality’ samples were 17 and 27%, respectively. 
When the threshold was set at 60 g/L, the wavelengths 
used were 740, 741, 939, and 1010 nm and the model 
correctly discriminates 62.2% of ‘low quality’ samples 
and 71.8% of the ‘good quality’ ones. The discriminant 
model developed using the third cut-off (70 g/L) re-
tained a wavelength more (742 nm) compared with the 
previous cut-off and correctly identified 67.1 and 68.4% 
of the samples belonging to the ‘low quality’ and ‘good 
quality’ class, respectively. The spectral regions with 
important signals for IgG concentration were located in 
regions known for the presence of water, protein and fat 
(Šašić and Ozaki, 2001). Because absorption of these 
components overlap (Aernouts et al., 2015), achieving 
a precise correlation between the peak at a specific 
wavelength and the concentration of a BC component 
is not feasible.

The accuracy, which is the the overall proportion of 
samples correctly classified, was 68, 67, and 68% form 
the lowest to the highest threshold.

On-Farm Use

The ROC curves (Figure 4) demonstrate that SCiO 
predictions of IgG are very good for the classification 
of the quality of colostrum samples. The AUC values 
obtained using the external validation set are close to 
unity and indicate an excellent discriminant ability of 
the infrared-predicted IgG (Figure 4; Šimundić, 2009). 
For the less restrictive threshold, 70 g/L, the AUC was 
the lowest but still outperforming (0.911). As demon-
strated by Chicco and Jurman (2023), even if both 
AUC and MCC are informative in classification issues, 
they provide different information. In this study, in 
fact, AUC looked as almost optimal (Figure 4) but the 
MCC calculated for the 3 IgG thresholds were rather 
far from 1 (perfect prediction), ranging from 0.25 to 
0.37. Such a situation happens particularly when there 
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Table 4. Confusion matrix1 for quality level (low vs high) defined using different cut-offs of IgG concentration 
(n = 647)

Quality Cut-off

Predicted 50 g/L

 

60 g/L

 

70 g/L

Actual Low High Low High Low High

Low 61.33% 38.67%  62.16% 37.84%  67.05% 32.95%
 46 29  69 42  118 58
High 25.52% 74.48%  28.17% 71.83%  31.63% 68.37%
 146 426  151 385  149 322
1Percentage of samples correctly predicted are in the diagonal in italics.

Figure 4. Receiver operating characteristic curves for the Ig G concentration predicted by the SCiO spectrometer along with the area under 
the curve (AUC). Thresholds used for ‘low quality’ samples classification were: A) 50, B) 60, and C) 70 g/L.
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is an unbalance between the 2 classes, i.e., when a cer-
tain percentage of samples of the less represented class 
are misclassified. Although the effect of unbalanced 
classes is basically negligible for the AUC - which can 
still be very high and promising - it penalizes the MCC 
(Chicco and Jurman, 2023).

When used in the field, SCiO performance can be 
affected by factors not related to the goodness of fit of 
the models installed. For the analysis of BC, in fact, a 
brief protocol should be designed to ensure the qual-
ity of the analysis and of the predictions. Following 
specific guidelines can avoid undesired disturbances due 
to light, temperature, instrument cleanliness. Similar to 
other portable instruments, SCiO should be calibrated 
at the beginning of each analysis day, as indicated by 
the manufacturer, by taking a reading on a supplied 
ceramic white base that serves as a calibration blank 
sample. Given the portability, promising performance 
and cost, such a device opens the room for large scale 
studies on BC using data collected in the field by re-
searchers, veterinarians, and farm managers.

CONCLUSIONS

In the present study, we attempted to predict the 
concentration of Ig isotypes, gross composition, miner-
als, and residual predictive deviation AA content in 
BC from spectra recorded using a hand-held wireless 
spectrometer operating in the near-infrared region. 
Although preliminary, results suggest that this technol-
ogy has promising prediction performance for certain 
traits like IgG, IgTot, fat, and AA, while an excellent 
accuracy was obtained for dry matter, protein, and S 
in cross-validation. While the same traits were satisfac-
torily predicted in external validation, future emphasis 
could be placed on accounting for increased variability 
and validating models using samples from different 
farms. The good performance of the spectrometer for 
IgG punctual quantification, along with the ability to 
discriminate between good and low quality samples, 
represent an opportunity for dairy farmers. Similar 
hand-held devices can speed up a large-scale collection 
of data for targeted purposes, like selective breeding. 
As an example, a rapid assessment of the BC quality 
can be a useful driver to make considerations on the 
application and use in the farm but also in the food and 
pharmaceutical industry where BC is used as an ingre-
dient. At the farm level, ensuring BC of appropriate 
quality to calves guarantee an optimal passive transfer 
of immunity.

ACKNOWLEDGMENTS

Authors acknowledge Dr Giulia Nardino and Dr Lau-
ra Posenato for the technical support during sampling, 
the personnel of the LaChi laboratory for the chemical 
analyses and the 9 farmers that joined the experiment.

REFERENCES

Aernouts, B., R. Van Beers, R. Watté, T. Huybrechts, J. Lammertyn, 
and W. Saeys. 2015. Visible and near-infrared bulk optical proper-
ties of raw milk. J. Dairy Sci. 98:6727–6738. https: / / doi .org/ 10 
.3168/ jds .2015 -9630.

Amr, M., Y. M. Sabry, and D. Khalil. 2018. Near-infrared optical 
MEMS spectrometer-based quantification of fat concentration in 
milk. 35th National Radio Science Conference (NRSC), Cairo, 
Egypt, 2018, pp. 409–416. https: / / doi .org/ 10 .1109/ NRSC .2018 
.8354389

AOAC International. 2000. Official Methods of Analysis. 17th ed. 
AOAC International, Gaithersburg, MD.

Beć, K. B., J. Grabska, and C. W. Huck. 2022. Miniaturized NIR 
Spectroscopy in Food Analysis and Quality Control: Promises, 
Challenges, and Perspectives. Foods 11:1465. https: / / doi .org/ 10 
.3390/ foods11101465 .

Beć, K. B., J. Grabska, H. W. Siesler, and C. W. Huck. 2020. Hand-
held near-infrared spectrometers: Where are we heading? NIR 
News 31:28–35. https: / / doi .org/ 10 .1177/ 0960336020916815.

Blanco, M., and A. Peguero. 2010. Analysis of pharmaceuticals by NIR 
spectroscopy without a reference method. Trends Analyt. Chem. 
29:1127–1136. https: / / doi .org/ 10 .1016/ j .trac .2010 .07 .007.

Büning-Pfaue, H. 2003. Analysis of water in food by near infrared 
spectroscopy. Food Chem. 82:107–115. https: / / doi .org/ 10 .1016/ 
S0308 -8146(02)00583 -6 .

Chicco, D., and G. Jurman. 2023. The Matthews correlation coeffi-
cient (MCC) should replace the ROC AUC as the standard metric 
for assessing binary classification. BioData Min. 16:4. https: / / doi 
.org/ 10 .1186/ s13040 -023 -00322 -4.

Clark, D. H., H. F. Mayland, and R. C. Lamb. 1987. Mineral 
analysis of forages with near infrared reflectance spectrosco-
py. Agron. J. 79:485–490. https: / / doi .org/ 10 .2134/ agronj1987 
.00021962007900030016x.

Costa, A., M. Franzoi, G. Visentin, A. Goi, M. De Marchi, and M. 
Penasa. 2021a. The concentrations of immunoglobulins in bovine 
colostrum determined by the gold standard method are genetically 
correlated with their near-infrared prediction. Genet. Sel. Evol. 
53:87. https: / / doi .org/ 10 .1186/ s12711 -021 -00681 -8.

Costa, A., A. Goi, M. Penasa, G. Nardino, L. Posenato, and M. De 
Marchi. 2021b. Variation of immunoglobulins G, A, and M and 
bovine serum albumin concentration in Holstein cow colostrum. 
Animal 15:100299. https: / / doi .org/ 10 .1016/ j .animal .2021 .100299.

Costa, A., N. W. Sneddon, A. Goi, G. Visentin, L. M. E. Mammi, 
E. V. Savarino, F. Zingone, A. Formigoni, M. Penasa, and M. 
De Marchi. 2023. Invited review: Bovine colostrum, a promising 
ingredient for humans and animals - Properties, processing tech-
nologies, and uses. J. Dairy Sci. 106:5197–5217. https: / / doi .org/ 10 
.3168/ jds .2022 -23013.

Costa, A., G. Visentin, A. Goi, M. De Marchi, and M. Penasa. 2022. 
Genetic characteristics of colostrum refractive index and its use 
as a proxy for the concentration of immunoglobulins in Holstein 
cattle. Genet. Sel. Evol. 54:79. https: / / doi .org/ 10 .1186/ s12711 -022 
-00768 -w.

de la Roza-Delgado, B., A. Garrido-Varo, A. Soldado, A. González 
Arrojo, M. Cuevas Valdés, F. Maroto, and D. Pérez-Marín. 2017. 
Matching portable NIRS instruments for in situ monitoring indica-
tors of milk composition. Food Control 76:74–81. https: / / doi .org/ 
10 .1016/ j .foodcont .2017 .01 .004.

Goi et al.: POCKET NIRS FOR COW COLOSTRUM

https://doi.org/10.3168/jds.2015-9630
https://doi.org/10.3168/jds.2015-9630
https://doi.org/10.1109/NRSC.2018.8354389
https://doi.org/10.1109/NRSC.2018.8354389
https://doi.org/10.3390/foods11101465
https://doi.org/10.3390/foods11101465
https://doi.org/10.1177/0960336020916815
https://doi.org/10.1016/j.trac.2010.07.007
https://doi.org/10.1016/S0308-8146(02)00583-6
https://doi.org/10.1016/S0308-8146(02)00583-6
https://doi.org/10.1186/s13040-023-00322-4
https://doi.org/10.1186/s13040-023-00322-4
https://doi.org/10.2134/agronj1987.00021962007900030016x
https://doi.org/10.2134/agronj1987.00021962007900030016x
https://doi.org/10.1186/s12711-021-00681-8
https://doi.org/10.1016/j.animal.2021.100299
https://doi.org/10.3168/jds.2022-23013
https://doi.org/10.3168/jds.2022-23013
https://doi.org/10.1186/s12711-022-00768-w
https://doi.org/10.1186/s12711-022-00768-w
https://doi.org/10.1016/j.foodcont.2017.01.004
https://doi.org/10.1016/j.foodcont.2017.01.004


Journal of Dairy Science Vol. TBC No. TBC, TBC

Dunn, A., A. Ashfield, B. Earley, M. Welsh, A. Gordon, and S. J. Mor-
rison. 2017. Evaluation of factors associated with immunoglobulin 
G, fat, protein, and lactose concentrations in bovine colostrum and 
colostrum management practices in grassland-based dairy systems 
in Northern Ireland. J. Dairy Sci. 100:2068–2079. https: / / doi .org/ 
10 .3168/ jds .2016 -11724.

Elfstrand, L., H. Lindmark-Månsson, M. Paulsson, L. Nyberg, and B. 
Åkesson. 2002. Immunoglobulins, growth factors and growth hor-
mone in bovine colostrum and the effects of processing. Int. Dairy 
J. 12:879–887. https: / / doi .org/ 10 .1016/ S0958 -6946(02)00089 -4.

Elsohaby, I., M. C. Windeyer, D. M. Haines, E. R. Homerosky, J. M. 
Pearson, J. T. McClure, and G. P. Keefe. 2018. Application of 
transmission infrared spectroscopy and partial least squares re-
gression to predict immunoglobulin G concentration in dairy and 
beef cow colostrum. J. Anim. Sci. 96:771–782. https: / / doi .org/ 10 
.1093/ jas/ sky003.

Evangelista, C., L. Basiricò, and U. Bernabucci. 2021. An Overview 
on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the 
Management of Dairy Cows. Agriculture 11:296. https: / / doi .org/ 
10 .3390/ agriculture11040296.

Franzoi, M., A. Costa, A. Goi, M. Penasa, and M. De Marchi. 2022. 
Effectiveness of visible – Near infrared spectroscopy coupled with 
simulated annealing partial least squares analysis to predict im-
munoglobulins G, A, and M concentration in bovine colostrum. 
Food Chem. 371:131189. https: / / doi .org/ 10 .1016/ j .foodchem .2021 
.131189 .

Godden, S. M. 2008. Colostrum management for dairy calves. Vet. 
Clin. North Am. Food Anim. Pract. 24:19–39. https: / / doi .org/ 10 
.1016/ j .cvfa .2007 .10 .005 .

Godden, S. M., J. E. Lombard, and A. R. Woolums. 2019. Colostrum 
Management for Dairy Calves. Vet. Clin. North Am. Food Anim. 
Pract. 35:535–556. https: / / doi .org/ 10 .1016/ j .cvfa .2019 .07 .005.

Goi, A., A. Costa, G. Visentin, and M. De Marchi. 2023a. Mid-infrared 
spectroscopy for large-scale phenotyping of bovine colostrum gross 
composition and immunoglobulins concentration. J. Dairy Sci. 
106:6388–6401. https: / / doi .org/ 10 .3168/ jds .2022 -23059 .

Goi, A., M. De Marchi, and A. Costa. 2023. 2023b. Minerals and es-
sential amino acids of bovine colostrum: phenotypic variability and 
predictive ability of mid- and near-infrared spectroscopy. J. Dairy 
Sci. on (Accepted).

Gopal, P. K., and H. S. Gill. 2000. Oligosaccharides and glycoconju-
gates in bovine milk and colostrum. Br. J. Nutr. 84(S1):69–74. 
https: / / doi .org/ 10 .1017/ S0007114500002270 .

Grelet, C., P. Dardenne, H. Soyeurt, J. A. Fernandez, A. Vanlierde, 
F. Stevens, N. Gengler, and F. Dehareng. 2021. Large-scale phe-
notyping in dairy sector using milk MIR spectra: Key factors af-
fecting the quality of predictions. Methods 186:97–111. https: / / doi 
.org/ 10 .1016/ j .ymeth .2020 .07 .012.

Kehoe, S. I., B. M. Jayarao, and A. J. Heinrichs. 2007. A survey of bo-
vine colostrum composition and colostrum management practices 
on Pennsylvania dairy farms. J. Dairy Sci. 90:4108–4116. https: / / 
doi .org/ 10 .3168/ jds .2007 -0040.

Llano Suárez, P., A. Soldado, A. González-Arrojo, F. Vicente, and B. 
de la Roza-Delgado. 2018. Rapid on-site monitoring of fatty acid 
profile in raw milk using a handheld near infrared sensor. J. Food 
Compos. Anal. 70:1–8. https: / / doi .org/ 10 .1016/ j .jfca .2018 .03 .003.

McDermott, A., G. Visentin, M. De Marchi, D. P. Berry, M. A. Fe-
nelon, P. M. O’Connor, O. A. Kenny, and S. McParland. 2016. 
Prediction of individual milk proteins including free amino acids in 
bovine milk using mid-infrared spectroscopy and their correlations 
with milk processing characteristics. J. Dairy Sci. 99:3171–3182. 
https: / / doi .org/ 10 .3168/ jds .2015 -9747.

Mishra, P., F. Marini, B. Brouwer, J. M. Roger, A. Biancolillo, E. 
Woltering, and E. Hogeveen-van Echtelt. 2021. Sequential fusion of 
information from two portable spectrometers for improved predic-
tion of moisture and soluble solids content in pear fruit. Talanta 
223:121733. https: / / doi .org/ 10 .1016/ j .talanta .2020 .121733 .

Modroño, S., A. Soldado, A. Martínez-Fernández, and B. de la Roza-
Delgado. 2017. Handheld NIRS sensors for routine compound feed 

quality control: real time analysis and field monitoring. Talanta 
162:597–603. https: / / doi .org/ 10 .1016/ j .talanta .2016 .10 .075.

Navrátilová, P., L. Hadra, M. Dračková, B. Janštová, L. Vorlová, and 
L. Pavlata. 2006. Use of FT-NIR Spectroscopy for Bovine Colos-
trum Analysis. Acta Vet. Brno 75:57–63. https: / / doi .org/ 10 .2754/ 
avb200675010057.

Playford, R. J., and M. J. Weiser. 2021. Bovine colostrum: Its con-
stituents and uses. Nutrients 13:265. https: / / doi .org/ 10 .3390/ 
nu13010265.

Pu, Y., D. Pérez-Marín, N. O’Shea, and A. Garrido-Varo. 2021. Recent 
advances in portable and handheld NIR spectrometers and appli-
cations in milk, cheese and dairy powders. Foods 10:2377. https: / / 
doi .org/ 10 .3390/ foods10102377.

Puppel, K., M. Gołębiewski, G. Grodkowski, J. Slósarz, M. Kunowska-
Slósarz, P. Solarczyk, M. Łukasiewicz, M. Balcerak, and T. Przy-
sucha. 2019. Composition and Factors Affecting Quality of Bovine 
Colostrum: A Review. Animals (Basel) 9:1070. https: / / doi .org/ 10 
.3390/ ani9121070.

Rivero, M. J., X. Valderrama, D. Haines, and D. Alomar. 2012. Pre-
diction of immunoglobulin G content in bovine colostrum by near-
infrared spectroscopy. J. Dairy Sci. 95:1410–1418. https: / / doi .org/ 
10 .3168/ jds .2011 -4532.

Ryckewaert, M., G. Chaix, D. Héran, A. Zgouz, and R. Bendoula. 
2022. Evaluation of a combination of NIR micro-spectrometers 
to predict chemical properties of sugarcane forage using a multi-
block approach. Biosyst. Eng. 217:18–25. https: / / doi .org/ 10 .1016/ 
j .biosystemseng .2022 .02 .019.

Santos, P. M., E. R. Pereira-Filho, and L. E. Rodriguez-Saona. 2013. 
Application of Hand-Held and Portable Infrared Spectrometers in 
Bovine Milk Analysis. J. Agric. Food Chem. 61:1205–1211. https: 
/ / doi .org/ 10 .1021/ jf303814g.

Šašić, S., and Y. Ozaki. 2001. Short-wave near-infrared spectroscopy 
of biological fluids. 1. Quantitative analysis of fat, protein, and 
lactose in raw milk by partial least-squares regression and band 
assignment. Anal. Chem. 73:64–71. https: / / doi .org/ 10 .1021/ 
ac000469c .

Šimundić, A. 2009. Measures of diagnostic accuracy: basic definitions. 
EJIFCC 19:203.

Sørensen, L. K. 2002. True accuracy of near infrared spectroscopy and 
its dependence on precision of reference data. J. Near Infrared 
Spectrosc. 10:15–25. https: / / doi .org/ 10 .1255/ jnirs .317.

Soyeurt, H., D. Bruwier, J.-M. Romnee, N. Gengler, C. Bertozzi, D. 
Veselko, and P. Dardenne. 2009. Potential estimation of major 
mineral contents in cow milk using mid-infrared spectrometry. J. 
Dairy Sci. 92:2444–2454. https: / / doi .org/ 10 .3168/ jds .2008 -1734.

Sun, Y., Y. Wang, J. Huang, G. Ren, J. Ning, W. Deng, L. Li, and Z. 
Zhang. 2020. Quality assessment of instant green tea using por-
table NIR spectrometer. Spectrochim. Acta Part A Mol. Spec-
trochim. Acta A Mol. Biomol. Spectrosc. 240:118576. https: / / doi 
.org/ 10 .1016/ j .saa .2020 .118576 .

VDLUFA. 2013. Handbuch der landwirtschaftlichen Versuchs-und Un-
tersuchungsmethodik, Methodenbuch Band VI–Chemische, physi-
kalische und mikrobiologische Untersuchungsverfahren für Milch 
Milchprodukte und Molkereihilfsstoffe. VDLUFA-Verlag, Darm-
stadt, Germany.

Visentin, G., M. Penasa, P. Gottardo, M. Cassandro, and M. De Mar-
chi. 2016. Predictive ability of mid-infrared spectroscopy for major 
mineral composition and coagulation traits of bovine milk by us-
ing the uninformative variable selection algorithm. J. Dairy Sci. 
99:8137–8145. https: / / doi .org/ 10 .3168/ jds .2016 -11053.

Wang, Y., Q. Liu, H. Hou, S. Rho, B. Gupta, Y. Mu, and W. Shen. 
2018. Big data driven outlier detection for soybean straw near in-
frared spectroscopy. J. Comput. Sci. 26:178–189. https: / / doi .org/ 
10 .1016/ j .jocs .2017 .06 .008.

Williams, P. 2007. Statistical terms for evaluation of accuracy and 
precision. Pages 5–1–5–17 in Near Infrared Technology—Getting 
the Best Out of Light. 5.0 ed. PDK Grain, Nanaimo, BC, Canada.

Williams, P. 2014. The RPD statistic: A tutorial note. NIR News 
25:22–26. https: / / doi .org/ 10 .1255/ nirn .1419.

Goi et al.: POCKET NIRS FOR COW COLOSTRUM

https://doi.org/10.3168/jds.2016-11724
https://doi.org/10.3168/jds.2016-11724
https://doi.org/10.1016/S0958-6946(02)00089-4
https://doi.org/10.1093/jas/sky003
https://doi.org/10.1093/jas/sky003
https://doi.org/10.3390/agriculture11040296
https://doi.org/10.3390/agriculture11040296
https://doi.org/10.1016/j.foodchem.2021.131189
https://doi.org/10.1016/j.foodchem.2021.131189
https://doi.org/10.1016/j.cvfa.2007.10.005
https://doi.org/10.1016/j.cvfa.2007.10.005
https://doi.org/10.1016/j.cvfa.2019.07.005
https://doi.org/10.3168/jds.2022-23059
https://doi.org/10.1017/S0007114500002270
https://doi.org/10.1016/j.ymeth.2020.07.012
https://doi.org/10.1016/j.ymeth.2020.07.012
https://doi.org/10.3168/jds.2007-0040
https://doi.org/10.3168/jds.2007-0040
https://doi.org/10.1016/j.jfca.2018.03.003
https://doi.org/10.3168/jds.2015-9747
https://doi.org/10.1016/j.talanta.2020.121733
https://doi.org/10.1016/j.talanta.2016.10.075
https://doi.org/10.2754/avb200675010057
https://doi.org/10.2754/avb200675010057
https://doi.org/10.3390/nu13010265
https://doi.org/10.3390/nu13010265
https://doi.org/10.3390/foods10102377
https://doi.org/10.3390/foods10102377
https://doi.org/10.3390/ani9121070
https://doi.org/10.3390/ani9121070
https://doi.org/10.3168/jds.2011-4532
https://doi.org/10.3168/jds.2011-4532
https://doi.org/10.1016/j.biosystemseng.2022.02.019
https://doi.org/10.1016/j.biosystemseng.2022.02.019
https://doi.org/10.1021/jf303814g
https://doi.org/10.1021/jf303814g
https://doi.org/10.1021/ac000469c
https://doi.org/10.1021/ac000469c
https://doi.org/10.1255/jnirs.317
https://doi.org/10.3168/jds.2008-1734
https://doi.org/10.1016/j.saa.2020.118576
https://doi.org/10.1016/j.saa.2020.118576
https://doi.org/10.3168/jds.2016-11053
https://doi.org/10.1016/j.jocs.2017.06.008
https://doi.org/10.1016/j.jocs.2017.06.008
https://doi.org/10.1255/nirn.1419


Journal of Dairy Science Vol. TBC No. TBC, TBC

Williams, P. C. 2003. Near-infrared technology getting the best out 
of light. A short course in the practical implementation of near-
infrared spectroscopy for the user (1.1 ed.), PDK Projects Inc, 
Nanaimo, Canada. P. 109.

ORCIDS

Arianna Goi  https: / / orcid .org/ 0000 -0003 -3341 -9775
Angela Costa  https: / / orcid .org/ 0000 -0001 -5353 -8988
Massimo De Marchi  https: / / orcid .org/ 0000 -0001 -7814 -2525

Goi et al.: POCKET NIRS FOR COW COLOSTRUM

https://orcid.org/0000-0003-3341-9775
https://orcid.org/0000-0001-5353-8988
https://orcid.org/0000-0001-7814-2525

	The ability of a handheld near-infrared spectrometer for a rapid quality assessment of bovine colostrum including the Ig G concentration
	INTRODUCTION
	MATERIALS AND METHODS
	Sampling
	Development of NIRS Models
	Diagnostic Accuracy

	RESULTS AND DISCUSSION
	SCiO for Ig and Gross Composition
	Prediction of Fine Composition Traits
	On-Farm Use

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


