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Abstract

Controlling soil moisture is crucial in optimizing watering and crop perfor-

mance. Traditional monitoring systems rely on a single sensor or on a column

of sensors that do not allow farmers to properly capture soil moisture dynam-

ics in the soil volume occupied by roots. In this paper we propose PLUTO, an

original approach that builds fine-grained 2D and 3D soil moisture profiles by

relying on a grid of sensors. Profiles are computed using both interpolation-

based and machine learning approaches. Besides the technical description of

the approach, the paper reports a set of original visualizations and a large

set of tests computed, over two years, on real Kiwi orchards. PLUTO proved

to largely overcome the accuracy of profiles obtained with traditional sen-

sor layouts. Considering that the cost of sensors is progressively decreasing,

PLUTO provides a cost-effective, operative, and precise solution to moisture

monitoring.
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1. Introduction

Controlling soil moisture is a crucial factor in optimizing watering and

crop performance [1]. For example, Kiwi (Actinidia deliciosa), our case study,

has high water demand [2]. Indeed, Kiwi is an irrigated crop in most of the

areas where it is cultivated such as New Zealand, Chile, and Italy.

Different types of watering systems may be adopted depending on the

farming features and needs; typical solutions exploit drippers, sprinklers,

hose reels, and flooding. In orchards, where a stable watering system can

be built, drip irrigation is widely used as it enables precise watering that, in

turn, reduces water waste.

The main application of our work is preserving an optimal moisture level

without wasting water. The risks of over-watering range from groundwater

depletion to plant suffocation. As to kiwi, farmers tend to over-water since

it leads to larger fruits, but this reduces their dry mass and jeopardizes their

maintenance after harvest. Ideally, the moisture level should be known and

optimal on the whole soil volume taken by the tree roots. Such volume is

subject to strong horizontal and vertical variability caused by many related

factors, among them: (i) uneven root suction, (ii) limited watering-system

coverage, and (iii) difference in the soil layers in terms of composition and

exposure to atmospheric agents.

Figure 1 shows an example of an orchard watered through a single-pipeline

dripper system. Each cube shows the soil volume taken by the roots. On
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Figure 1: Relevant elements in a orchard.

the one hand, the limited distance between drippers ensures homogeneous

moisture (i.e., the watered volume in blue) along the row (i.e., multiple trees

in the same line). On the other hand, the effect of watering drops across

the rows (i.e., between two lines of trees), and a portion of the soil volume

remains completely unwatered (i.e., the volume in orange).

When the watered volume is symmetric along the row, as in Figure 1,

a 2D grid (Figure 2-left) is sufficient to represent the entire soil volume.

Conversely, when relevant moisture variations take place along the row too, a

3D grid (Figure 2-right) is more suitable. Such variations may be determined,

for example, by too sparse drippers or by non-homogeneous suction of the

roots.

Our approach, named PLUTO1, focuses on the following contributions.

• The concept of 2D/3D moisture profile (i.e., a fine-grained representa-

1In Greek mythology, god of wealth. His name is linked to the prosperity of crops.
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Figure 2: Regular 2D (left) and 3D (right) sensor grids.

tion of moisture in a portion of soil) based on a grid of sensors. The

grain of the profile is in the order of magnitude of square/cubic cen-

timeters.

• Two alternative solutions to estimate a fine-grained profile by adopting

linear and non-linear approximations. In particular, non-linear approx-

imation relies on a neural network that learns a model of soil moisture

given the soil texture.

• An analysis of the trade-off between the accuracy, the number, and the

position of sensors.

• Several original profile visualizations that enable visual exploitation of

the profile.

To the best of our knowledge, PLUTO is the only approach aimed at cre-

ating a fine-grained multidimensional profile of soil moisture given a sensor

grid. In particular, previous approaches building a soil profile exploit sensors

to calibrate a simulator (e.g., HYDRUS [3]) and thus (i) require long time

series of data from the field; (ii) bind the profile exploitation to an expensive
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and resource-consuming simulation; and (iii) require frequent updates. For

these reasons, such approaches typically carry out spot researches to study

soil moisture dynamics. Conversely, our goal is to provide a cost-effective, op-

erative solution that monitors soil moisture and whose reference application

is long-term watering optimization.

The remainder of this paper is organized as follows. Section 2 introduces

the basics of soil moisture monitoring and sensors. Section 3 surveys the

previous approaches in the area of moisture monitoring. Section 4 describes

PLUTO in detail. Finally, Section 5 reports the tests carried out on real

data collected over two years, and Section 6 draws the conclusions.

We emphasize that our work is one of the outcomes of the

Agro.Big.Data.Science project [4]. The project, funded by Regione Emilia

Romagna, aims at studying and implementing digital solutions to support

smart and precision farming.

2. Background

The monitoring of soil moisture has been proven beneficial in many vari-

ous applications. For instance, Bordoni et al. [5] estimate the soil moisture on

a test slope of Oltrepò Pavese (northern Italy) for the assessment of shallow

landslides triggering. Besides, agriculture has witnessed different analyses

based on the adopted watering techniques. Among them, the investigation

of the water demand of a mature citrus orchard to optimize the water budget

during rainy and dry seasons in southern China [6]. In the field of flood irri-

gation, Hamilton et al. [7] collect soil moisture measurements and compare

three contrasting soil management treatments, discovering how to improve
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efficiency. In the following, we consider only papers related to precision farm-

ing, where it is important to have measurements as fine-grained as possible.

The most common practice is to observe the change in soil moisture with

the aid of sensors. According to the displacement, sensors can be catego-

rized as proximal or remote. Proximal sensors are typically installed below

the ground to monitor soil moisture in the plant root zone, offering precise

measurements. Conversely, remote sensors (e.g., Unmanned Aerial Systems)

have been used for the discovery of global soil moisture patterns, due to their

coarse spatial resolutions. Babaeian et al. [8] integrate both technologies to

conduct analyses on global soil moisture patterns as well as near the plant.

Yet, commercial precision farming installations encompass only the use of

proximal sensors, as including both sensor types is not worth the cost. Fur-

thermore, depending on the operating principle, proximal sensors measure

either the volumetric water content (i.e., the volume of liquid water per vol-

ume of soil) or the soil water potential (i.e., the energy required by tree roots

to extract water from soil particles).

Proximal sensors installations can be categorized into single-sensor and

multi-sensor installations. As the name suggests, the single sensor instal-

lation (0D) provides a punctual measurement of soil moisture. Although

this installation [9] is cheap, it cannot monitor the soil moisture at different

depths. To do so, multi-sensor installations are devised (e.g., ground-based

proximal sensors are organized so that a grid is formed). According to the

layout, we distinguish: mono-dimensional (1D), bi-dimensional (2D), and

three-dimensional (3D) grids. The most popular configuration is the mono-

dimensional grid [10, 11, 12, 13, 14], where the sensors are vertically aligned at
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different depths. Bi-dimensional [15, 16] and three-dimensional [17, 18] grids

are quite less used due to the higher required number of sensors. Yet, they

allow monitoring soil moisture changes not only at different depths but also

along the other axes. Bi-dimensional grids involve installations of multiple

sensors per soil layer, forming thus a matrix that enables the understand-

ing of patterns in an entire slice of soil. While, three-dimensional grids can

be seen as more bi-dimensional grids side by side, allowing the examination

of more than one slice. An exhaustive dissertation about sensors and data

collection can be found in [19].

3. Related Literature

Raw sensory data are only the starting point for extracting richer repre-

sentations of soil moisture. We review the literature of approaches that have

been proposed to create such representations. We distinguish the following

techniques.

• Physically-based numerical models (e.g., HYDRUS [3], CRITERIA [20])

are analytical models that code the physical laws determining the hy-

drological dynamics.

• Machine learning models leverage artificial intelligence techniques to

learn hydrological dynamics from a large set of examples.

Also, we distinguish the following goals.

• Simulation estimates the soil dynamics over time with the aim of un-

derstanding the soil behavior under specific circumstances. Simulation
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is not bound to actual weather and soil moisture values, but rather

tests different scenarios to understand the overall soil behavior.

• Forecasting, starting from the current moisture values in a specific field,

estimates its future values in order to let the user take appropriate

decisions (e.g., watering).

• Profiling estimates a fine-grained soil representation combining a coarse

description of the moisture in the soil with statistical assumptions and

the knowledge of soil characteristics.

Although the boundaries between these three goals are blurred, we can easily

differentiate them considering that, while forecasting and simulation produce

estimations of future moisture values, profiling produces a more detailed

estimate of present values.

Physically-based numerical models have been for a long time the only

choice to study hydrological dynamics, and thus are considered well-accepted

and solid tools. In this regard, several recent works exploit them with the

aim of simulation: Pan et al. [13] investigate the differences between two

hole watering methods; Li et al. [14] study the effects of soil water and salt

dynamics on root water uptake; Egea et al. [15] analyze the suitability of the

irrigation management of a hedgerow olive orchard in different soil types;

Cordeiro et al. [16] determine the water table contribution in a cornfield;

Zapata-Sierra et al. [17] monitor the evolution of soil moisture in a pepper

crop field. As to works that focus on forecasting: Chen et al. [21] predict

the soil wetness status in several sites close to catchments of significant size

(soil type and leaf area index were the key parameters affecting the model
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performance); Shein et al. [22] validate the efficiency of HYDRUS-1D for

predicting soil moisture and temperature dynamics with hysteresis in clay

loam soils.

Machine learning models in the field of precision agriculture are rela-

tively new in comparison to physically-based numerical models. Karandish

et al. [10] evaluate and compare the goodness of machine learning models

with physically-based numerical models in several soil moisture simulations.

Results assess the efficacy of the former, which additionally benefit of some

advantages, above all low resources consumption: no on-line heavy computa-

tion is required and the result is rapidly available. As a matter of fact, several

approaches apply machine learning models with the aim of simulation: Arif

et al. [9] build a model to monitor soil moisture in paddy field with limited

meteorological data; Babaeian et al. [8] develop a machine learning model

that analyzes surface, near-surface, and root zone soil moisture by exploiting

the fusion of remote and proximal sensors. As to forecasting: Liang et al.

[18] quantify the water droplet infiltration in a sprinkler irrigation system

to improve and facilitate the watering management, Jiménez et al. [12] and

Goldstein et al. [11] directly predict the watering volumes recommended by

the agronomist.

Finally, there are approaches that leverage physically-based numerical

models in synergy with machine learning. For instance, Hinnell et al. [23] ex-

ploit HYDRUS as a physically-based numerical model to provide fine-grained

samples and Artificial Neural Networks as a machine learning model to ex-

tract subsurface wetting patterns. With respect to PLUTO, Hinnell et al.

(i) produce a statistical representation of the patterns that is based on a
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Table 1: Classification and comparison of related works in the field of precision farming.

Reference Sensor Type Layout Goal Approach

[13] Volumetric multi (1D) Simulation PbN

[14] Volumetric multi (1D) Simulation PbN

[15] Volumetric multi (2D) Simulation PbN

[16] Volumetric multi (2D) Simulation PbN

[17] Volumetric multi (3D) Simulation PbN

[21] Volumetric multi (1D) Forecasting PbN

[22] Potential multi (1D) Forecasting PbN

[9] Volumetric single (0D) Simulation ML

[8] UAS, Volumetric multi (1D) Simulation ML

[11] Volumetric multi (1D) Forecasting ML

[12] Potential multi (1D) Forecasting ML

[18] Volumetric multi (3D) Forecasting ML

[23] - - Profiling PbN, ML

PLUTO Potential multi (2D/3D) Profiling PbN, ML

Unmanned Aerial Systems (UAS), Physically-based Numerical (PbN), Machine Learning (ML).

single dripper and assume a uniform characterization of the soil, (ii) derive

the wetting patterns from generic soil parameters and not from actual sensor

values.

Table 1 summarizes the related works described so far and compares their

features against PLUTO. To the best of our knowledge, PLUTO is the only

one that builds a fine-grained 2D/3D moisture profile based on a coarser

sensors grid, through linear and non-linear techniques.
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(a) Actual soil moisture. (b) Raw sensor grid (c) Soil profile

Figure 3: Snapshot of soil moisture in a soil slice; the water drop represents a dripper.

4. Materials and Methods: the PLUTO Approach

Our goal is to create a moisture profile that represents the whole soil

volume.

Definition 1 (Soil volume). Given a tree, its soil volume is a parallelepiped

of soil that contains most of the tree roots. The soil volume is centered in the

tree position.

Definition 2 (Sensor grid). A sensor grid S = {s1, ..., s|S|} is an n-

dimensional layout of |S| sensors installed in a soil volume. Each sensor

si is defined by a three-dimensional displacement (si.x1, s
i.x2, s

i.x3) with re-

spect to the center of the soil volume, and by a soil moisture value si.v.

Depending on n, the grid resembles a line (n = 1), a rectangle (n = 2)

or a parallelepiped (n = 3). The monitored value depends on the sensor

technology; typically sensors measure volumetric water content or the soil

potential. Figure 4 shows one of the Agro.Big.Data.Science project installa-

tions [4] located in Faenza (Emilia Romagna, Italy). This orchard is watered

through a single pipeline of drippers (distance between drippers 40cm) and
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Figure 4: A sensor grid is monitoring soil moisture close to a kiwi tree near Faenza, Italy.

The watering system is composed of single-pipeline drippers.

soil moisture is monitored through a 2D sensor grid of 12 gypsum block

sensors.

Soil moisture varies continuously within the soil volume while the raw

sensors provide point-wise measurements. Furthermore, in most real-world

applications, the number of sensors is by far less than those we used in our

research project; this further reduces the comprehensiveness of the measure-

ments. For instance, companies involved in Agro.Big.Data.Science [4] relied

on 1 to 3 sensors disposed at different depths (i.e., a 0D or a 1D grid). The

moisture profile, based on raw sensor measurements, estimates soil moisture

of the whole soil volume at a fine-grained resolution.

Definition 3 (Moisture profile). Given an n-dimensional sensor grid S, the

moisture profile is an n-dimensional grid P = {p1, ..., p|P |} that approximates,

in each pi, the soil moisture measured by S. P is fine-grained with respect to

S since |P | > |S|.

The approximation pi.v is assumed to be constant in the region surround-

ing pi, whose granularity depends on |P |.
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Example 1. Given a 2D sensor grid covering an area of 0.6m2 (i.e., a

rectangle with a width of 1m and a height of 0.6m), we employed a sensor

grid with 12 sensors (i.e., |S| = 12) and a moisture profile with 1000 points

(i.e., |P | = 1000). As a result, we obtained a moisture profile having a

granularity of 6cm2 (i.e., 0.6m2/1000) while the sensor grid granularity is

500cm2 (i.e., 0.6m2/12). For the sake of clarity, Figure 3b shows a sensor

grid with |S| = 9 and Figure 3c shows a moisture profile with |P | = 25.

A moisture profile covers the sensor grid region that is typically smaller,

in size and dimensionality, than the soil volume. To provide a comprehensive

estimation of the whole soil volume, we rely on the following assumption of

symmetry : the portions of the soil volume that are not covered by the sensor

grid behave as the monitored one; in other words, the profile of the uncovered

portions can be obtained under rotation or translation of the moisture profile.

Figure 5 shows the symmetries in the case of 2D and 3D grids. The symmetry

assumption is verified for 2D grids when the drippers along a tree row are

close enough to ensure homogeneous soil moisture. If the distance between

the drippers is high and the soil moisture along the row is not constant, a

3D grid must be adopted to satisfy the symmetry assumption. Obviously, a

3D grid does not require any symmetry assumption if sensors are distributed

all around the tree. However, given a fixed amount of sensors, not exploiting

the assumption of symmetry results in a coarser grid.

We emphasize that all the soil moisture estimation approaches based on

sensors implicitly make symmetry assumptions: if a single sensor (0D instal-

lation [9]) is used, the measured moisture is assumed as the reference value

for the whole soil volume (i.e., it is assumed to be constant all over the soil
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Figure 5: Symmetries in watered soil: dotted rectangles (left) or parallelepipeds (right)

replicate the data collected by the sensor grids.

volume); if a column of sensors (1D installation [10, 11, 12, 13, 14]) is used

the moisture is considered constant at a given depth. From this point of view,

PLUTO’s 2D and 3D grids progressively lighten such assumptions leading to

a more accurate result. Obviously, some assumptions of symmetry remain,

but they seem reasonable especially in the agricultural context: orchard rows

are (or can be) built to be symmetrical. For example, the kiwi orchards in-

volved in the Agro.Big.Data.Science project (i) were north-south oriented to

have the same sun exposure on both the sides of the row; (ii) exploit a T-Bar

training system; (iii) have a symmetric raised bed (i.e., with the same slope

on both sides of the row).

More in general, to handle the variability within a single installation, it

is always possible to design a grid layout that involves both sides of the row

and, to handle variation within different parts of the field, two replicas can

be installed.

4.1. From Sensors to Moisture Profile

The transformation of raw sensor measurements into a moisture profile is

achieved through a profiling function.

14



Real-time
sensor data

Soil profile

Offline

Online

Soil
texture

Soil profile

Simulated
data

Training 
algorithm

Crop
Simulator

FA

FU

Figure 6: Feature-aware and feature-unaware processes for building a moisture profile.

Definition 4 (Profiling function). Given an n-dimensional sensor grid S

and a moisture profile P , a profiling function f : S → P approximates the

values of the moisture profile P starting from the sensor grid S.

The role of a profiling function is approximating the soil moisture values

in those positions of the moisture profile where a sensor is not present. A

profiling function is based on sensor grid measurements and can optionally

exploit further information about the behavior of the soil. Several profiling

functions can be adopted. We propose two alternative approaches that differ

in the information exploited.

• Soil-feature unaware - FU: exploits the sensor measurements only. The

most obvious choice is to carry out a linear interpolation between pairs

of sensor values.

• Soil-feature aware - FA: exploits the knowledge about soil hydrolog-

ical dynamics to keep into account non-linearities and to get a more
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accurate estimation.

The two alternative profiling functions are sketched in Figure 6. The

feature unaware function does not require to be fitted to a specific field and

only gets sensor data as input, while the feature aware function is trained

offline to capture non-linear behaviors that result in a more accurate moisture

profile. We emphasize that our feature unaware function also captures non-

linear behaviors. Indeed using a grid of sensors, we are implicitly adopting a

local regression approach [24, 25]. Although local regression approaches are

bounded to linear behavior between sensor pairs, the composition of several

linear strokes can approximate a non-linear trend. Conversely, our feature

aware function models the non-linearities between sensor pairs too. The gap

between the two approximations grows as the distance between the sensors

increases.

As to the feature unaware profiling function, we rely on the well-known

n-linear interpolation, where n is the profile grid dimensionality. For the

sake of conciseness, in the following, we describe the 2-linear case. Given a

2D sensor regular grid S, this technique carries out a linear interpolation in

each dimension independently from each other. The approach consists of two

phases (Figure 7). For each point p ∈ P of the moisture profile to be com-

puted: (i) we find the four sensors S that determine the minimum bounding

rectangle enclosing p (Figure 7a), then (ii) we compute p.v (Figure 7b) by

interpolating along the x1 axis first. Then, exploiting the obtained points r

(blue dots), interpolation is performed along the x2 axis and the value p.v is

finally determined. Below follows the formal definition.
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(a) Bounding rectangle for p (b) Bilinear interpolation

Figure 7: A 2D example of the feature unaware function.

rij.v =
sj.x1 − rij.x1

sj.x1 − si.x1

si.v +
rij.x1 − si.x1

sj.x1 − si.x1

sj.v

rhk.v =
sk.x1 − rhk.x1

sk.x1 − sh.x1

sh.v +
rhk.x1 − sh.x1

sk.x1 − sh.x1

sk.v

p.v =
rij.x2 − p.x2

rij.x2 − rhk.x2

rhk.v +
p.x2 − rhk.x2

rij.x2 − rhk.x2

rij.v

The trilinear procedure is analogous: it just has three steps instead of two.

The feature aware function captures non-linear soil moisture behaviors

by exploiting the knowledge about the hydrological fluxes. To this end, we

rely on an Artificial Neural Network (ANN), a machine learning model, that

returns the estimated values for each profile point after learning the soil

behavior from the data generated by CRITERIA [20], a physically-based

numerical model. The learning process is sketched in Figure 6. The ANN

learns the soil behavior from simulated data in an off-line phase, which is

carried out only once at the time of installation of the system. CRITERIA

reproduces hydrological fluxes in the soil volume implementing Richard’s

equations. The simulator models the following elements of the soil volume:
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Figure 8: Moisture profile built by the two types of profiling functions, namely feature

unaware (left) and feature aware (right).

(i) the soil texture; (ii) the shape of the tree roots; (iii) the watering system

type and layout; and (iv) the sensor layout. Such data are provided as input

by the farmer. Then, training data are generated running the simulator

according to simulated weather conditions and watering sessions. Generating

hourly data over a 4-month period proved to be sufficient to train the ANN.

Refer to Section 8 for more details on the PLUTO’s ANN.

Figure 8 exemplifies the differences between the feature aware and fea-

ture unaware results. The figure shows two profiles obtained from a grid

of four sensors positioned on the corners. The values for the sensors are

the same for the two profiles (top-left=-10cbar, top-right=-300cbar, bottom-

left=-200cbar, bottom-right=-300cbar). The profile on the left is obtained

by applying the feature unaware bilinear profiling function (i.e., the 2-linear

interpolation), while the one on the right by applying the feature aware ANN.

The lower level of soil moisture in the upper right part of the feature aware

profile results from the combination of two factors that are better captured by

the feature aware function; this region (i) is proximal to the surface (thus it

is more subject to atmospheric events) and (ii) belongs to the unwatered vol-

ume. We emphasize that this is a worst-case scenario: as already mentioned,
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the higher the number of sensors, the lower the errors due to non-linear be-

haviors that are local to the intra-sensor regions. We analyze how accuracy

changes for feature aware and feature unaware varying the number of sensors

in Section 5.

4.2. Visualization

Visualization allows easy exploitation of the moisture profile, enabling ef-

fective soil moisture monitoring. We propose two visual components selected

according to the data types and the following visualization goals [26].

• Historical soil moisture trend : shows the variation of moisture over

time. Independently of the profile dimensionality, a 2D stacked area

chart is adopted. No spatial information is shown here.

• Spatial soil moisture: shows the spatial distribution of soil moisture

at a specific time. A 2D heat map or a 3D scatter plot is adopted

depending on the profile dimensionality.

The two components are linked through interactive zooming [27]. When

the user selects a specific time on the historical soil moisture trend, the

corresponding spatial soil moisture at the time is shown.

Since the goal is to check that an ideal moisture profile is maintained, we

define five crop-specific soil moisture ranges, each associated with a different

color. For our case of study on kiwi-trees [4], Dark blue (in [0,−30) cbar)

and light blue (in [−30,−100) cbar) show heavily/slightly portions of over-

watered soil. Salmon pink (in [−100,−300) cbar) represents the ideal case

[28]. Finally, light red (in [−300,−1500) cbar) and dark red (in the range of

[−1500,−∞) cbar) show slightly/heavily portions of under-watered soil.
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Figure 9: Visualization of a 2D profile: (left) the historical soil moisture and (right)

a snapshot of the spatial soil moisture. The rightmost legend shows the soil moisture

ranges. The drop at depth 0 represents the Dripper position and the rightmost legend

shows the soil moisture ranges.

Figure 9 shows examples of historical soil moisture trend and spatial soil

moisture charts for a 2D profile. The historical soil moisture chart shows

how the soil gradually dries out during the dry season. In May the soil is

mostly wet, while in June the first irrigations are necessary. Also, note how

the single pipeline dripper fails to eliminate the red area due to the presence

of an unwatered region in the soil volume. For the chosen zoom date, the

spatial soil moisture chart shows the moisture profile in detail. Each cell

corresponds to a profile element. The following areas can be highlighted:

(i) the region under the dripper where the effects of irrigation are apparent;

(ii) the superficial portion away from the dripper that is very dry as it is

not irrigated; and (iii) the deep region which is less affected by atmospheric

agents and in which constant soil moisture remains regardless of the effects
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Figure 10: Visualizing rotations of a 3D profile.

of watering. The profile highlights how the soil moisture spreads laterally

thanks to the combined effect of the roots and the permeability characteristics

of the soil.

Figure 10 shows an example of a 3D spatial soil moisture chart. Each

sphere corresponds to a profile element. The colors are the same as in the

2D visualization. Spaces between spheres allow the inner side of the 3D

profile to be explored. Furthermore, to facilitate the analysis, the chart can

be rotated along the three axes. The soil moisture gradient along the third

dimension (i.e., along the row) is better highlighted by the third orientation

of the chart and justifies the adoption of a 3D profile.

Starting from the spatial profile, we derive many meaningful visualiza-

tions. Figure 11-left shows the profile variance chart, which reports the soil

moisture variance in a given period. The lighter areas are those where soil

moisture varies the most. Similarly, Figure 11-right shows the profile average

chart which reports the average soil moisture in a given period. The charts

are designed to support the work of both agricultural technicians and farm-

ers. For example, in the Agro.Big.Data.Science projects the main questions

posed by such users were:

• What is the watered volume? : this region is typically characterized by
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two phenomena: high moisture and high suction by the roots. De-

pending on the supplied quantity of water, the summation of the two

phenomena determines different effects. In the case of over-watering,

the watered volume remains always wet, with high values in the av-

erage chart and low values in the variance chart as the roots and the

atmospheric phenomena are not able to absorb the water. Conversely,

in the case of correct irrigation, the average chart shows medium val-

ues while the variance one shows high values mainly due to the suction

made by the roots. This is the case for Figure 11.

• Where is the root suction higher? : a high root suction quickly reduces

the moisture in the soil and results in a strong soil moisture variance.

• How soil moisture dynamics impact on the watered volume? : if, after

increasing the quantity of water supplied to the soil, the watered volume

does not increase significantly, then the soil disperses water in depth

due to its characteristics.

In the context of the Agro.Big.Data.Science project agricultural technicians

and some data enthusiast farmers [29] already had the competences to di-

rectly exploit the charts, while most of the farmers had been trained. We

strongly believe that the progressive digitization in agriculture will drive all

farmers to take advantage of these solutions, as it has already happened to

operators in other industries.

A demo of the PLUTO visualization system is available at https://big.

csr.unibo.it/projects/pluto. The monitoring system can be completed

by the following information collected through a weather station and a water
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Figure 11: Soil moisture variance (left) and average (right) in cbar along a 1-week period;

the orchard is watered through a single-pipeline dripper system.

meter:

• a single line chart showing the max/min/avg air temperature;

• a bar chart showing the mm of rain that fell each day;

• a bar chart showing the mm of water supplied, each day, through wa-

tering.

Although the role of data processing and visualization is often overlooked,

such visualizations contribute to a comprehensive understanding of the evo-

lution of the profile.

5. Results and Discussion

We tested PLUTO on the installations of the Agro.Big.Data.Science

project [4]. Data have been collected in the irrigation season from May to

September in 2020 and 2021. Installations are taken from two orchards: one

in the plains and one in the hills around Faenza, in the province of Ravenna,

Italy. The orchards were planted in 2010 as a self-rooting Hayward variety

(A. chinensis var deliciosa), grafted in 2012 with Gold 3 (A. chinensis var
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Location # Grids Grid Layout # sensors Watering system

Hilly 1 3D 15 Single pipeline

Hilly 2 2D 12 Single pipeline

Hilly 2 2D 12 Double pipeline

Plain 4 2D 12 Single pipeline

Table 2: Description of the experimental implants.

chinensis). Kiwifruit vines were spaced 2m along the row and 4.5m across

the rows. Different irrigation systems and sensor grid layouts have been con-

sidered as shown in Table 2. Sensor data are sampled and collected every 15

minutes.

We emphasize that the number of sensors we use is much higher than

necessary, as we will show below. Grids with 12-15 sensors were used to

build the ground truth to carry out the tests. In each test only a subset of

the available sensors was used to compute the profile, while the remaining

ones were used as ground truth. In other words, we verify how well the profile

approximates the soil moisture in positions where the real soil moisture is

known to the tester but hidden to PLUTO. Profile accuracy is calculated

as the Root Means Square Error (RMSE) between the ground truth sensor

values and the values estimated by the profile. Obviously, the RMSE is

computed only for those sensors that are not used to compute the profile.

5.1. Accuracy Evaluation

Figure 12 shows the system performance, for the 2D profile, varying the

number of input sensors. Tests have been repeated for all the available in-
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stallations. To better understand the advantage provided by PLUTO, we

also highlighted the performance of profiling based on a single sensor — 0D

setting — (i.e., the de facto standard) or a column of 3 sensors at different

depths — 1D setting. To extend the soil moisture value of the single sensor

to the entire soil volume, we must assume the soil moisture to be constant

in the whole volume. Similarly, when a column of sensors is available, we

assume that soil moisture is constant at the same depth in the soil. Since

the accuracy varies based on the sensor location, we choose the single sensor

position (or the sensor line) that minimizes the RMSE as a fair comparison

baseline. The same methodology was adopted to displace the sensors used to

calculate the profile. We refer to section Section 5.2 for an in-depth analysis

of the layout of the profile sensors and the robustness of the system.

The 0D setting estimations are by far less accurate than the ones obtained

by our profiling functions; indeed, three sensors are sufficient to halve its

RMSE using the feature aware profiling function. The 1D setting achieves

slightly better results since it captures soil moisture at different soil depths,

but fails in capturing longitudinal variations. The extent of these errors is

not negligible since the optimal range for soil moisture for kiwi cultivation is

[−100;−300) cbar [28].

RMSE for feature aware and feature unaware gradually decreases as the

number of sensors increases. Note that the bilinear profiling function can

be computed only for some sensor layouts, due to the intrinsic geometrical

constraints (i.e., the profile region must be partitioned in bounding rectan-

gles/cubes). The ANN profiling function always outperforms the bilinear one

due to its capability to better model non-linear behaviors. This supremacy
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Figure 12: 2D profile performances as a function of the input sensors. Single sensor (0D)

and column (1D) settings are reported for comparison.

is more evident when the number of sensors is limited and the intra-sensor

distances are larger (see Figure 8).

3D profile performances are reported in Figure 13. This type of profile

measures soil moisture variability along the row, while 2D profiles assume soil

moisture to be constant along the row. The chart shows that the assumption

is partially true since the RMSE for the 2D profile (i.e., the dotted line)

is higher than those related to the 3D ones. The RMSE further increases

for the 0D and 1D settings as they progressively make stronger assumptions

about symmetry. As expected, the RMSE for the 3D profiles decreases as

the number of sensors increases, and the feature aware profiling function

overcomes the feature unaware one.

Overall, 2D and 3D profiles are much more accurate; they better capture

variations in soil moisture than the baselines (that are traditionally used in
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Figure 13: 3D profile performances as a function of the input sensors. Single sensor (0D),

column (1D) settings, and (2D) profile are reported for comparison.

commercial settings). Figure 14 highlights the ability to identify different soil

behaviors by showing the dynamics of soil moisture in fields with different

watering systems. The orchard reported in Figure 14-left adopts a single-

pipeline dripper system where the pipeline is placed along the row. The

orchard in Figure 14-right adopts a double-pipeline dripper system were each

pipeline is shifted by 20cm on the right/left of the tree row. As shown by the

profile, the compound effect of the raised bed and the shift of the pipeline

determines a heavily different soil moisture diffusion. This effect can only be

pointed out using 2D or 3D profiles.

5.2. Sensor Layout Analysis

As shown in Figures 12 and 13, accuracy varies with the number of sen-

sors. Given a regular grid with n sensors, several layouts are possible when

m < n sensors are used. In particular, while the bilinear feature unaware
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Figure 14: Profile comparison for orchards equipped with single pipeline dripper (left)

and double pipeline dripper (right) watering systems. The drop at depth 0 represents the

Dripper position and the rightmost legend shows the soil moisture ranges.

function implies some geometric constraints, in the ANN-based feature aware

one all the layouts are feasible.

To compare different layout performances and the system stability with

respect to different layouts, we considered the five profiles that achieve the

best performances when m ∈ [3, 6] sensors are used. The analysis is carried

out in an orchard watered through a single-pipeline dripper system monitored

through a grid of n = 12 sensors (i.e., 4 columns of 3 sensors). Figure 15

shows the percentage of times the grid sensor appears in one of the top-

performing layouts. Noticeably, the layouts with highest performance include

the sensors that convey more information on soil moisture. The sensors that

turn out to be more relevant are:

• the sensor just under the dripper (0cm,−20cm) since it is the most

affected by the effects of the dripper;

• the sensor near the surface farthest from the dripper (90cm,−20cm)

since it records the state of the unwatered volume and is strongly in-
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Figure 15: Frequency of times each sensor appeared in the best layouts.

fluenced by atmospheric phenomena (e.g., sun, rain, and wind);

• one sensor at mid-depth (∗,−40cm) since it captures the soil behavior

when not directly affected by watering and atmospheric phenomena.

Besides proving the stability and robustness of the system, this analysis pro-

vides the rules for defining the sensor layout.

5.3. Application of PLUTO in Improving Water Management and Fruit

Quality

We briefly report the results achieved in the Agro.Big.Data.Science

project in terms of water saving and fruit quality. Although an in-depth

discussion of such results is out of the scope of this paper, we believe that it

is important to demonstrate the ultimate impact of PLUTO; for more details

see [30].
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We have two irrigation setups during the 2021 campaign (i.e., from May

to October 2021) within the same orchard: (i) managed row (irrigation is au-

tomatically controlled by PLUTO) and (ii) control row (irrigation is manually

controlled by the farmer). As to (i), given a 2D installation of 12 sensor, the

moisture profile was exploited in the water-saving strategy: irrigation was

activated when the soil water content got down below the field capacity (-

0.003MPa) and returned the same amount of water lost to evapotranspiration

the day before (as measured by a PAN evaporimeter [30]).

As to water saving, the managed row saved 44% of water during the

whole campaign. We achieved the maximum saving in June and September

when, for the farmer, it is more difficult to accurately estimate the actual

soil moisture level and the water requirement.

As to fruit quality, the productivity of vines was unaffected by the irri-

gation management and ranged from 32 to 39 kg/vine (35-44 t/ha). Fruits

from the control row appeared greener with a hue angle of 105 vs a hue angle

of 102 for fruits from the managed row. Such fruits also showed a higher

soluble solid concentration at harvest: 15.3 brix vs 12.7 brix for the control

row. The gap has been maintained after 2 months of storage (and 1 day of

shelf life); in particular, the soluble solid concentration was 17.4 brix for the

managed rows vs 16.1 brix for the control row.

6. Conclusions and Future Work

We presented PLUTO, an original approach to compute 2D/3D moisture

profiles with granularity in the order of magnitude of a few square/cubic

centimeters. PLUTO relies on a grid of soil moisture sensors and it largely

30



outperforms previous approaches based on a single or a column of sensors. To

create a cost-effective operative solution, we have shown that three sensors,

properly placed in the soil, are sufficient to effectively obtain the profiled soil

moisture.

We are currently turning our monitoring system into a forecasting one.

We are testing ANNs to create a solution that initially (i.e., before the de-

ployment of the sensors) learns from a soil simulator and then improves its

accuracy by exploiting real sensor samples collected during operations. The

overall goal is to create a prescriptive analytics system that automatically

activates the watering system based on a soil moisture forecast module fed

with the weather forecast.
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8. Appendix: the PLUTO’s Artificial Neural Network

ANNs take inspiration from biological neural networks: they encompass

layers of neurons, linked to each other with connections. Connections behave

as synapses in a biological brain, with certain intensity (called weight). The

input is fed to the first layer (called input layer), processed throughout the

remaining layers (called hidden layers), and finally provided in the last layer

(called output layer) as an outcome. ANNs are trained by feeding inputs

and the expected outputs a given number of times (i.e., epochs) in groups

of a certain size (i.e., batch size). Such a process allows the network to tune

the weights of the connections that link the neurons together, and find the

optimal solution.

ANNs have been chosen for the feature aware profiling function due to

the following properties:
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Table 3: The ANN hyper-parameter configuration retrieved by HyperOpt.

Hyper-parameter Value

# Hidden Layers 1

# Neurons per layer 100

Activation function Tanh

Normalization Z-score

# Training epochs 50

Batch size 30

Reduce learning rate factor=2, patient=10

• Low resource consumer: once trained offline, the ANNs are fast and

require limited computational resources.

• Powerful & Flexible: can provide accurate profiles (i.e., they properly

capture non-linearities) even though the grid layout includes a limited

number of sensors.

• Robust: ANNs are well-known to work well even in case of dirty or

missing data. This may happen when a sensor occasionally fails to

provide the correct data.

Table 3 reports the hyper-parameters2 for the PLUTO ANN. We adopted

a feed forward ANN (i.e., neurons in the layers are connected without cre-

ating any cycle) with one, fully connected, hidden layer. The input layer

2Hyper-parameters are the variables that determine the network structure (e.g., num-

ber of hidden layers, number of neuron per layer), how the network is trained (e.g., number

of epochs, batch size), and hence the final performance.
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Figure 16: The layout of the ANN profiling function.

has one neuron for each sensor, the hidden layer has a hundred of neurons

activated through the hyperbolic tangent activation function (e.g., values of

the neurons are mapped according to the homonym mathematical function),

and the output layer has as many neurons as the number of points in P (see

Figure 16). As to the learning hyper-parameters, the process involves 50

epochs, a batch size of 30 samples, and the learning rate (i.e., the step size

towards the final solution) is reduced by a factor of 2 when no improvement

is seen for a patient number of 10 epochs. Besides, a Z-score normalization

(i.e., transforming data into a Gaussian distribution with mean 0 and stan-

dard deviation 1) is applied to the input values before feeding the network.

This is due to the following reasons.

• To give all the input values the same importance. Even though the

soil moisture varies everywhere in the same range, we noticed sensible

variations depending on the location of the sensor (e.g., the area right

under the dripper and the opposite corner).

• To address ANN-specific training issues. Normalizing the inputs re-
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duces the chances of getting stuck in local optima (e.g., balance the

rate at which the ANN learns) and makes training faster (e.g., avoid

the saturation of non-linear activation function).

All the hyper parameters (i.e., ANN strucure and learning rates) have

been set through a hyper-parameter tuning process implemented with Hy-

perOpt [31]. HyperOpt exploits state-of-the-art optimization techniques to

heuristically explore the huge search space of hyper-parameters. The adop-

tion of a training set including several different weather conditions and water-

ing sessions avoids overfitting (i.e., a learning process that returns a network

that works well just for the specific cases it was trained for).
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