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The use of essential oils in chitosan or
cellulose-based materials for the production
of active food packaging solutions: a review
Sara Casalini* and Marco Giacinti Baschetti*

Abstract

In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of
products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable
packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of
essential oils. These are the most sustainable and readily available options to produce completely natural active packaging
materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan,
and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about
the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different
solutions is discussed, focusing on their effect on othermaterial properties. The effect of the different inclusion strategies is also
reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible
pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the
most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor
transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create
general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory
analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food
products.
© 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Keywords: active packaging; essential oils; antimicrobial activity; biodegradable polymers; nanocellulose; chitosan; shelf-life

INTRODUCTION
In recent years, rapid social development has led to a substantial
increase in the consumption of all types of goods1 and huge
amounts of products are shipped around the world every day to
meet the demands of consumers.2 The food market is one of the
most important and globalizedmarkets, as it is now possible to find
in every city foods coming literally from any part of the globe.3

The expansion of the food market has brought a parallel
increase in the importance of food packaging, both in terms of
quantity and efficiency.4 New types of packaging have been
developed following the need to increase the shelf life of the
products, to ensure no damage during transport and storage,5

and to reduce the environmental impact through the use of
renewable or sustainable materials.6 The global food packaging
market (growing from 293 to 423 billion dollars in the period
2018–2020, according to Zion Market Research7) covers 42% of
the global polymer market. It reached production rates of up to
100 million tonnes year−18 and causedmany well known environ-
mental problems.
For all these reasons, in recent years, research on more effective

packaging has gained much more importance as a result of

attempts to obtain better performance with greener materials.9

Among the different approaches, particular interest has been
devoted to the development of smart and active systems,10,11

especially when coupled with their inclusion in environmentally
friendly packaging solutions.12

Figure 1 shows a possible classification of the different types of
active packaging technologies.13,14 They can be divided in active
scavenging systems, active release systems, and non-releasing
systems. The first group includes modified atmosphere packaging
(MAP) and other packaging involving the use of absorbents. For
example, oxygen or moisture scavengers15,16 aim to reduce bac-
terial growth by maintaining an adverse environment for their
development within the package. The second type acts, instead,
through the release of molecules,17 which prevent food
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spoilage.10 Finally, much of the existing antimicrobial packaging
belongs to the third type and is based on metal nanoparticles (sil-
ver, gold, and zinc), metal oxide nanomaterials (silicon and mag-
nesium, titanium, zinc, etc.),18 and carbon nanotubes, which are
very effective in developing antimicrobial effects once immobi-
lized on the package surface.8,14,19

Among the different possible solutions, there has recently been
an increasing interest in active release systems based on the use
of essential oils (EOs) as active compounds. These are secondary
metabolites that can be obtained from different parts of scented
plants.20 They provide antioxidant and/or antimicrobial
effects21,22 and can interact with the packagingmaterial, reducing
water vapor permeability and influencing mechanical and optical
properties.23 These capabilities, as well as the fact that they are
natural and intrinsically sustainable, made them the first choice
for many active packaging solutions tested in recent years.
Indeed, it is important to recall that, with the expansion of the

food packaging market, not only were food-quality issues
addressed but environmental concerns regarding the materials
used were also recognized. The use of sustainable solutions has
been a priority, both in terms of active substances, such as EOs,
and of packaging matrix, through the use of renewable and bio-
degradable materials such as, for example, biopolymers.24,25 The
wide range of these promising bio-derived materials can be cate-
gorized by their method of production, as shown in Fig. 2.26 If they
are directly extracted from biomass, they can be divided into poly-
saccharide films (such as starch, cellulose and derivatives, chito-
san and alginate), protein films (soy protein and wheat gluten),
lipid films (fatty acids and resins), and composite films.9 Other-
wise, they can be synthesized from bio-derived monomers, such
as poly-lactic acid (PLA), or produced directly from microorgan-
isms (like polyhydroxyalkanoates).24 Among these materials, par-
ticular attention has been attracted by nanocellulose27-29 and
chitosan30,31 due to their high versatility and abundance in
nature. These two materials, used alone or in conjunction with
other biopolymers, have become the basis of several biomaterials
for packaging applications.24

The present review summarizes some of the most interesting
current trends in active packaging research. The focus is on the
latest outcomes concerning nanocellulose and chitosan-based
active packaging and the use of different essential oils as antimi-
crobial agents.
The chitosan and nanocellulose structures and main properties

are presented to provide an understanding of their importance as
fillers or substrates. Other biopolymers, such as PLA and alginate,
will also be considered as they are often coupled with the previ-
ous ones in packaging materials. The latest studies on
nanocellulose-based and chitosan-based active packaging sys-
tems will be also discussed, with a focus on the essential oils’
effects on the mechanical and barrier properties of the final mate-
rial. Antimicrobial effects against the most common food spoilage
bacteria and the direct application to some food products will be
presented.

ACTIVE PACKAGING BIOPOLYMERS
In recent years a wide range of biomaterials have been considered
for packaging application to reduce the use of oil-based plastics
and to increase the sustainability of the packages.32 Among these
biomaterials, cellulose and chitosan seem the most promising
biopolymers because they are biodegradable and biobased.
Moreover, they are among the most abundant polymers present
in nature and can be obtained from wastes, strengthening the
idea of the circular economy.

Cellulose
Cellulose is the most abundant and renewable biopolymer in the
biosphere. Its size of its global market was USD 346million in 2021
and it is expected to reach 963 million by 2026.33 It is widely dis-
tributed in vegetable organisms such as vascular plants, where it
has a structural role for the cell walls. Cellulose is a linear homopo-
lysaccharide composed by repeating glucose units (see Fig. 3(a))
and it has been obtained for many years mainly from plant mate-
rials. The structure and properties of native cellulose are deter-
mined by the isolation process used, which affects the number
of inter- and intra-molecular hydrogen bonds, the chain length,
the chain length distribution, the crystallinity, and the distribution
of functional groups within the repeating units and along the
polymer chains.34 The hydrogen bonding patterns inside and
among cellulose fibers, in particular, are considered to be the
main factor that determines its physical and chemical
properties.35

Cellulose has traditionally been extracted from plants and used
to obtain veterinary foods, wood and paper, fibers and clothes,
cosmetic and pharmaceutical products.36 In recent years, with a
view to exploiting its green potential, cellulose has also been
obtained from wastes, through different pretreatments of the
rawmaterial. For that reason its composition and physical proper-
ties could vary influencing the further steps of the process.27

Apart from its direct use, cellulose can be modified in many
ways obtaining different polymeric materials, such as esters or
ethers. These have foundwide use in different sectors,36-38 includ-
ing active packaging.39 Some of the more common cellulose
derivatives are shown in Fig. 3(b)–(d).
Accordingly with the increasing interest in nanomaterials, cellu-

lose has also been produced with nanoscale dimensions.40 Differ-
ent types of nanocellulose that have generated great interest in a
wide range of applications include cellulose nano crystals (CNC),
cellulose nano fibrils (CNF), and bacterial nanocellulose

Figure 1. Active packaging. These systems can be applied through differ-
ent techniques such as controlled release packaging, antimicrobial pack-
aging, and antioxidant packaging.
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(BNC).41,42 Briefly, CNF are usually obtained through mechanical
homogenization of pristine cellulose fibers, which previously were
treated chemically or enzymatically.43 Cellulose nano crystals, on

the other hand, can be obtained from cellulose by strong acidic
treatment, which is able to hydrolyze the amorphous part of the
fibers, leaving only the crystalline part of the original fibers.44

Figure 2. Classification of biodegradable polymers.26 Biodegradable polymers can be obtained from different sources such as biomass, microorganisms,
and petrochemical products.

Figure 3. Structure of cellulosematerials and chitosan (a) cellulose, (b) carboxymethyl cellulose (CMC), (c) cellulose acetate (CA), (d) cellulose sulfate (CS),
(e) chitin, (f ) chitosan.
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Finally, BNC comes directly from bacterial metabolism, so it is free
from hemicellulose and lignin. This reduces the purification costs
and the environmental damage derived from the use of chemi-
cals.29,45,46 Figure 4 shows a comparison of the different nanocel-
lulose types described above.
Obviously, the different processes can be optimized depending

on the characteristics of the source material and on the final
chemical structure needed. Like cellulose, nanocellulose can eas-
ily be modified, due to the high number of hydroxyl groups pre-
sent on the fiber surface.48 It allows a great variety of materials
to be obtained with modified surface properties that are suitable
for many different specific functions.49

Nanocellulose is a very versatile material that exhibits good
mechanical strength, high barrier properties when in dry condi-
tions, and good biodegradability. It is therefore a strong candidate
in food packaging to replace the petroleum-based products with
renewable and biodegradable materials.50 A vast literature exists
on the use of nanocellulose in packaging, both in pure form as
film or coating51 or as a reinforcing filler in bio-composite mate-
rials.29,52 In the latter case, it is used to increase the strength and
the modulus of the matrix and to reduce the water vapor perme-
ability and the oxygen permeability,53 or as a stabilizing agent for
emulsions.54 It was also shown to increase the thermal stability
and the water resistance of some biopolymers, such as
chitosan,55 PLA, and thermoplastic starch.47,56

Chitosan
The second most abundant biological material after cellulose is
chitin, the precursor of chitosan. This is a linear highly acetylated
polymer (Fig. 3(e)), which is known as chitosan (Fig. 3(f)) when
the degree of N-acetylation is lower than 50%.57,58 Chitin is mainly
obtained from crustacean wastes, through acid and alkaline treat-
ments.55 Different factors, such as alkali concentration, incubation
time, chitin to alkali ratio, temperature and atmosphere play a role
in the alkaline N-deacetylation of chitosan, thus affecting the final
properties of the polymer that is obtained.
Chitosan and its derivatives became very useful in many fields

like cosmetics, pharmaceuticals, food, agriculture, biomedical
and material science due to its biological activity. In fact, those
materials are biocompatible, non-antigenic, non-toxic, intrinsi-
cally antimicrobial, and have a good film-forming ability.59,60

Chitosan-based active films have been widely studied in recent
years as they can be used as antimicrobial agents61-63 and poly-
mer substrates at the same time.64,65 The intrinsic antimicrobial

activity of chitosan seems to be addressed to three different
mechanisms: ionic surface interaction, penetration of the chitosan
in the nuclei of the microorganisms, and the creation of an exter-
nal barrier inhibiting the nutrients’ contribution.66 Moreover, it
depends on the polymer molecular weight and on the degree of
acetylation.67,68

Regarding the food packaging applications, chitosan has been
classified as ‘generally recognized as safe’ by the US Food and
Drug Administration (FDA) in 200169 and several studies analyze
different methods for chitosan film production, in relation to spe-
cific food packaging systems.30,70,71 As far as active packaging is
concerned, then, the effects of chitosan as an antimicrobial pre-
servative were limited to food products with low protein and NaCl
content. So the incorporation of antimicrobial agents needs to be
considered to extend the protection to all kind of food
products.72,73

Other biopolymers
Many other biopolymers have been considered, alone or in com-
bination with nanocellulose or chitosan, to obtain biocomposites
with enhanced properties through synergetic effects. In the fol-
lowing sections they will be introduced briefly to explain the
importance of these materials used in combination with either
nanocellulose or chitosan.

Poly-lactic acid
Poly-lactic acid is surely one of the most frequently studied bio-
polymers for food packaging applications. It is biobased and bio-
degradable, as the lactic acid monomer can be produced from
completely renewable resources, and it is also biocompatible.74

In fact, it received the approval of the FDA for applications with
food contact.
Considering its high transparency, the oil and grease resistance

and the optimal organoleptic characteristics, PLA has strong
potential for food packaging application. In general, the mechan-
ical and barrier properties of PLA are also remarkable,75 but still
insufficient to match the performance of many oil-based poly-
mers. For this reason, several studies have focused on the incorpo-
ration of fillers, such as nanocellulose and active agents to impart
additional functionalities.76 For example, PLA films with
550 g kg−1 of NFC showed an increase in their tensile strength
and tensile modulus of 59% and 47%, respectively, in comparison
with pure PLA films.77 Applying a cellulose coating on a PLA sub-
strate allowed a reduction in the oxygen transfer rate of the film of

Figure 4. Microscopic image of (a) cellulose nanocrystals, (b) cellulose nanofibrils, and (c) bacterial nanocellulose.47
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about one order of magnitude even in humid environments
(up to 60% RH).51

Alginate
Alginate is another interesting biopolymer due to its low toxicity
and biocompatibility.78 It is an example of polysaccharide com-
monly obtained from the cell wall of brown algae and extracted
from seaweed for commercial purposes.79 In fact, alginate has
already been used to create antibacterial80 and antifungal
films,81 and stimulus-response drug-releasing materials, but their
application for food packaging is limited due to lack of mechani-
cal strength, as is the case withmany other biopolymers.82 Several
reinforcements were studied to improve alginate's mechanical
properties, such as cellulose nanofibrils83 or inorganic fillers.84

The use of nanocellulose was effective not only for tensile
strength (TS) but also for the water vapor barrier properties.82,85,86

Agar
Agar is a linear polysaccharide extracted from red algae of the
class Rhodophyceae. It has been used to produce biodegradable
films due to its good film-forming ability, high biocompatibility,
and moderate water-resistant properties.87-90 Agar-based films
also still have some limitations due to their low thermal stability
and poor mechanical properties. To improve its properties, agar
has been studied in combination with fillers such as metallic
nanoparticles and nanoclays,91 and in the presence of gelatin92

or plant extracts.93 Bacterial nanocellulose was also used to rein-
force agar-based edible films.87

ANTIMICROBIAL AGENTS - ESSENTIAL OILS
Antimicrobial agents are compounds used to provide safety
assurance, to extend shelf life, and to maintain the quality of food.
In fact, when incorporated into the packaging, they are able to
inhibit spoilage and suppress the pathogens that are responsible
for food-borne diseases, which can contaminate food products.94

Antimicrobial agents can be inorganic compounds such as
metals95 or metal oxide nanoparticles,96 which release antimicro-
bial ions while directly interacting with the microorganisms. How-
ever, the most commercialized products available in the market
contain antimicrobial agents such as chlorine dioxide, ethanol
and sulfur dioxide, which act in the gas phase of the package.94

In recent years there has also been a growing interest in natural
antimicrobial agents, due to the lower risk perceived by con-
sumers in their use. The natural compounds used in antimicrobial
packaging are biologically derived components, like bacteriocins,
enzymes, and plant extracts.97,98

In particular, essential oils (EOs) are lipidic extracts from plants
that have been studied for many years as additives in films and
coatings, to replace synthetic preservatives. In fact, they possess
antioxidant and antimicrobial properties naturally, due to the
presence of bioactive compounds, such as phenols and terpe-
noids.99 The antimicrobial activity of the essential oils is related
to the presence of hydroxyl groups that are able to damage the
cell membranes of the pathogens. This results in the release of
the cell constituents and in the death of the microorganisms.20

For this reason, EOs show a broad antimicrobial spectrum against
different pathogenic and spoilage microorganisms, including
gram-negative species such as Escherichia coli.100

Essential oils differ widely in chemical composition, depending
not only on the characteristics of the plant of origin, but also on
the part of the plant from which they are extracted and from

the extraction process itself.101 The qualitative and quantitative
differences that could be present may further influence and
increase the biological effectiveness. In this regard, Table 1 offers
an overview of different essential oils used as antimicrobial agents
incorporated in filler/matrix systems to create active biomaterials.
These will be explained further, considering their antimicrobial
effects as well as their other possible influences on the biocompo-
site mechanical and barrier properties.

Incorporation of essential oils in the matrix
In active packaging applications, EOs are particularly interesting
because they can be released as vapors from films, sterilizing both
the headspace and the food surface. Moreover, they are approved
by the FDA for food applications and are generally recognized as
safe. So they are an attractive alternative to conventional antimi-
crobials, which have experienced a continuous increase in resis-
tance from the microorganisms.151 Furthermore, while
introducing a new agent inside the packaging material, not only
the antimicrobial properties, but also the mechanical, barrier,
and thermal properties of the final composite will be influenced
and possibly improved.9,152 As an example, the incorporation of
EOs can reduce the water vapor permeability (WVP) of hydrophilic
materials and can also decrease the tensile strength (TS), while
increasing the elongation at break. This is possible thanks to the
partial replacement of stronger polymer–polymer interactions
by weaker polymer-oil interactions in the film network.21 Similar
results were obtained when different cellulose esters were tested
as matrix for the incorporation of EOs. In fact, lemongrass, basil,
and rosemary pepper EOs behaved in the matrix like plasticizers,
affecting the Young's modulus, the tensile strength, and the elon-
gation at break of the films.153

The incorporation of the EOs in a polymer matrix such as chito-
san and nanocellulose could be done with different methods,
which are chosen based on the materials characteristics and on
the release kinetics requested by the final product. As an example,
the active molecules or scavengers could be dispersed directly
inside the matrix,105 or encapsulated134 inside a carrier prior to
the addition in the packaging material. The latter procedure,
indeed, allows more flexibility in terms of active substance disper-
sion in polymers that are not compatible and in terms of release
rate control. In fact, microencapsulation increases the stability of
these compounds and allows a controlled and continuous release
to be achieved,154 which leads to the antimicrobial activity with-
out altering the organoleptic properties of the food product.155

Essential oils can be microencapsulated into the matrix following
several different technologies, such as spray drying, simple or
complex coacervation, and extrusion.154 They are among the
most effective techniques for protecting compounds against vol-
atilization, oxidation, and thermal degradation.156,157 Active
ingredients could also be incorporated through a Pickering
emulsion,158,159 which stabilizes the oil-in-water solution interface
by using solid particles,160 or through nano-liposomal systems.161

Encapsulation not only protects the antimicrobial compounds
from the effects of the outside environment162 but also allows
the influence of the mechanical and transport properties of the
film to be controlled.163,164 On the other hand, direct application
of EOs on the film could lead to inactivation of the antimicrobial
compounds due to the interaction with the matrix and makes
the control of its release difficult. For that reason, it is considered
mainly for edible polymer films.21,165,166

While incorporating these active agents inside the matrix, it is
essential to take into consideration that the concentration of the
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Table 1. Different uses of antimicrobial agents incorporated in filler/matrix systems. The first column indicates the antimicrobial agent responsible
for the activity of the film, and the second one reports the filler and the matrix where the agent is incorporated. The third column refers to the effects
of this integration on themechanical and chemical properties of the composite, while the fourth one shows the antimicrobial properties and the pos-
sible use for active packaging systems. Last column is for references

Antimicrobial agent –
essential oil Filler/matrix

Effect on mechanical and chemical
properties Antimicrobial activity and use Ref.

Oregano EO CNC (Pickering
emulsion)

Good chemical and thermal stability S. aureus, S. cerevisiae, E. coli and B. subtilis 102

Cinnamon EO CNC/CNF (Pickering
emulsion)

Long-term emulsion stability B. subtilis 103

Ginger EO, citric acid CNF (edible coating) Improved taste, odor, texture, and overall
acceptability of the samples

Increase of meat shelf-life 104

Oregano, Thyme,
Cinnamon EOs

Cellulosic pads Acceptable taste and odor (sensory
evaluation)

Meat bacterial species, like S. aureus 105

Oregano, Thyme,
Cinnamon, Sweet
fennel EOs

Cellulose acetate Increased flexibility, Reduction in water
vapor transmission rate

Penicillum spp., E. coli, S. aureus 106

Pink pepper EO Cellulose acetate S. aureus,
L. monocytogenes microbial growth
decreased in sliced cheese

107

Rosemary EO Cellulose acetate Pathogenic microorganisms on chicken
breast cuts

108

Rosemary EO, Aloe
Vera

Cellulose acetate Decreased tensile strength, water uptake
and contact angle; increased
hydrophobicity and free radical
scavenger activity

E. coli, B. subtilis 109

Rosemary EO,
Oregano EO

Cellulose acetate
(electrospinning)

E. coli, C. albicans and S. aureus and anti-
biofilm effects

110

Thymol Cellulose acetate Reduced transparency, mechanical, OTR,
and WVTR properties

L. monocytogenes, S. aureus, E. coli,
Pseudomonas aeruginosa, Klebsiella
pneumoniae, and Salmonella enteritidis

111

Thymol + organoclay Cellulose acetate Enhanced optical and mechanical
properties

Listeria innocua 112

Thymol Cellulose acetate
(supercritical CO2

impregnation)

Decreased glass transition temperature;
disappearing of crystalline structure

23 tested strains, in particular S. aureus 113

Thymol Cellulose acetate Anti-adhesion surface properties P. aeruginosa, S. aureus 114
Oregano EO +
Montmorillonite
clay

Cellulose acetate increased oxygen and water vapor barrier
properties, rigidity, thermal stability,
and elongation

Phytopathogenic fungi: Alternaria
alternata, Geotrichum candidum, and
Rhizopus stolonifer – Postharvest
conservation

115

Mustard EO Cellulose sulfate
(edible film)

Reduced TS, water sorption; increased
elongation

L. monocytogenes, E. coli, S. aureus, B.
subtilis, A. niger

116

Murta fruit extract Methyl cellulose Increased mechanical strength; decreased
swelling index; affected thermal
properties

L. innocua 117

Mexican Oregano EO Carboxymethylated
cellulose (CMC) -
(edible film)

L. monocytogenes, S. aureus 118

Mentha spicata EO CMC, chitosan
(edible film)

Increased strawberries shelf-life; L.
monocytogenes

119

Mentha spicata EO,
Ziziphora
clinopodioides EO

CMC (edible film) Increased fresh and sauced chicken
breast fillets shelf-life; C. jeuni, L.
monocytogenes, S. aureus, E. coli, S.
typhimurium

120

Bay EO CMC (edible film) Increased antioxidant activity, WVP, UV-
light barrier effect;

Escherichia coli, Candida glabrata 17

Zataria multiflora
Boiss EO

CMC (edible film) Increased total phenol content,
antioxidant activity; reduced
transparency and solubility in water

S. aureus, B. cereus, E. coli 121
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Table 1. Continued

Antimicrobial agent –
essential oil Filler/matrix

Effect on mechanical and chemical
properties Antimicrobial activity and use Ref.

Thymus daenensis EO Hydroxyl-propyl-
methyl cellulose
(edible film)

Reduced tensile strength and Young's
modulus

Gram positive and Gram negative
bacteria

122

Mentha spicata EO Chitosan (edible
coating)

Good appearance at sensory analysis Increased fresh strawberries shelf-life; L.
monocytogenes

119

Red thyme and
Oregano extracts

Chitosan (edible
coating)

Increased fresh strawberries shelf-life;
antifungal activity

123

Rosemary essential
oil

Chitosan Decreased solubility, WVP and UV-light
transmission

L. monocytogenes, Streptococcus
agalactiae, E. coli

124

Ziziphora
clinopodioides EO

Chitosan (edible
film)

Decreased solubility, WVP, UV-light
transmission, swelling index and TS

L. monocytogenes, S. aureus, B. cereus 125

Apricot (Prunus
armeniaca) kernel
EO

Chitosan Decreased solubility, WVP and UV-light
transmission and transparency

E. coli, B. subtilis, inhibition of fungal
growth on bread

126

Lemongrass EO Chitosan Increased elongation; decreased moisture
content, WVP, solubility and TS

B. cereus, E. coli, L. monocytogenes,
Salmonella typhi

127

Thyme EO Chitosan (edible
film)

Decreased water condensation in the
head space of the packaging; good
odor

Reduced yeast population – cooked ham 128

Thyme EO, Cinnamon
EO, clove

Chitosan (edible
film)

Increased moisture content, solubility in
water, WVP, elongation at break.
Opposite behavior for cinnamon EO

L. monocytogenes, S aureus, Salmonella
enteritidis, Ps. aeroginosa

129

Cinnamon EO Chitosan (edible
film)

Decreased moisture content, solubility in
water, WVP and elongation at break;
Increased TS

L. monocytogenes, Lactobacillus
plantarum, Lactobacillus sakei,
Pseudomonas fluorescens, E. coli

31

EOs, gelatin Chitosan Increased UV-light barrier properties,
moisture absorption and WVP;
Decreased transparency

C. jejuni, E. coli, L. monocytogenes,
Salmonella typhimurium

130

Cinnamomum
zeylanicum EO

Chitosan
nanoparticles

Increased shelf-life and physicochemical
quality of cucumbers; Phytophthora
drechsleri

131

Zataria multiflora EO Chitosan
nanoparticles

Protection of preharvest or postharvest
fruit from decay – strawberries
treatment; Botrytis cinerea

132

Carvacrol Chitosan
nanoparticles

Increased shelf life of fresh-cut carrots 133

Cinnamon EO Chitosan
nanoparticles

Physicochemical quality maintained;
sensory analysis

Increased shelf life of chilled pork;
Psychrotrophic aerobic bacteria, lactic
acid bacteria, Enterobacteriaceae

134

Frankincense EO CMC/Chitosan
biguanidine
hydrochloride
(edible film)

Decreased WVP, increased TS, EB; S. pneumonia, B. subtilis, E. coli 135

Cinnamon EO CMC/chitosan Increased TS, WVP, EB and antioxidant
properties; Decreased water solubility

L. monocytogenes, P. aeruginosa 136

Cinnamon and ginger
EOs and oleic acid

CMC/chitosan Increased EB; Decreased WVP A. niger 137

Thyme, Oregano, Tea
tree and
Peppermint EOs

CNC/chitosan Sensorial evaluation; Increased TS, EB,
WVP

Increased shelf-life of rice; A. niger,
Aspergillus flavus, Aspergillus
parasiticus, Penicillum chrysogenum

138

Thyme, Oregano EOs CNC/methyl
cellulose

Increased TS, EB, WVP Increased shelf-life of rice; A. niger, A.
flavus, A. parasiticus, P. chrysogenum

139

Thyme EO CNF/chitosan
(edible coating)

Decreased weight loss, preserved
anthocyanin content, better
appearance

Sweet cherry storage 140
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EOs’ active compounds depends on their origin. Different com-
pounds could act against different microorganisms, so some
EOs can be more active in certain types of food products. For
this reason, mixing different EOs can be a strategy to widen
their active spectrum and increase their effectiveness. Essential
oils, indeed, often show synergistic interactions and, when
used in combination, they show increased antimicrobial prop-
erties with respect to the single components.167 However, the
antimicrobial activity of the EOs could decrease after disper-
sion in the polymer and the microbial population could vary
depending on the food product, so in vitro and in situ analysis
are usually required to define the real efficiency of the chosen
solution.20,168

A huge variety of essential oils and other plants extracts has
been considered for this purpose.169,170 However, oregano171-174

and thyme175,176 demonstrated the strongest antimicrobial effect
due to the presence of the phenolic compounds thymol and car-
vacrol.177 These compounds have received substantial attention
as useful natural antimicrobial agents. They exhibit a broad anti-
microbial spectrum against different microorganisms178 and pos-
sess sufficient heat stability to withstand incorporation into
packaging materials.23,179

Due to these multiple possibilities, each active packaging sys-
tem needs to be adapted based on the food product, not only
in terms of the materials used but also in terms of mechanism of
release and action. In fact, the antimicrobials present in the film
could have a diffusive release in the headspace, with a decreasing
effect over time, or act when in direct contact with the food, in
case they are immobilized on the packaging surface or used as
edible films.10,180

NANOCELLULOSE-BASED ACTIVE
PACKAGING
Cellulose is one of the most commonly used polymers for active
and sustainable packaging production.181 Many different natural
antimicrobial additives have been studied in combination with
cellulose.182-185 In the present section an overview of the latest
applications in the field of active packaging based on essential oils
(EOs) will be given. In particular, the focus will be on cellulose
nanocrystals (CNC) and nanofibrils (CNF) and on nanocellulose
derivatives such as cellulose esters (like cellulose acetate and sul-
fate) or cellulose ethers (such as methylcellulose and
carboxymethylcellulose).

Cellulose nanocrystals (CNC) and nanofibrils (CNF)
As mentioned above, nanocellulose crystals or fibrils, obtained
from pristine cellulose fiber,40 have found several applications in
the field of food packaging due to their unique properties. They
are often used as fillers to improve the tensile strength of the
composite material50 and the dispersion of the essential oils into
thematrix.116 This type of solution will be discussed further below,
while this section is more focused on the direct application of CNC
and CNF as matrices to produce antimicrobial films.
In some cases nanocellulose has been used to stabilize and pro-

tect EOs. Souza et al., for example, obtained films with strong
effects against Bacillus subtilis by preparing nanocellulose-based
Pickering emulsions with cinnamon essential oil.103 Zhou et al.
analyzed the antimicrobial activity of oregano EO Pickering emul-
sion stabilized by CNC.102 Good stability at higher CNCs concen-
tration and pH values, or at lower oil/water ratio and salt

Table 1. Continued

Antimicrobial agent –
essential oil Filler/matrix

Effect on mechanical and chemical
properties Antimicrobial activity and use Ref.

Oregano EO - Carum
copticum EO

CNF-LCNF/chitosan Increased water vapour barrier, water
solubility and opacity; release
controlling effect of CNF – LCNF

E. coli, B. cereus ,141,142

Oregano EO CNC/PLA Increased EB; Decreased TS, TM; L. monocytogenes; mixed vegetables 143
Tanacetum balsamita
EO, propolis
ethanolic extract

CNC/PLA Increased TS, elastic modulus; Decreased
elongation

E. coli,B. cereus,S. aureus,S. Typhimurium;
vacuum-packed cooked sausages

144

Ziziphora
clinopodioides EO

CNC/PLA No alteration of organoleptic properties Pseudomonasspp.; Increased shelf-life of
minced beef

145

Zataria multiflora EO,
propolis ethanolic
extract

CNF gel/PLA Increased WVP, TS, EM; Decreased
transparency

S. aureus, E. coli, Vibrio parahaemolyticus,
L. monocytogenes; Vacuum-packed
cooked sausages

146

Rosemary EO Chitosan/PLA Increased EM, TS; Decreased elongation;
antioxidant activity; color change

Fresh minced chicken breast 147

Oregano, Cinnamon,
Winter savory EOs

Alginate (edible
film)

Salmonella Typhimurium, L.
monocytogenes; ham slices

148

Cinnamon EO CMC/sodium
alginate

Increased WVP, oxygen permeability and
elongation; Reduced moisture content
and TS

S. aureus; E. coli; Bananas 149

SavoryEO Cellulose
nanoparticles/
Agar

Decreased TS, water solubility; increased
EB, WVP, opacity;

L. monocytogenes, B. cereus; S. aureus 88

Summer savory EO CMC/Agar Increased mechanical flexibility,
hydrophobicity; reduced transparency

S. aureus, B. cereus, L. monocytogenes, E.
coli

150
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concentration was demonstrated, together with a slightly higher
antimicrobial effect. The OEO Pickering emulsion exhibited an
inhibitory effect against Staphylococcus aureus, Saccharomyces
cerevisiae, and E. coli, with a minimum inhibition concentration
(MIC) of 12.5 μL mL−1. The highest antimicrobial effect was
obtained against B. subtilis, with an MIC of 6.25 μL mL−1.
The direct incorporation of ginger EO and citric acid in CNF edi-

ble coatings (20 g kg−1 and 10 g kg−1, respectively) was instead
studied by Khaledian et al. and increased the meat shelf life up
to 6 days.104 The combined effect of the EO and citric acid
resulted in an increase of the antimicrobial properties and the
overall acceptability of the food samples. The antimicrobial activ-
ity of cellulosic pads amended with oregano (OEO), thyme (TEO)
and cinnamon (CEO) EOs was demonstrated.105 They were effec-
tive against meat bacterial species and other common foodborne
pathogens like S. aureus.
Direct incorporation of the essential oils' active compounds was

also considered for the addition of polyphenols in a cellulose dis-
persion obtained through mechanical fibrillation. The resulting
films had low porosity and high compactness; they thus pos-
sessed good barrier properties and improved hydrophobicity.186

The addition of tannin to CNF reduced the air permeability more
than six times in comparison with pure film, reaching a value of
3.1 mL min−1, which is comparable to the polypropylene one.
The release of tannins also ensured antioxidant activity for 48 h.
These films were thermally stable until ca. 230 °C and chemically
resistant against common organic solvents. A possible application
could be for dried food packaging (like rice and pasta), and for
preserved fruits, vegetables, and meat.
Direct incorporation, therefore, leads to a very viable and simple

method to produce nanocellulose-based films. Indeed, the anti-
microbial activity does not seem to be reduced by the interaction
between the fibers and the EOs. This, however, is not the only
option available and other methods were used with good results.
For example, microencapsulation is a common technique used to
protect the sensitive compounds inside a carrier. For example,
Saini et al. studied the microencapsulation of carvacrol in beta-
cyclodextrin (⊎-CD), directly grafted on the carboxyl groups of
TEMPO-oxidized CNF.187 These films showed a sustained release
of the active molecule over 150 h and then reached an equilib-
rium in water. Moreover, carvacrol antimicrobial activity against
B. subtilis was increased by the presence of ⊎-CD from 3 to 50 h.
This is due to the three-dimensional shape of the ⊎-CD, which
forms an inner hydrophobic cavity with an outer hydrophilic
wall.188 In this way it can entrap molecules and create complexes
either by hydrogen bonds, or hydrophobic or Van der Waals inter-
actions. The release rate of the includedmolecules is thus strongly
influenced by those interactions.189

Cellulose esters
In the field of active packaging, the most studied cellulose esters
resulted to be cellulose acetate (CA)190 and cellulose sulfate
(CS).116 Cellulose acetate is produced, replacing the hydroxyl
groups from the cellulose backbone chain with acetate groups
(Fig. 3(c)) by means of a reaction of native cellulose with acetic
anhydride.115 While CS is obtained by partially or completely
substituting the hydroxyl groups of the nanocellulose by sulfate
groups (SO3

−; Fig. 3(d)).191

Several EOs – oregano (OEO), cinnamon (CEO), and sweet fennel
– were incorporated in CA films in different combinations to test
the antimicrobial effectiveness of the biodegradable compos-
ite.106 Oregano essential oil combined with CEO showed good

results in terms of reduction of water vapor transmission rate
and antimicrobial activity against Penicillum spp. and E. coli, with
diameters of inhibition zones of 2.74 and 1.14 cm, respectively.
Films incorporated with pure OEO were more effective against
S. aureus, with 3.75 cm of inhibition zone. All the other combina-
tions of EOs were effective against thesemicroorganisms but with
a much lower inhibition zone.
The effect of pink pepper EO (PPEO) in CA was also studied,107

with films active against S. aureus and Listeria monocytogenes.
The antimicrobial effect started from a concentration of 20 g kg−1

of PPEO, which demonstrated the capacity to diffuse in solid, liq-
uid, and gas phase thus reaching the contaminated cheese used
for tests. Cellulose acetate active films incorporated with rose-
mary EO were produced to control the pathogenic microorgan-
isms on chicken breast cuts.108 The films showed increasing
antimicrobial activity at increasing EO concentration. However, it
was necessary to reach a concentration of 500 g kg−1 to obtain
an effective result. The effect of rosemary and aloe vera EOs on
CA films was studied.109 The presence of these EOs decreased
the tensile strength, the water uptake, and the contact angle,
but increased the free radical scavenging activity. The antimicro-
bial activity against E. coli and B. subtilis increased as the percent-
age of rosemary and aloe vera oil increased in CA membranes. In
particular, the films containing 800 mL kg−1 of EOs (based on CA
weight) showed no bacterial growth over 7 days of storage. More-
over, the electrospinning technique has been used to create CA
nanofibers with 1 and 5 mL L−1 of rosemary and oregano
EOs.110 The fibers with 5 mL L−1 of oregano EO showed the best
antimicrobial and anti-biofilm effects, especially for E. coli and
Candida albicans.
Harini and Sukumar studied the direct incorporation of thymol,

the major active compound present in the polar fraction of Oreg-
ano EO, inside CA.111 The films were produced by vacuum drying
and the difference between bulk dispersion and surface immobi-
lization of the active compound was studied. The films that were
obtained were transparent and showed, respectively, >90% and
ca. 65% thymol retention. The UV-assisted surface immobilization
decreased the mechanical and barrier properties of the CA films.
Good antioxidant and antimicrobial properties were obtained in
general, even if films with the thymol dispersed in the bulk
showed higher activity. These films were active against
L. monocytogenes, S. aureus, E. coli, P. aeruginosa, Klebsiella pneu-
moniae, and Salmonella enteritidiswith a minimum inhibition con-
centration of 20 mg L−1. The effect of thymol was also studied
when used together with organoclay, which increased the antimi-
crobial effect against Listeria innocua.112

The release of thymol from a cellulose acetate film impregnated
using supercritical carbon dioxide (scCO2) has been studied.113

This technique was already studied using CA192 and other poly-
mers193 and it has already been used on an industrial scale for
the extraction of low volatility and/or thermal sensitive com-
pounds. Due to its low viscosity and surface tension, scCO2 can
easily penetrate into a solid matrix. This facilitates the impregna-
tion process and ensures a good distribution of the active mole-
cules.114 The CA structure and morphology of the films obtained
in this way depended on the thymol content. Increasing the thy-
mol content above 137 g kg−1 led to a decrease in the glass tran-
sition temperature up to 29 °C, and the crystalline arrangement of
the CA disappeared. In general, the thymol release, which
depends on the concentration and on the release medium,
required up to 3 days. Thymol was detected on the CA surface
as well, thus allowing antimicrobial activity through direct

Essential oils for active food packaging www.soci.org

J Sci Food Agric 2023; 103: 1021–1041 © 2022 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/jsfa

1029
 10970010, 2023, 3, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/jsfa.11918 by A
rea Sistem

i D
ipart &

 D
ocum

ent, W
iley O

nline L
ibrary on [07/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


contact. The impregnated CA showed antibacterial activity
against 23 tested strains, in particular against methicillin-resistant
S. aureus, a cause of fatal infections in animals and humans.113 The
optimal thymol loading for an efficient reduction of biofilm forma-
tion was in the range from 260 to 300 g kg−1.114 In particular, the
film containing 300 g kg−1 of thymol exhibited anti-adhesion
properties on its surface. They were active against all tested
strains, including antibiotic-resistant Pseudomonas aeruginosa
DM50 and methicillin-resistant S. aureus. Furthermore, CA incor-
porated with OEO and montmorillonite clay were used to control
the growth of phytopathogenic fungi.115 It was demonstrated
that contemporary addition of active oils and nanoclays allowed
active films to be obtained with a decreased water vapor trans-
mission rate and improved thermal stability.
Cellulose sulfate was also investigated as a potential matrix for

the development of food packaging films, although to a lesser
extent with respect to CA.191 Cellulose sulfate-based films with
slow release of mustard EO due to the presence of ⊎-CD were
tested.116 The mustard essential oil (MEO) had already been stud-
ied as active agent in edible films against L. monocytogenes.194

The addition of MEO to CS reduced the TS and the water sorption
without affecting the WVP and increased the elongation at break
(EB). The films also showed strong antimicrobial activity against
E. coli, S. aureus andmodest activity against B. subtilis and Aspergil-
lus niger, which was attributed to the MEO.

Cellulose ethers
Etherification is a widely used chemical pretreatment method
that facilitates cellulose defibrillation to prepare CNF. Cellulose
ethers can be obtained by a first activation of the fibers with an
aqueous alkali hydroxide, such as NaOH, and then converting
the hydroxyl groups to carboxymethyl moieties.28

In the field of active packaging, the functionality of biocompo-
site based on methyl cellulose and carboxymethyl cellulose in
combination with plant extracts, such as murta fruit (Ugni moli-
nae) or curcumin195 was investigated.117 The mechanical strength
and water vapor barrier properties of the films resulted improved,
as well as the antioxidant and antimicrobial activity.
Studies on carboxymethyl cellulose (CMC) were conducted by

incorporating Mexican OEO at different values of pH.118 It was
found that antimicrobial treatment against L. monocytogenes
and S. aureus were more effective at lower pH values (pH = 5
and 2.5 g kg−1 of Mexican OEO). The Mentha spicata EO (MSEO)
was also investigated.119 The treatment of fresh strawberries
with CMC with 2 g kg−1 MSEO resulted in a decrease of
L. monocytogenes population, while physicochemical and organo-
leptic properties were maintained. Moreover, MSEO was used
together with Ziziphora clinopodioides EO (ZiEO) to create CMC
active coatings for the extension of fresh and sauced chicken
breast fillets shelf life.120 In fact, the application of CMC with ZiEO
(2.5–5 g kg−1) and MSEO 5 g kg−1 increased the shelf-life up to
14 days and completely inhibited the growth of Campylobacter
jejuni, while the growth of L. monocytogenes, S. aureus, E. coli,
and Salmonella typhimurium was retarded.
The effect of bay EO on CMC was also considered,17 and high

antioxidant activity (up to 99%) and, inhibition of microorganism
growth (E. coli and Candida glabrata) were reported. Good barrier
properties against water vapor (50% improvement with respect to
CMC in films containing 150 g kg−1 of EO) were observed and the
UV-light barrier effect was increased (almost 100% of protection).
Higher water solubility (93%) was finally found, which ensured
material biodegradability. Carboxymethyl cellulose was also

incorporated with Zataria multiflora Boiss EO (ZaEO).121 The
increase in the ZaEO content led to a decrease in transparency
and an increase in total phenol content and antioxidant activity.
Figure 5 shows the SEM images of the surface (left) and cross-
sections (right) of CMC films containing different concentrations
of ZaEO (10, 20, and 30 mL L−1). Pure CMC film appeared homo-
geneous and smooth, whereas the presence of ZaEO led to a
more heterogeneous structure. The porous structure could be
due to the evaporation of the EO during drying or to the
entrapped air bubbles during the fabrication of the membranes.
The films with the highest ZaEO content (30 mL L−1) had the best
essential oil dispersion in the matrix. They also showed the high-
est microbial inhibition, in particular against S. aureus, B. cereus,
and E. coli. Raeisi and coworkers added grape seed extract (GSE)
to the same composite the and observed the effect on the shelf
life of rainbow trout fillets.196 Theminimumnumber of total viable
bacteria (lactic acid bacteria and Pseudomonas spp.) was deter-
mined in the fillets coated with CMC plus 20 mL L−1 ZaEO and
10 mL L−1 GSE. The fillets containing 10 mL L−1 of both com-
pounds had the best organoleptic properties.
Edible films containing Thymus daenensis EO from wild and culti-

vated plants, loaded in hydroxyl propyl methyl cellulose (HPMC),
were also produced.122 The uniform incorporation of the nanoe-
mulsions into the matrix led to a plasticizing effect and an antimi-
crobial effect against several microorganisms. In particular, the EO
from the wild plant showed better antimicrobial activity against
gram-positive bacteria, whereas the EO from the cultivated plant
was more effective against gram-negative ones. This difference is
due to the various quantities of components in the EOs: wild EO
contained smaller amounts of thymol and carvacrol but was richer
in ρ-cymene. The latter is a precursor of carvacrol, and it was found
to have a synergistic effect. In fact, when combined, these two sub-
stances can cause swelling of the cytoplasmic membrane.23

The literature reviewed in this section confirms that cellulose-
based matrixes with EOS added are a promising green alternative
for food active packaging applications. Almost all the works cited
demonstrated its effectiveness against gram-positive and gram-
negative bacteria, irrespective of the method used for coupling.
Only a fraction (about 30%) of them, however, tried to implement
the developed solution on real packaging systems, mostly on
cheese and meat products, and only 10% also focused on com-
plete sensory evaluation. While mechanical properties were often
analyzed and were only partially affected by the addition of EOs,
there is still a need for further research to completely understand
the potential of active packaging based on the coupling of EOs
and nanocellulose and its derivatives. Almost half of the ideas
developed in the field focus on edible films, pushing the concept
of packaging itself to change from the consumer's viewpoint.

CHITOSAN-BASED ACTIVE PACKAGING
Chitosan, as previously explained, has been demonstrated to be
suitable and convenient for development as a novel food packag-
ing system due to its intrinsic antimicrobial activity and its
film-forming ability.59,60 The mechanical and barrier properties
of chitosan have also been largely reviewed and compared with
those of synthetic plastics.197 The most important works regard-
ing chitosan in packaging applications are related to antibacterial
packaging based on the materials’ intrinsic properties97 or on
their synergetic effect with other active substances.198-200 In the
literature it is possible to find many studies on the incorporation
of natural antimicrobials such as nisin,199,201 polyphenols,202-204

www.soci.org S Casalini, MG Baschetti

wileyonlinelibrary.com/jsfa © 2022 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

J Sci Food Agric 2023; 103: 1021–1041

1030

 10970010, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jsfa.11918 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [07/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com/jsfa


and various plant extracts.63,205-211 These advances are related to
the use of chitosan-based materials in various fields such as
wound healing, food packaging, and the textile and biomedical
sectors.212 In the following paragraph, only the works on the
incorporation of essential oils for packaging application will be
analyzed. In particular, the application will be divided considering

the production of active materials in the form of films or in the
form of nanoparticles to produce active (edible) coatings.

Active chitosan films
As in the case of nanocellulose, most of the studies involving chit-
osan/EOs active packaging were focused on the analysis of

Figure 5. Scanning electron microscopy images of the surfaces (left) and cross-sections (right) of CMC films containing different ZaEO concentrations
(from the top: control, 10, 20 and 30 g kg−1 of content).121
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antimicrobial activity on different gram-positive and gram-
negative pathogens. The influence on the physical and mechani-
cal properties of the films was also studied. As an example, the
incorporation of rosemary EO up to 15 mL L−1 was able to pro-
duce chitosan films with antimicrobial activity against
L. monocytogenes, Streptococcus agalactiae and E. coli. The treat-
ment also decreased their light transmission in UV light and the
water uptake by about 25% and 85%, respectively.124 In other
works, fennel, peppermint,213 and Citrus limonia214 essential oils
were tested, showing that they also help in decreasing the mois-
ture content and protect from UV light. The same trends were
observed with the use of Ziziphora clinopodioides EO, red grape
seed extract,125 and with the use of apricot (Prunus armeniaca)
kernel EO.126 The incorporation of lemongrass essential oil had
similar results, with a 101% improvement in the elongation at
break and 15% reduction in water vapor permeability.127 Other
authors tested thyme EO in chitosan and found it more effective
as antimicrobial than clove and cinnamon EOs.129 Moreover, the
presence of thyme and clove EOs in chitosan films led to an
increase in the moisture content (+23%), solubility in water
(+28%), the water vapor transmission rate (0.004 g s−1 m−12),
and finally elongation at break (+34%). Interestingly, cinnamon-
enriched films showed the opposite behavior, with a decrease of
EB and an increased tensile strength. The same trend was also
observed by other authors, which suggested that these results
are due to the cross-linking effect of CEO components within
the chitosan matrix.31 However, the antimicrobial effect against
several gram-positive bacteria (L. monocytogenes, Lactobacillus
plantarum, Lactobacillus sakei) and gram-negative bacteria (Pseu-
domonas fluorescens, E. coli) was satisfactory for a concentration
of 20 mL L−1 of EO.
Chitosan films enriched with essential oils have recently been

amended with gelatin and characterized.130 They were active
against C. jejuni, E. coli, L. monocytogenes and S. typhimurium. They
also showed good barrier properties against UV light and an
increase in moisture absorption and water vapor permeability.
Chitosan films were also used in combination with propolis
extract instead of essential oils. As the extract has a high polyphe-
nols content, the antimicrobial and mechanical improvements
observed were similar to those obtained with essential oils.215

With regard to direct application on food products, fresh straw-
berries are among the most common food used to test antimicro-
bial properties in active packaging. Their treatment with chitosan
and Mentha spicata EO 2 g kg−1 resulted in a decrease in the
L. monocytogenes population while physicochemical and organo-
leptic properties weremaintained.119 Fresh strawberries were also
treated with edible bioactive chitosan films containing red thyme
and oregano extracts, substantially increasing the shelf-life, as vis-
ible in Fig. 6.123 Thyme EO was also tested as an antimicrobial
agent inside a chitosan matrix used for cooked ham packaging.
Its presence reduced the water condensation inside the package
and the odor was perceived as desirable in the food product.
Moreover, the yeast population was reduced by the antimicrobial
agent, while the aerobic mesophilic bacteria, the lactic acid bacte-
ria, and the enterobacteria were not affected.128

Chitosan nanoparticles
In addition to its function as matrix, chitosan has also been consid-
ered for the production of nanoparticles (CSNs),216 alone or in com-
bination with nanoclays217 and nanofibers.218 They can be mixed
homogenously with different essential oils to enhance the shelf life
of various food products. This procedure is usually applied to fruit

or vegetables, which are dipped in the coating solutions contain-
ing the EOs entrapped into the chitosan nanoparticles. The
effect of chitosan nanoparticles incorporated with Cinnamomum
zeylanicum EO on the cold storage of cucumber was observed by
Mohammadi et al.131 The CEO encapsulated by CSNs provided a
better antimicrobial activity against Phytophthora drechsleri,
improving the shelf-life and the physicochemical quality of the
cucumbers. The same research group also encapsulated Zataria
multiflora EO in chitosan nanoparticles through ionic gelation.
They studied the release rate and the performance in vitro and
in vivo against Botrytis cinerea, the major cause of gray mold dis-
ease.132 The findings revealed a promising technique to prevent
postharvest fruit from decay and extend the storage life, without
the use of synthetic fungicides. Carvacrol-loaded chitosan nano-
particles were also tested tomaintain the quality of fresh-cut car-
rots.133 The vegetables dipped in the washing treatments
presented a 2–6 lower log CFU g−1 units in comparison with
control samples and better sensory and physicochemical quality
after 13 days at 5 °C. Similarly, the effect of cinnamon EO in chit-
osan nanoparticles on the conservation of chilled pork was stud-
ied.134 In this case, the food product was wrapped with low-
density polyethylene films, whose inner surface was coated with
layers of chitosan nanoparticles of different sizes, loaded with
the EO. After 15 days of storage at 4 °C, a significant decrease
in microbial growth, pH, and peroxide concentration was
observed for films containing microparticles (527 nm).
It can be concluded that the incorporation of various essential

oils in different concentrations can be very effective for the
shelf-life elongation in fresh food products like vegetables and
meat. In fact, these active components not only allowed the
reduction of microbial growth but also showed a decrease in
water vapor permeability of the films, together with an increase
in thermal stability and elongation at break. Interestingly, in com-
parison with nanocellulose in the case of chitosan-based active
packaging, there was a higher number of works (about 60% of
the articles reviewed) dealing with direct application on food
products. They were mostly vegetable products or fruit, but some
attention had also been given to meat products and bakery. The
same percentage focused also on analyzing the impact of essen-
tial oils and active agents' incorporation on the final mechanical
properties of the film, but once again only a small percentage
(∼20%) also included a comprehensive sensory evaluation of
the packaged food.

Figure 6. Appearance of strawberries coated with modified chitosan-
based formulation during the shelf-life test. The control (on the left) after
10 days shows worst conditions compared with coated strawberries after
21 days (on the right).123
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BIOCOMPOSITE FILMS
Bio-nanocomposite materials consist of a matrix composed by a
bio-based polymer and a dispersed nanometric phase, which is
meant to improve the properties of the base material.
The majority of nanocomposite materials are focused on the

improvement of the mechanical and structural properties of the
matrix. It is quite common, for example, to use cellulose nano-
whiskers or cellulose nanocrystals as reinforcements, due to their
high tensile strength andmodulus.29 They can be easily dispersed
in hydrophilic polymers,55 and can be modified to increase the
compatibility with non-polar matrixes, improving their mechani-
cal, physical, thermal, and optical properties. At the same time
they help the homogeneous homogenous dispersion of the
active molecule previously integrated.29 The contemporary incor-
poration of nanoparticles and essential oils has therefore become
a common technique to endow the final biocomposite materials
with additional antimicrobial properties while maintaining suffi-
cient mechanical strength.219 The incorporation of essential oils
in nanocomposites also allows the modification of properties
not directly related to the antioxidant and antimicrobial activity,
such as film transparency or hydrophobicity.
Nanoparticles can be treated or coupled with the EOs before or

after the addition to the matrix. Several techniques have been
used to create biocomposite films, depending on the type of
materials involved and the final application of the composite.
Some of the most used are, for example, extrusion, solvent cast-
ing, impregnation, layer-by-layer deposition and spin-coating.50

Among the several existing techniques, then, the creation of
nanoemulsions of the EOs and nanoparticles prior to dispersion
in the active matrix represents a step forward for the food packag-
ing applications, and in particular for the incorporation of active
compounds in films and coatings.220

Chitosan-cellulose composites
Biocomposite films where chitosan and cellulose in different
forms are used together as matrix and/or reinforcement for active
food packaging applications are rather common in the scientific
literature.221-223 The focus, in this concern, is not only on the anti-
microbial activity, but also on the influence that the different com-
ponents have on the mechanical properties of the film. In this
case, in vitro studies were most often conducted, without direct
testing on food products.
For example, CNC incorporation in chitosan matrix allowed to

obtain active films which resulted to increase chicken meat
shelf-life.223 Many works on their combination with other poly-
mers and with agricultural or food process wastes have been
reported. For example, the production of biodegradable nano-
composites from carrot minimal processing waste (CMPW) was
optimized by adding high-pressure microfluidized cellulose fibers
as mechanical reinforcement.224 While a composite film based on
bacterial cellulose, chitosan and curcumin has been recently
developed,225 considering also the case ofmulti-nanofiber system
by incorporating in the matrix both cellulose and chitin nanofi-
bers.226 The nanofibers allowed a good dispersion of curcumin
nanoparticles in the films, which reduced the TS and increased
the WVP. However, these modifications were counterbalanced
by the presence of chitin nanofibers, which positively affected
both mechanical and barrier properties of the material. The films
that were produced also showed antioxidant and antibacterial
activity against E. coli and S. aureus with inhibition ratios of 65%
and 75%, respectively. Conversely, the incorporation of curcumin

extract in pure chitosan resulted in the opposite effect on
mechanical properties.227 This indicates that, even if these mate-
rials have certain properties and known effects on thematrix, their
combination strongly influences the final properties of the
composite.
Moreover, binary edible films made from CMC and chitosan

biguanidine hydrochloride (CGg) activated with frankincense
oil (FO) or titanium oxide nanoparticles228 were prepared and
analyzed by Salama et al.135 The presence of FO resulted in a
lower WVP, higher TS and EB, without any change in transpar-
ency. These films exhibited antibacterial activity against
S. pneumonia, B. subtilis, and E. coli. The same biopolymers were
used to produce chitosan/CMC films incorporating glutaralde-
hyde, cinnamon EO, and oleic acid (OA), in order to study their
simultaneous effect.136 In fact, cross-linkage by glutaraldehyde
improved the mechanical properties, and its use together with
the CEO increased the film's bioactivity. The presence of OA
also increased the antimicrobial and antioxidant activity. The
inclusion of both CEO and OA significantly increased the WVP,
due to significant changes in the microstructure of the biocom-
posite. This could be due to the covalent interactions between
the essential oil constituents and/or OA with the biopolymer
chains.
Similar results were found when investigating the effect of cin-

namon and ginger EOs on chitosan/CMC films emulsified with
oleic acid.137 Clear differences appeared between cinnamon
EO and ginger EO incorporated films. As the amount of each
essential oil increased, the crystallinity decreased with the for-
mer essential oil, while it increased with the latter one. In fact,
the cinnamaldehyde present in cinnamon could interact with
the network created by CMC, chitosan and oleic acid, acting as
plasticizer and inhibiting close packing in the polymer chains.
Moreover, the cinnamon-incorporated films showed higher anti-
fungal activity in vitro against A. niger and a greater increase in
elongation at break percentage: +328% compared to +111% of
the ginger films.
Chitosan-based films reinforced with CNCs and encapsulating

thyme, oregano, tea tree, and peppermint EO nanoemulsions
showed improved mechanical properties and better release of
the active compound.138 They were tested in vitro and in situ
against Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus,
and Penicillum chrysogenum, reducing their growth by 51–77%.
An in situ experiment on inoculated rice during 8 weeks of storage
resulted in a 2 log reduction of the fungal growth. The irradiation
of the materials with a dose of 750 Gy of ionizing radiation further
increased the antifungal and mechanical properties. The same
research group also considered methyl cellulose (MC) reinforced
with CNC and amended with a blend of oregano and thyme
EOs.139 The optimal conditions were found to be 75 g kg−1 CNC
into MC containing 5–7.5 g kg−1 EO. The films exhibited the same
antifungal activity as the previous study138 and the irradiation
treatment resulted again in improved antifungal and mechanical
properties. The presence of different matrices and EO concentra-
tions in the two cited works led to different characteristics in the
final films. The chitosan-based and the CM-based films treated
with irradiation had a tensile strength of 57 and 64 MPa, respec-
tively – an increase of the elongation at break of 36% and 26%
and an increase in water vapor permeability of 24% and 5%. Chit-
osan films enriched with cellulose nanoparticles were also studied
in combination with ethanolic propolis extract.229

Chitosanmatrix incorporated with 10 g kg−1 nanocellulose fiber
and 10 g kg−1 thyme EO was tested on sweet cherry quality

Essential oils for active food packaging www.soci.org

J Sci Food Agric 2023; 103: 1021–1041 © 2022 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/jsfa

1033
 10970010, 2023, 3, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/jsfa.11918 by A
rea Sistem

i D
ipart &

 D
ocum

ent, W
iley O

nline L
ibrary on [07/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


during storage.140 After 5 weeks of fruit storage within the edible
coating, the nanocomposite affected the fruit's water retention,
decreasing the weight loss and preserving the anthocyanin con-
tent. Moreover, the total sugar content increase indicates dehy-
dration and decomposition of organic acids in the fruit during
the storage time.
The effect of cellulose and lignocellulose nanofibers (LCNF)

(40 g kg−1) as nanoreinforcement on Origanum vulgare EO-
loaded chitosan films (50 g kg−1) was investigated.141 The films
without nanoreinforcement, containing only the EO, showed
higher antioxidant and antimicrobial activity against E. coli and
B. cereus than bionanocomposite films, where the release control-
ling effect of CNF and LCNF is present. The incorporation of EO
and CNF/LCNF, on the other hand, improved solubility and the
water vapor barrier but affected the color properties. This is due
to the new hydrogen bonds created between the chitosan chains,
the EO, and the nanofibers. Lignocellulose nanofibers resulted to
better disperse the EO into the chitosan matrix, which led to bet-
ter properties of the composite. The same investigation was also
conducted with the use of Carum copticum EO, which gave similar
results with respect to the previous study.142

Composites involving other biopolymers
In this paragraph, relevant studies regarding the use of biopoly-
mers other than nanocellulose and chitosan as a matrix for bio-
composite materials for active food packaging are reported. The
most studied in the recent years are PLA, sodium alginate, and
agar films, as already explained in the ‘active packaging biopoly-
mers’ paragraph.230 Many other studies regarding biocomposite
films for active packaging based on different biopolymers such
as whey protein isolate,231 starch,232 and others230 could be found
in the literature. However, most of them are not based on the use
of essential oils and therefore will not be considered in the con-
text of this review.

Combination of PLA and nanocellulose or chitosan
Poly-lactic acid-cellulose nano crystal (PLA-CNC) nanocomposite
films containing OEO were tested against Listeria monocytogenes
in mixed vegetables.143 It was observed that the presence of the
OEO did not affect the WVP, but increased the EB while reducing
the TS and the tensile modulus. These films demonstrated strong
antimicrobial activity through the continuous release of phenolic
compounds over the tested period.
The fabrication of a PLA composite with the addition of CNC is

expected to increase the mechanical properties of the material
significantly. Interestingly, however, Khodayari et al. showed
that such improvement was more pronounced when it was
coupled with different concentrations of Tanacetum balsamita
EO (TBE) and propolis ethanolic extract (PEE).144 While PLA films
containing PEE, alone or coupled with CNC, could not inhibit the
growth of bacteria, the presence of TBE allowed gram-positive
and gram-negative bacteria to be affected, especially B. cereus.
All films containing TBE showed significant antibacterial effects
against aerobic mesophilic bacteria, lactic acid bacteria and psy-
chrotroph. The same nanocomposite was created using Zizi-
phora clinopodioides EO to improve beef meat shelf life.145 The
microbial population after 11 days of storage of minced beef
decreased 1 to 3 log CFU g−1 and films containing 20 g kg−1

EO extended the shelf-life without any alteration of the organo-
leptic properties.
Poly-lactic acid was also used in combination with CNF gel,

through the incorporation of Zataria multiflora essential oil

(ZaEO) and propolis ethanolic extract (PEE), by the solvent cast-
ing method.146 The gel was obtained directly from wood parti-
cles by a mechanical method. The addition of ZaEO and PEE
made the films more flexible. The presence of CNF improved
the WVP, the TS (+32%) and the elastic modulus (+19%). The
maximum antibacterial effect was recorded in the film contain-
ing both ZaEO (5 mL L−1) and PEE. In particular, the
PLA/10 g kg−1 of ZaEO/PEE composite was able to increase the
shelf life of sausages up to 40 days, addressing the antimicrobial
activity against S. aureus, E. coli, Vibrio parahaemolyticus and
L. monocytogenes.
Poly-lactic acid has also been combined with chitosan-based

materials. For example, Fiore et al. tried to coat PLA film with chit-
osan enriched with rosemary essential oil for the development of
fresh minced chicken breast application.147 With a concentration
of 20 g kg−1 of essential oil in the coating it was possible to
reduce by 25% the water vapor permeability and increase the
antioxidant activity. In general, those films demonstrate the ability
to improve the shelf-life of fresh meat products.

Alginate
Alginate edible films were incorporated with oregano, cinnamon
or winter savory EOs and their antimicrobial activity was tested
against Salmonella typhimurium or Listeria monocytogenes in
ham slices.148 The films were pretreated with different concentra-
tions of calcium chloride. In fact, the formation of ionic bonds pro-
duced an insoluble gel, which affected the release rate of the
active compounds. Cinnamon-based film pretreated by immer-
sion in a 20% CaCl2 solution was the most effective against both
pathogens.
The application of sodium alginate (SA) films activated with

CMC, CEO as antimicrobial agent, glycerol as plasticizer, and
Tween® 80 as surfactant were studied by Hal et al.149 At the high-
est CEO concentration of 15 g L−1, the inhibitory effect against
S. aureus increasedwith the increase in the Tween® 80 concentra-
tion. The incorporation of Tween® 80 in the SA/CMC matrix may
facilitate the release of CEO from the film matrix and promote its
diffusion into the surroundings, thus increasing the antimicro-
bial activity of the film. These film-forming solutions were coated
on banana fruits to test possible shelf-life extension. The
bananas coated with SA/CMC containing 15 g L−1 CEO deterio-
rated more rapidly than those with control coating. This was
probably caused by the increase in oxygen permeability of the
films, which, associated with the higher oxygen solubility in
CEO, favored the oxidation of phenolic compounds. Water con-
tent, on the other hand, was decreased in the presence of CEO
and, due to the increased hydrophobicity of the films, WVP was
also reduced for SA/CMC films incorporated with 15 g L−1 CEO.
Concerning the mechanical properties, finally, it is interesting
to notice that the effects of Cinnamon EO are different from
the ones observed in other matrices such as chitosan.129 Due
to the specific interactions between the fillers and the matrix
itself, the presence of CEO led in this case to the increase of EB
and the decrease of TS of the films.

Agar
Another example of biocomposite used in active packaging appli-
cations is the agar film reinforced with cellulose nanoparticles in
presence of Savory EO (SEO) studied by Atef et al.88 The addition
of SEO decreased tensile strength, Young'smodulus, andwater sol-
ubility, while increasing the elongation, WVP, and opacity of the
nanocomposite film. In addition to these changes, the agar/
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cellulose-based nanocomposite showed noticeable antimicrobial
activity. In particular, the film containing 15 g kg−1 SEO demon-
strated the highest inhibition zone, especially against
L. monocytogenes and B. cereus, while E. coli was more resistant.
To improve the mechanical flexibility and the thermal stability of
agar, summer savory EO was incorporated into a CMC-agar film.150

The biocomposite showed good inhibition against gram-positive
bacteria and an improvement in mechanical flexibility and hydro-
phobicity, at the price of a reduced transparency. The same bio-
composite was created with grapefruit seed extract. An increase
in UV barrier properties, moisture content, water solubility, and
water vapor permeability was observed, with a decrease in tensile
strength, elastic modulus, and surface hydrophobicity93,233.
As a conclusion, after reviewing the research papers on biocom-

posite films for active packaging, the same trends observed for
pure nanocellulose and chitosan are confirmed. In fact, the great
majority of the reviewed studies (about 80%) reported in vitro
tests against several types of microorganisms, coupled with anal-
ysis of the materials’mechanical properties. This was necessary to
characterize completely more complex materials involving the
presence of different substances and to clarify the different effect
of EOs chitosan and nanocellulose fibers on the final materials.
Interestingly, however, a consistent proportion (above 60%) of
the works reported also tested the films on food products, primar-
ily on meat (sausages and ham) but also on vegetables and rice.

CONCLUSIONS
In recent years research on packagingmaterials has been boosted
strongly by the need to increase the sustainability of packaging
while further reducing food spoilage. This has attracted much
attention to renewable materials, such as chitosan and cellulose,
and the use of natural compounds, such as essential oils, to impart
antimicrobial features to the package, thus increasing the fresh
product's shelf life.
This review has focused on this application, trying to report the

use of the materials, alone or in combination with other biopoly-
mers (such as PLA, agar and alginate), to obtain a completely
renewable active packaging solution. Solutions involving the
use of essential oils were considered due to the interest in such
natural antimicrobial substances in food applications.
In the analysis of the literature, it clearly results that there is a

strong interest in the use of cellulose and chitosan-based active
packaging. Nanocellulose, in particular, is more commonly used
as filler in other biopolymers to improve dispersion of the EOs
while maintaining sufficient mechanical properties. Chitosan, on
the other hand, due to its intrinsic antimicrobial activity, finds
applications as both support and filler.
In general, the analysis of the activity of the packaging solution

is made on specific pathogens through in vitro tests and is often
coupled with considerations about mechanical strength of the
final composite. These kinds of consideration are common to
about 80% of the reviewed studies, while tests on transport prop-
erties, such as water vapor and oxygen permeability of the active
materials, are slightly less common.
Interestingly, about half of the studies also consider direct applica-

tion to specific food for in situ testing of the increase in shelf life. The
interest is mainly directed to meat products and fruit/vegetable
products, which are the type of food that can benefit the most from
this active approach due to their high perishability. Few examples of
other foods, such as cheese and bakery products, were found. In all
these works the deterioration of the product is monitored through

laboratory analyses, and only a small percentage of them also pre-
sent a sensory evaluation of the packaged food. This kind of assess-
ment, however, is very important for the development of the final
product and should be given more attention.
In the current analysis, the most commonly used EOs were, in

order, oregano, cinnamon, thyme, and rosemary. However, many
other plant-derived compounds, different from EOs, were consid-
ered and were effective against a wide range of microorganisms.
In fact, these natural compounds showed antimicrobial activity
against the most well known gram-positive bacteria (S. aureus,
B. subtilis, L, monocytogenes), gram-negative bacteria (E. coli),
and fungi (S. cerevisiae, A. niger).
In general, despite the very high number of works and the

potential of most of the materials considered, it is difficult to pro-
vide general guidelines for the production of active packaging
based on the combination of renewable materials and essential
oils. Many of the available studies are focused on very specific
applications, in order to test the performance of certain essential
oils, incorporated in a given materials, on the preservation of the
quality of specific food. The use of a combination of essential oils
in the same packaging, for example, is seldom considered, lead-
ing to ample space for further analysis and optimization of the
currently tested solutions.
Most of the materials considered base their activity on the

release of the active compounds but very little information is
given about the release rate and kinetics, which are essential in
order to design and adapt an active packaging solution for the
desired shelf life. These kinds of studies, together with a more
structured analysis of the interaction between the essential oils
and the different matrix, would be of great interest in the selec-
tion of the best approach and the components to be used for a
given application.
In conclusion, even if some applications already exist in the mar-

ket, the field of active packaging has a lot of space for further
research and optimization. There is a need for more structured
investigations, capable of comprehending themultiple interactions
existing in antimicrobial packaging, and their effects on the final
properties of the film and on the final shelf life of the food.
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