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Abstract

Network Function Virtualization (NFV) and Software Defined Network-
ing (SDN) changed radically the way 5G networks will be deployed and ser-
vices will be delivered to vertical applications (i.e., through dynamic chain-
ing of virtualized functions deployed in distributed clouds to best address
latency requirements). In this work, we present a service chaining orches-
tration system, namely LASH-5G, running on top of an experimental set-up
that reproduces a typical 5G network deployment with virtualized functions
in geographically distributed edge clouds. LASH-5G is built upon a joint
integration effort among different orchestration solutions and cloud deploy-
ments and aims at providing latency-aware, adaptive and reliable service
chaining orchestration across clouds and network resource domains inter-
connected through SDN. In this paper, we provide details on how this or-
chestration system has been deployed and it is operated on top of the ex-
perimentation infrastructure provided within the Fed4FIRE+ facility and
we present performance results assessing the effectiveness of the proposed
orchestration approach.
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1. Introduction

Novel vertical applications emerging in different industry fields, such as
e-health, hyper-connected smart cities, and industrial automation, will im-
prove several aspects of society and human lives by taking advantage of the
features offered by 5G (and beyond) mobile networks, IoT, and pervasive
cloud deployments (i.e., edge micro-clouds in combination with traditional
clouds) [1]. This scenario will foster new business opportunities for telco
service providers, which will be able to address the increasingly stringent
service requirements from vertical applications in terms of reliability, avail-
ability and latency performance [2][3].

Software-Defined Networking (SDN) [4] and Network Function Virtual-
ization (NFV) [5] promise to satisfy such operational requirements by fos-
tering a more flexible network service deployment thanks to virtualization
technologies and network programmability (i.e., softwarization) [6][7][8].
NFV allows for elastic network service deployments as virtual partitions
out of a convergent cloud-network infrastructure. Such network slices are
composed of dynamically-established Virtual Network Functions (VNFs) and
virtual link interconnections. The micro-clouds at the edge can be also ex-
ploited to elastically deploy VNFs that need a tight interaction with the
users to support latency-sensitive applications with, e.g., prompt traffic op-
timizations or bit rate adaptations. In this scenario, SDN can effectively
provide programming abstractions that can be exploited for the dynamic
enforcement and in-line steering of data traffic through (virtual) network
paths.

With the softwarization of telecommunication infrastructures and the in-
creasing network management abstractions, service paths and workflows
can be established in a more efficient way by flexibly composing VNFs
and dynamically interconnecting them through SDN (i.e., service chain-
ing) [9][10][11]. This requires that telco service providers effectively put in
place dynamic resource provisioning and orchestration mechanisms on top
of a distributed NFV/SDN infrastructure to (i) assure service pervasiveness
and timeliness, (ii) minimize latency, and (iii) maximize service availability
[8]. However, the heterogeneity of the infrastructures, the high dynamic-
ity of services and the geographical distribution of cloud sites pose new
challenges from a system integration perspective in terms of (i) resource
control/management capabilities, (ii) adaptive usage of multi-technology re-
sources, and (iii) fulfillment of end-to-end latency requirements considering
the impact of both processing and network delays in distributed infrastruc-
tures [12][13].

In this work, we present the outcome of a joint integration effort that
brought together diverse solutions and technologies to run a latency-aware
and adaptive service chaining mechanism in a distributed SDN/NFV infras-
tructure fully regulated by an end-to-end orchestration system, i.e., LASH-
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5G. Such a service chaining orchestration system was conceived to run over
geographically distributed edge clouds interconnected through SDN (i.e.,
spanning multi-domain/multi-technology infrastructures) and establish ser-
vice chains relying on domain orchestration solutions to address latency,
adaptability and availability requirements. More specifically, the proposed
orchestration system takes advantage of heterogeneous and enhanced re-
source control/management capabilities offered by the underlying cloud and
network resource domains to dynamically provide service chains while (i)
optimally selecting VNFs over the path that minimizes the offered end-to-
end latency across the clouds and the network resource domains; (ii) trig-
gering the set-up and update of (pieces of) service chains in each of the
underlying resource domains; (iii) promptly adapting established service
chain paths to address reliability based on the current load of the network
(i.e., self-adaptive service chaining); and (iv) continuously collecting mon-
itoring data from underlying resource domains so as to promptly trigger
chain adaptation actions and to effectively make latency-aware VNF selec-
tion decisions.

This paper also presents performance results of the proposed service
chaining orchestration system collected through a large set of experiments
carried out using a testbed reproducing a composite yet realistic 5G infras-
tructure as a distributed NFV deployment interconnected through a SDN-
based WAN. The experiments were performed on top of the Fed4FIRE ex-
perimentation infrastructure provided within the Fed4FIRE+ Horizon 2020
Project, offering a federation of open, accessible and high-available testbed
facilities to support a wide variety of different research and innovation ac-
tivities, including 5G-related experimentations and testing over heteroge-
neous systems [14]. The experimental tests aim at assessing the actual per-
formance of the orchestration system in addressing service chain requests,
in computing latency-optimized service chains by correctly processing mon-
itoring data, in enforcing chaining decision while leveraging the network
and cloud resource control functionalities, and, finally, in dynamically ad-
justing established service chain paths to react to network congestions.

The main contribution of this work is the design, development and de-
ployment of a latency-aware and adaptive service chaining orchestration
system as a result of an integration effort of different SDN/NFV solutions
and technologies, which makes the proposed system suitable for end-to-end
deployment in real scenarios. Indeed, we provide end-to-end service chain-
ing orchestration in combination of fine-tuned network resource orchestra-
tion on top of distributed SDN/NFV deployments interconnected through a
SDN-based WAN running in an experimental testbed with OpenStack and
different SDN controllers (i.e., ONOS, Ryu). The most relevant enabling in-
tegration aspects that were addressed to achieve the goal include: i) the
definition of common high-level interfaces to abstract from solutions depen-
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dent on the specific infrastructures, ii) the definition of relevant common
performance metrics together with the deployment of the related monitor-
ing systems, and iii) the integration of the involved experimental platforms.

This work extends the authors’ previous work by deploying and inte-
grating the single elements of the end-to-end service chaining orchestration
system that were presented separately and evaluated through simulations
or laboratory testbeds [15][16][17]. In the integrated experimentation we
took advantage of the bare-metal experimentation capabilities provided by
the Fed4FIRE framework, and were able to use a significant amount of phys-
ical nodes available in one of the federated testbeds as we did in [18]. The
exclusive use of physical servers allowed us to experiment the integration
of our orchestration system on a distributed NFV (i.e., cloud) environment
featured by SDN network capabilities. With respect to [19, 20] we present
more performance results that we collected through a comprehensive test-
ing campaign.

The remainder of this paper is organized as follows. Section. 2 discusses
related work and highlights our contribution with respect to the state of the
art. In Section. 3 we present the service chaining orchestration reference
scenario. In Section. 4 we describe the architecture of the proposed service
chaining system. In Section. 5 we detail the workflows of the LASH-5G
orchestration system. In Section. 6 we report on first experiences in the
deployment of our system on top of Fed4FIRE+ federated testbeds and in
Section. 7 we provide feedbacks from our experimenters’ point of view.
Finally, Section. 8 concludes the paper providing insights on future work.

2. Related Work

Several works in the literature show that the adoption of SDN/NFV, pos-
sibly in combination with an orchestration layer, provides increasing flexibil-
ity and scalability to dynamic service chaining. Such works typically provide
SDN-based solutions for steering packets across service functions. In par-
ticular, [21] confirms the capabilities of SDN in supporting flexible service
chaining and insists on the need for a framework that handles the lifecycle
management of service function chains, as the one we propose in this work.
[22] proposes a service-oriented SDN controller that deploys programmable
data delivery routes connecting multiple chains of VNFs. The work mainly
focuses on the networking aspects of service chains and neglects the dy-
namics that characterize the edge cloud domains. On the contrary, in this
paper we introduce a centralized entity that takes into account both the
cloud and WAN resources for a more efficient deployment of the VNFs. [23]
also mainly focuses on traffic steering through a given set of VNFs. More-
over, authors solve the VNFs placement and traffic flows separately while in
this work we propose an optimization algorithm that jointly addresses both
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problems. [24] proposes the NIMBLE architecture for SDN-based middle-
box management. The proposed approach addresses challenges relevant to
load-balancing and middlebox composition. However, the focus is only on
traffic re-routing and flow-entries limitation. Finally, as discussed in [21] a
number of research challenges are still open, especially taking into account
the availability status of the network (e.g., switch/link capacity usage) that
might affect the actual QoS performance (e.g., throughput) experienced by
data while traversing service chain paths. For this reason, as we do in this
work, recently a number of research works tackled different aspects of the
service chain orchestration as an effective solution to dynamically address
service requirements from applications and users [25].

Related work in the area of service chaining and VNF selection assumes
that the placement of VNFs has already been done and focuses on the chain-
ing problem [26]. In [27] a heuristic is proposed to select VNF instances in
a multi-DC environment by accounting both for load balancing across in-
stances and latency requirements. However, only the network latency is
considered, disregarding the processing delay introduced by functions. In
[28] an integer programming model and a Markov approximation based al-
gorithm are proposed to solve the middlebox selection and routing prob-
lem with the objective of maximizing the total throughput over all target
flows, but the problem accounts for the selection of one middlebox per
flow and does not handle chains of middleboxes as our work does. The
work presented in [29] deals with a different optimization problem (i.e.,
the minimization of the total link occupation bandwidth) and does not han-
dle ordered sequences of VNFs as our system does. A joint network and
server load balancing algorithm is proposed in [30] which first adopts a
greedy strategy to construct service chains and then attempts to improve
the obtained solution through a searching technique. However, the pro-
posed model and implementation prototype are designed for an intra-DC
network, while our solution targets a multi-DC environment. A VNF se-
lection strategy is proposed in [31] that aims to maximize an overall sys-
tem efficiency metric. This approach is evaluated in an emulated environ-
ment leveraging Mininet and OpenDayLight. A time-efficient solution of the
VNF selection problem is targeted in [32] by proposing a set of heuristics
based on the Lagrangian relaxation of an integer minimum cost flow prob-
lem. More recently, Pei et al. [33] formulated a VNF selection and routing
path calculation problem and solved it by using Deep Belief Networks and
an optimal algorithm to generate training data. With respect to this re-
lated work, our VNF selection strategy adopts an abstracted network model
which requires minimal topological and monitoring information of infras-
tructure resources. In a multiple domain scenario, network infrastructure
operators may decide to hide internal implementation details, thus exposing
an abstracted view of the infrastructure status and fine-tuning deployment
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decisions within their own domain. Our approach thus well accommodates
such scenario, since our VNF selection algorithm leverages an abstracted
topology to select VNFs from multiple DCs, while VIMs and WIMs imple-
ment the service chaining instructions leveraging full disclosure of their
domain.

In [34] authors provide a 5G/Edge-based service chaining orchestration
solution with NFV and SDN and elaborate on a resilient and adaptive frame-
work, following an approach inspired by software-defined networking. Au-
thors address a different problem in allowing users to construct network
service chains in the mobile and edge computing environments and in con-
sidering locality criteria and policy rules while embedding service chains.
A similar approach is used in [35] where authors present a network service
chaining model in 5G wireless architecture that integrates cloud and fog
computing with advanced technologies such as SDN and NFV. With respect
to our work, they specifically focus on data management and security as-
pects, and present performance results obtained through simulations. In
[36] Authors theoretically formulate dynamic network service chaining in
SDN/NFV infrastructures. They formulate an optimal algorithm that itera-
tively decides the sending rate of service and multi-path routing for dynamic
service chaining in an integrated computational and network resource en-
vironment with also considerations on cost-utility trade-off. With respect to
our work, they address different aspects of dynamic service chaining (e.g.,
incoming and departure data rate, maximize service utility). However, as
the previous one they present performance results of the proposed algo-
rithm obtained through simulations. In addition, all the above works do not
consider latency-based criteria, nor at the network neither at the computa-
tional level as this works does.

Additional works on service chaining orchestration systems and solu-
tions consider latency performance of service chains with also reliability
features. In [37], authors formulate an ILP model for SFC placement and
resource allocation while trying to address different end-to-end latency re-
quirements. An SFC controller is proposed in [38] to optimize the placement
of service chains in Fog environments while reducing the end-to-end latency.
Finally, latency optimization techniques for virtualized resource allocations
in distributed network edge environments are presented in [39].

With respect to our work, none of all the above proposed dynamic service
chaining solutions were experimentally assessed as we do in this work, with
all the implications and efforts required to develop and deploy a realistic
integrated system. Indeed, we could deploy a set-up with OpenStack and
different SDN controllers and perform fine-tune settings and monitoring of
both virtual functions and network resources and, ultimately, decide service
chaining based on a dynamic view of underlying virtual infrastructure, in
terms of latency and switch load, in such a practical set-up.
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In terms of experimentation in SDN/NFV distributed environments, note-
worthy initiatives have been carried out within FIRE (Future Internet Re-
search and Experimentations) in Europe [40] and GENI (Global Environ-
ment for Network Innovations) in the U.S. [41]. In particular, such initiatives
offer SDN and Cloud facilities to enable experiments on emerging network,
service and application scenarios, such as Next Generation Internet (NGI)
(e.g., Fed4FIRE [42][43]) and 5G (e.g., SoftFIRE [44], 5GinFIRE [45]). In
the context of SoftFIRE, a framework for elastic orchestration of service
chains is proposed in [25]. Although authors present their solution inte-
grated with an ETSI-compliant NFV management and orchestration plat-
form (i.e., OpenBaton [46]), they do not address neither the inter-DC sce-
nario including a Wide Area Network (WAN), nor latency-awareness and
reliability features for established service chains. Other relevant experi-
mental works in this topic have been carried out within EU-funded research
and innovation projects. However, the deployment used for experiments
does not include the WAN (i.e., inter-DC) network scenario [47] or does not
reproduce realistic cloud and network deployments [48][49] since making
use of emulation platforms at data plane level, e.g., Mininet. On the other
hand, some experimental initiatives have tackled the deployment and the
management of vertical services that may span multiple provider domains
[50][51]. However, in these works, neither latency-awareness features nor
end-to-end monitoring to guarantee reliability are addressed for established
service chains. Moreover, fine-tuned network programmability is not ex-
ploited in the cloud as this work does, leveraging a full SDN control at
end-to-end level.

In conclusion, this work advances the state of the art since it performs
experiments in end-to-end service chaining orchestration in combination of
fine-tuned network resource orchestration using a testbed reproducing a
composite yet realistic 5G infrastructure as distributed SDN/NFV deploy-
ments interconnected through a SDN-based WAN. In addition, it evaluates
both cloud processing delays and network delays while addressing end-to-
end latency requirements. Finally, the proposed mechanism goes beyond
the coordinated establishment of cloud and network services, including also
adaptation actions with respect to the current availability status of network
resources in order to mitigate issues (e.g., congestion) derived from their
concurrent usage by a multitude of services. On top of that, such contribu-
tions have been obtained in an experimental testbed with OpenStack and
different SDN controllers (i.e., ONOS, Ryu) to demonstrate and discuss dy-
namic service chaining in a practical set-up through (i) fine-tuned network
settings in the cloud, (ii) end-to-end full SDN control and (iii) monitoring
of both virtual functions and network resources to optmimally decide VNF
selections and to promptly react based on a dynamic view of the underlying
virtual infrastructure.
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3. Reference Scenario

In this section, we present the reference scenario that motivates the use
of a service chaining orchestration system in NFV/SDN infrastructures.

NFV/SDN deployments of telco service providers typically feature multi-
site edge clouds (i.e., DCs) interconnected via a WAN. On top of this virtu-
alized and programmable telco infrastrucure, network slices are deployed
that are composed of VNFs (e.g., load balancer, packet inspection, traffic op-
timization, content servers, caching) running at edge clouds and intercon-
nected through virtual links. Examples may include (i) the provisioning of
VNFs for content delivery during a live sport event (e.g., mixer, transcoder,
compressor) with end-user traffic steered across them while minimizing the
cost and satisfying QoS requisites [52], (ii) the deployment of service chains
across VNFs in Fog environments for video surveillance or smart waste man-
agement services while optimizing resource allocations and latency perfor-
mance [38]. It worths pointing out that real network slice deployments for
verticals typically require that multiple instances of each kind of required
VNFs are deployed in network slices. As shown in Fig. 1, these VNF in-
stances are deployed in different edge clouds for reliability or for perva-
siveness reasons (i.e., increase service coverage over a wider geographical
area, run back-up services for high-critical applications, serve users with
lower latency performance)[53].

ApplicationApplicationApplication

Service Chaining
Orchestrator

Cloud Resource 
Orchestrator

WAN Resource 
Orchestrator

Cloud Resource 
Orchestrator

Edge
 Cloud

Wide Area Nework (WAN)
Edge
 Cloud

Edge
 Cloud

Edge
 Cloud

deployed VNF instances 

VNF instances selected
for service chaining 

dynamic service chains 

Figure 1: Service chaining orchestration scenario.
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Telco service providers can achieve the most out of network slicing if
they can effectively and dynamically establish services for vertical applica-
tions as dynamic service chains on top of VNFs while addressing specified
requirements (e.g., QoS, latency constraints, security). In particular, it is im-
portant to assure that VNFs are traversed by user traffic in a specified order
and that such an order is also adapted based on real-time status information
according to the current context (e.g., load by users traffic, latency perfor-
mance) [10] in order to guarantee appropriate user experience. The service
chain requests are expected from verticals (mediated by the OSS/BSS) in
terms of an ordered sequence of VNF types to traverse and QoS demands
for interconnections (abstract service chain). Those chain specifications are
the result of verticals’ internal operations carried out within their applica-
tion service delivery activities (e.g., as part of optimizations through Service
Oriented Architecture principles).

In this scenario, as shown in Fig. 1, two levels of orchestration are
needed to allow latency-aware and adaptive service chaining in distributed
NFV/SDN infrastructures.

Firstly, beyond appropriate decisions on where to place VNFs (out of
scope in this paper), there is the need to orchestrate VNF instances across
distributed edge clouds to establish service chains dynamically and concur-
rently while addressing specified requirements (i.e., service chaining or-
chestration). Indeed, the most proper VNF instances need to be selected
(out of multiple running instances) for each type of VNF and in the order
specified in the request. In addition, the proper network paths supporting
virtual links need to be set-up while assuring QoS demands (e.g., required
bandwidth). At this level, different targets can be pursued while doing the
VNF selection (e.g., minimize the end-to-end latency) or while operating
the chains (e.g., adapt running chains based on the context by adding or
removing VNFs ).

Secondly, there is the need to orchestrate the virtual resources offered
by each resource domain, (i.e., processing resources in edge clouds and
network resources in the interconnection WAN) to support the set-up and
the operation of service chains according to the requirements. For this
reason also resource-level orchestrators are envisioned, i.e., cloud resource
orchestrator, responsible for managing (part of) chains running within edge
cloud DCs, and the WAN resource orchestrator, responsible for managing
traffic flows to reach DCs that host VNF instances. SDN can be used in
both domains as a network technology to offer network abstractions and
programmability to dynamically steer data traffic and enforce traffic rules
in the network nodes.

A coordination among the resource-level and service chaining orchestra-
tors is needed to (i) instruct resource-level orchestrators on how to realize
(pieces of) chains in the infrastructure, and (ii) inform service chaining or-
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chestrator about performance offered by the infrastructure (e.g., delays at
processing and network levels) and about any relevant changes in chain
configurations (e.g., network paths supporting virtual links).

In the following sections, we describe the two-levels orchestration sys-
tem (i.e., LASH-5G system) we developed and put in operation in a dis-
tributed NFV/SDN infrastructure set-up to achieve latency-aware and adap-
tive service chaining.

4. Service Chaining Orchestration System Design

The general architecture of the proposed LASH-5G orchestration system
is shown in Fig. 2. It has been designed starting from the principles of the
ETSI NFV MANagement and Orchestration (MANO) framework [54], en-
riching them with service chaining orchestration and original resource or-
chestration features in distributed (i.e., multi-site) NFV/SDN environments.

The LASH-5G system is devised to run on top of an NFV Infrastructure
(NFVI) composed of edge cloud SDN Domains, i.e., Data Center (DC) do-
mains where VNFs are deployed by means of a cloud-computing platform
(e.g., OpenStack) and where SDN is used as network control technology.
An SDN WAN infrastructure domain is assumed to provide inter-DC con-
nectivity. Each SDN domain adopts its own controller, which is assumed
to provide a fully-featured northbound interface (e.g., via REST API) that
allows to dynamically program traffic flow steering rules across network
nodes.

SDN Contr. 1 SDN Contr. 2WAN SDN 
Controller

\
Application

VIM 1 VIM 2WIM

Edge Cloud 
SDN 

Domain 1
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Edge Cloud 
SDN 
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N
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I

Service Chain Optimizer
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VNFM

ETSI NFV MANO

VNF VNF VNF

VNF

VNF

VNF

SDN Contr. 3
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Figure 2: Orchestration system architecture for latency-aware and adaptive service chaining
orchestration.

The Orchestration layer is conceived as an extension of ETSI MANO
framework [54] including NFV Orchestrator (NFVO), VNF Manager (VNFM),
Virtual Infrastructure Manager (VIM) and WAN Infrastructure Manager (WIM)
functionalities as well as additional functional blocks proposed in this work
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to enable latency-aware and self-adaptive service chaining orchestration.
As per the standard NFV architecture [54], the NFVO is in charge of coordi-
nating operations to provide needed virtual resources for Network Services
and VNFs deployments. The VNFM is responsible for the lifecycle man-
agement of the VNFs instances i.e., instantiation, configuration, scaling,
upgrade and termination operations. The VIM and the WIM are the man-
agement/control entities in charge of provisioning and configuration of (i)
compute, storage and network resources required by VNFs in the data cen-
ters/cloud domains, and (ii) network resources in the WAN domain required
by virtual links, respectively.

The proposed additional functional blocks are assumed to supplement
NFVO and VNFM functionalities with dynamic service chaining capabilities
and adaptability as part of advanced Network Service lifecycle management
extended to service chains [25].

Firstly, the Chain Optimizer (CO), as service chaining orchestrator, sup-
ports NFVO with service chaining request handling and with optimal se-
lection of service VNF components. As discussed in the ETSI GS NFV-
EVE specification document [55], several architectural options exist in the
MANO architecture for dynamic management of service chaining, including
the operation of a service chaining application. In this context, in LASH-
5G, the CO acts as a service chaining application that, leveraging network
connection topology information in terms of VNF instances and virtual links
descriptors received from the MANO stack, selects the VNF instances and
virtual links to setup optimised forwarding paths for different traffic flows.
These chaining rules are then delivered to the VIMs and WIM to actually
establish service chains (including the virtual links) in turn leveraging SDN
controllers in the respective domains. Thus, with respect to the architec-
tural options discussed in [55], the CO plays the role of a SDN service
chaining application which, however, is not tightly bounded to a specific
controller. Instead, it leverages the application-control interfaces exposed
by the VIM and WIM orchestrators. This level of abstraction is required
since the CO is a functional block that enhances the MANO stack with the
capability of dynamically specifying the forwarding path of a network ser-
vice for target flows to cope with QoS-aware optimization objectives and
distributing the associated forwarding instructions to WIM/VIMs.

Secondly, the VIM and WIM are actually extended management func-
tionalities that go beyond ETSI NFV MANO specifications [56] [57]. Indeed,
they include additional features and orchestration capabilities such as ad-
vanced monitoring, intent-based interface and adaptive configurations of
(part of) service chains.

Compared to the WIM as described in the ETSI NFV MANO specifica-
tions, the WIM orchestrator uses the intent-based approach to provide the
automation in configuring the SDN network and in keeping its status ac-
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cording to the expressed intent. Indeed, the WIM orchestrator is enhanced
with a monitoring module that periodically checks the status of the switches
in the WAN, and in case of performance degradation autonomously triggers
the automatic redirection of the service chain paths supporting intents. In
[57] the performance monitoring of multi-site connectivity services is stated
to be supported by a performance management interface. However, only
monitoring data on network links are contemplated and neither operations
nor functionalities on how to use those monitoring data are envisioned. In
line with ETSI specifications yet enhancing the ETSI MANO framework, the
WIM orchestrator leverages the monitoring interface at the SDN controller
to collect network statistics (not only related to the network links but also to
network devices, established flows) and use those data to adapt the installed
flows to the current network status thus avoiding degradation.

Compared to the VIM as described in the ETSI NFV MANO specifica-
tions, the VIM orchestrator offers enhanced abstractions and service chain
management capabilities that make it more suitable for interacting with a
CO that is unaware of the implementation details in each DC/cloud domain.
In particular, the VIM orchestrator is capable of deploying a whole service
chain (or part of it) in a given DC/cloud domain by properly selecting the
required set of VNFs and applying the necessary SDN traffic steering rules,
all with a single interaction with the CO.

The operation of the CO and of the extended VIM/WIM (i.e., VIM/WIM
orchestrators) are detailed in the following subsections.

4.1. Chain Optimizer

The Chain Optimizer (CO) is a service chaining orchestration engine that
receives service chain requests from the NFVO (on behalf of the OSS/BSS)
and selects available VNF instances to setup the service chains so that QoS
requirements are fulfilled and the end-to-end latency is minimized.

The selection decision is made by executing a VNF selection algorithm.
The CO can host multiple selection algorithms. In the current version, it
contains the implementation of a VNF selection optimization algorithm pro-
posed in a previous work [15] and a greedy algorithm implementation used
for comparative evaluation (described in Section 7). This algorithm receives
chain request information and infrastructure monitoring data as input, and
solves the problem of selecting the VNF instances that minimize an es-
timated end-to-end latency calculated considering both processing delays
and network delays. This optimization problem is formulated as a Resource
Constrained Shortest Path problem on an auxiliary layered graph. The al-
gorithm works using an abstracted view of the underlying infrastructure
topology, which is built by periodically collecting inter-DC latency values,
type and processing latency of VNF instances deployed at each DC, from
NFVI and VNF monitoring API, respectively. The solution provided by the
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algorithm, if existing, specifies for each VNF in the chain request which DC
should provide the corresponding VNF instance so that QoS requirements
(maximum latency and minimum bandwidth) are satisfied and the end-to-
end latency is minimized. The algorithm has been implemented in C++
and uses the IBM ILOG CPLEX library for linear programming. Once a so-
lution for the VNF selection problem is found, the CO sends appropriate
chain setup instructions to the WAN and DC domain resource orchestrators
to setup the service chain. The CO interacts with these domain orchestra-
tors through high-level, intent-based REST APIs specifically devised to ab-
stract from infrastructure-dependent solutions, fostering better integration
toward end-to-end deployment. Such APIs allow the CO to send instruc-
tions for managing the lifecycle of a service chain (i.e. creation, updating
and deletion) and enforcing traffic steering operations using an application-
oriented semantic, rather than dealing with technology-specific, low-level
network details. The CO is implemented as a Java application that offers a
REST API for CRUD (Create, Read, Update, Delete) operations on service
chains.

4.2. WAN Infrastructure Manager Orchestrator

The WAN Infrastructure Manager (WIM) Orchestrator is an SDN-enabled
WAN domain orchestration logic running on top of an Open Network Op-
erating System (ONOS) controller and providing the programmable provi-
sion of service chain paths across the WAN by means of an intent-based
northbound REST interface [58]. More specifically, it supports the use of a
template-based approach where a simple JSON message can be filled in by
the CO to specify the parameters necessary for the configuration of the ser-
vice chains. Hence, the set-up of service chain paths in the WAN to connect
VNFs in different DCs can be triggered by the CO by specifying to the WIM
orchestrator the list of DCs to be traversed. Then, the WIM orchestrator
derives the DC domain gateways to be connected and performs mapping
operations by identifying the network path and, accordingly, enforces the
forwarding rules to the switches along the identified path. In line with [59],
the WIM orchestrator also offers reliable service chains by adapting (i.e.,
redirecting) service paths, or a segment thereof, to recover from network
congestion events, with an overall benefit in terms of high-availability and
effective resource utilization. For this purpose, the WIM orchestrator moni-
tors the switches load status by deriving switch link throughput from statis-
tics periodically collected and processed by the SDN controller. Then, those
statistics are given as input to a load-balancing algorithm, which compares
the current switches load to a fixed threshold, and in case, redirects the
flows traversing overloaded switches to other available switches in the net-
work, thus avoiding any congestion. Finally, the WIM is also responsible for
the collection of network latency information in order to retrieve the inter-
DCs delays. Those delays are then made available to the CO to enhance its
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resource orchestration capabilities by computing a minimum-latency ser-
vice graph. The details of the WIM design and the supported northbound
interface specification can be found in [16][60].

4.3. Virtual Infrastructure Manager Orchestrator

The Virtual Infrastructure Manager (VIM) Orchestrator is an SDN-enabled
DC/cloud domain orchestration logic providing advanced network manage-
ment capabilities in cloud computing environments. The VIM orchestrator
exposes an intent-based northbound REST interface that allows to specify
a service chain by means of a high-level descriptive syntax, agnostic to the
specific SDN technology adopted [17]. This makes it suitable to manage dif-
ferent DC domains in a multi-technology environment, e.g., leveraging dif-
ferent SDN controllers. The VIM orchestrator is also capable of dynamically
applying changes to an existing service chain without having to delete and
re-deploy it from scratch. This allows to dynamically adapt service chains
to the current context of users or services (e.g., current location of users in
a mobility scenario) or to varying needs of the service provider (e.g., differ-
ent resource management policy), and, ultimately, to avoid or prevent SLA
violations. Furthermore, the REST API provided by the VIM orchestrator
allows the CO to collect information about the currently deployed VNFs and
their estimated processing latency, computed based on the current work-
load. The details of the VIM orchestrator design and the intent-based chain
specification can be found in [61][17].

5. Orchestration Workflows

In Fig.3, we show the workflows of LASH-5G orchestration system while
performing the three key operations for latency-aware and adaptive service
chaining orchestration. First, we present the service chain deployment re-
lated to the operations for the service chain set-up involving the CO and the
WIM/VIM orchestrators. Second, we present the workflows for adapting es-
tablished service chains based on the current context. More specifically, we
show the service chain update with the adding/removing of VNFs to pre-
viously established chains to address changing needs of the operators or
different user demand profiles. Third, we present the service chain network
adaptation with the dynamic tuning of the network paths in the WAN sup-
porting virtual links based on the current status (e.g., load) of the network.

Such procedures are ETSI-compliant from the architectural point of view
according to [55][57] while offering an advance to the ETSI MANO frame-
work in terms of specific workflows for both SDN-based service chain de-
ployment/update operations and for SDN-based network adaptation opera-
tion. Those advances are supported by the peculiar features of CO, VIM and
WIM orchestrators described in Section 4.1, 4.2, 4.3.
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Figure 3: Orchestration Workflows for service chain deployment, service chain update and
network adaptation

5.1. Service chain deployment

This operation starts by generating a set of service chain requests with
different requirements in terms of bandwidth and maximum latency and
sending them to the CO through a CO-Client GUI. The CO handles each re-
quest and computes a solution of the VNF selection optimization problem
instance by executing the VNF Selection optimization algorithm. If this step
is successful, a response is returned to the CO-Client GUI with the solution
(i.e., set of cloud domains hosting the selected VNFs to be connected) along
with the computed end-to-end latency and computation time of the optimiza-
tion algorithm. In order to setup the computed chain, the CO generates a
set of instructions from the computed solution for the WIM and the VIMs.
Fig. 4 shows an example for a service chain of 5 VNFs. The solution assigns
the first two VNFs to DC-1, the third VNF to DC-3 and the fourth and fifth
VNF to DC-2. The figure shows the corresponding JSON messages that the
CO sends to the VIMs and WIM through the REST APIs offered by these
orchestrators. The WIM receives the ordered sequence of cloud domains
to be connected across the WAN. It computes the network path(s) and, ac-
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Figure 4: Example of interworking between the Chain Optimizer and the VIMs/WIM Orches-
trators

cordingly, sets-up the forwarding rules in the involved switches. Then, the
CO sends the forwarding instructions (i.e., the ordered sequence of VNFs to
connect) to each involved VIM. The VIMs are responsible for discovering in
which compute nodes the VNFs instances with minimum processing latency
are located in order to setup the part of chain they are responsible for and
properly enforce traffic steering by consistently configuring the flow rules.
According to the JSON format of the forwarding instructions provided by
the CO, each VIM selects the VNF instances of the specified types (e.g.,
VNF-1 and VNF-2 in DC-1) with minimum processing latency and installs
traffic steering rules for a specific flow (e.g., based on the specified src and
dst fields) in the specified order (e.g., first VNF-1, then VNF-2 in DC-1).

The CO periodically retrieves latency measurements in terms of inter-DC
network delays and VNF instances processing delays to update its topology
view and to recompute the estimated end-to-end latency of deployed chains.
The polling period is configurable through a yaml configuration file and has
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been set to 5s in the experiment setup described in Section 6. The CO polls
directly the REST APIs exposed by the WIM to retrieve the latest inter-
DC latency measurements. Analogously, the CO retrieves intra-DC latency
measurements by polling the URI provided by each DC. As detailed in the
experiment setup description in Section6, we used the implementation of a
time series database provided by Gnocchi. In the current version of the CO
possible latency violations of deployed chains are detected and notified in
the CO-Client GUI. While the end user may trigger update or delete actions
through the GUI, the implementation of automated adaptation policies in
the CO will be investigated in future research.

5.2. Service chain update

This operation regards the updating of an established service chain upon
a request to face with changes in operator needs or user demands. In this
workflow, the case of a request for adding a new VNF to a previously estab-
lished chain is considered, while keeping the rest of the chain unchanged.

In order to trigger such a chain update, the CO-client sends an update
request by specifying the id of the chain, the new VNF type and its ordered
position in the chain. The CO handles the request by invoking the optimiza-
tion algorithm to select the VNF instance to be added to the chain, taking
into account how the pre-existing chain has been deployed. The CO then
processes the algorithm output to provide appropriate instructions to WIM
and VIMs for updating the chain accordingly. Specifically, the WIM is up-
dated whenever the updated chain needs to traverse an edge cloud data
center that was not involved in the original chain deployment, while the
VIMs process update requests by comparing the new chain against the old
one: parts of the chain that remain unchanged are kept as they are, parts
of the chain that are no longer needed are removed, while new parts of the
chain are added.

5.3. Service chain network adaptation

This operation regards the adaptation capability of the orchestration sys-
tem with respect to the network status in the SDN WAN. The service chain
network adaptation is performed using an OpenFlow-based load balancing
algorithm. As input, this algorithm periodically receives monitoring traf-
fic statistics of the OpenFlow switches in the WAN collected by the SDN
controller. The WIM then comes into play by adapting the network paths
connecting edge cloud domains and underpinning the VNF chain path seg-
ments with respect to the load status information of switches/links.

With respect to static load balancing where flows are allocated with cal-
culated routes before data transmission, dynamic load balancing offers a
more flexible way to handle network devices load using updated traffic
statistics. In this work, as shown in Fig. 5, we consider a WAN topology
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Figure 5: Experiment Deployment on the Virtual Wall testbed from the Fed4FIRE experimen-
tation platform

composed of redundant links providing alternative paths for data transmis-
sion. The WIM is then responsible for steering the traffic from one data
center to the other over the OpenFlow switches by applying the load bal-
ancing algorithm. In particular, the status of the network is continuously
monitored through the collection of real-time statistics to derive switches
load status. A threshold is also fixed as an upper bound for the switches load.
If a switch (or more switches) load exceeds this value, a redirection mech-
anism is automatically triggered according to the following steps. First, the
service chains paths traversing the overloaded switch are identified. Then
with the help of the SDN controller, the WIM exploits the Dijkstra shortest
path algorithm to calculate new routes for every identified service chain
involving only the subset of switches still available (i.e., not overloaded) in
the WAN. After that, new flow entries are set-up in the flow tables of the
available switches thus allowing to steer the traffic again across the WAN,
while all the flow rules belonging to the old paths are deleted from the over-
loaded switches. In this way, our algorithm re-balances the load and helps
in eliminating the congestion in the network.

During the experiment we show an example in which, after the deploy-
ment of a service chain request, a subset of the switches in the WAN SDN
domain becomes overloaded, which triggers the dynamic adaptation capa-
bility, thus redirecting the traffic through other available switches.

In Fig. 4 we illustrate an example of interworking between the CO and
the VIMs/WIM. More specifically, a service chain request is shown requiring
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the setup of a chain between "Node-B" and "Node-E" composed of 5 VNFs.
The CO handles this request by first selecting the instances of the VNFs
available in a distributed multi-DC environment (e.g. VNF-1a instance in
DC-1 and VNF-6d instance in DC-3) and then sends appropriate forwarding
instructions (see bottom of Fig. 4) to concerned VIMs and WIM so that the
flow is actually steered through these instances.

6. Integration of Orchestration Subsystems and Experiment set-up

Fig. 5 shows the SDN/NFV deployment we setup on top of the Fed4FIRE+
platform to reproduce an integrated SDN- and Openstack-based NFVI and
to perform experiments with the proposed service chaining orchestration
system. The experimental setup was deployed on the Virtual Wall testbed
[62] through the establishment of five experiment containers, i.e., slices of
resources from the testbed facility involving as many as 28 virtual machines.
More specifically, we dedicated a slice to put in operation the CO, a slice to
reproduce the WAN domain, and three slices to reproduce three SDN-based
DC domains (named DC-1, DC-2 and DC-3). The slices are briefly described
hereafter.

The Chain Optimizer experimental slice includes a physical node run-
ning Ubuntu Server 16.04 LTS. The Chain Optimizer exposes a REST API for
receiving service chaining requests and handles the decision provided by
the algorithm by processing and delivering appropriate service chaining in-
tents to the WIM and VIM orchestrators through JSON messages over HTTP.
The CO also gathers information about network and processing latency via
REST API from the WIM and VIM orchestrators, respectively. In particular,
processing latency measurements are posted by VNF instances onto a Time
Series Database service (i.e., Gnocchi) provided by OpenStack on each DC
slice and exposed through Gnocchi REST APIs. Similarly, network latency is
gathered through the REST API of the WIM, which leverages on OpenFlow
statistics provided by the SDN controller.

The SDN WAN experimental slice consists of three main components:
the SDN network, the WAN SDN controller and the WIM orchestrator. All
these components have been deployed within a unique experiment slice
where one physical node has been allocated for the SDN controller and
the WIM orchestrator, and 5 other physical nodes were allocated for the
SDN topology. All the nodes run a Ubuntu 16.04 distribution. Specifically,
we have installed the Open vSwitch (OvS) software on the physical nodes
composing the topology in order to emulate OpenFlow switches. The OvS
instances are controlled by an instance of the ONOS SDN controller run-
ning on the 6th physical node of the slice. The ONOS version used is Loon
(1.11.0).

The three SDN DC experimental slices host cloud instances based on
small OpenStack clusters (Pike version) running on a Linux Ubuntu 16.04
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operating system [63]. Each DC slice includes two or three OpenStack com-
pute nodes, where virtual machine instances are deployed over a QEMU-
KVM hypervisor. One of the compute nodes also acts as controller and net-
work node, respectively providing service REST API endpoints and external
connectivity. All OpenStack nodes are connected to another physical node
running an instance of OvS, representing the data plane SDN infrastruc-
ture of the DC, which is controlled by an instance of ONOS (Ibis version,
1.8.3) running locally. The same physical node hosts also the VIM orches-
trator. A separate network is used for the OpenStack management plane.
Finally, another physical node is used as the egress router of the DC slice
and is connected to the SDN WAN slice. The OpenStack cluster running in
each slice exposes the essential cloud services and related APIs, including
compute and placement (Nova), identity (Keystone), image (Glance), and
network (Neutron), as well as the time series database service (Gnocchi).
On top of those cloud services, the service chains requested by the Chain
Optimizer are deployed by means of the OpenStack SFC extension, an addi-
tional component providing API and mechanisms to support service function
paths creation and deployment in Neutron [64]. Traffic steering across the
service chain elements is implemented by means of specific OpenFlow rules
installed in the virtual switches through a Ryu SDN controller internally de-
ployed by Neutron. The problem of determining the current position of a
given packet within a chain can be solved by taking advantage of different
encapsulation techniques, including Multi-Protocol Label Switching (MPLS)
and Network Service Header (NSH). Due to compatibility issues with the
Linux kernel version adopted, only the former encapsulation is used in our
setup.

We selected ONOS as the SDN controller of the WAN since it is charac-
terized by a high modularity feature and a distributed architecture. More-
over, it has better performance in terms of jitter and packet loss with respect
to OpenDayLight and Floodlight controllers [65][66]. OpenStack was cho-
sen since it represents the most popular and mature open-source software
platform for IaaS deployments, and offers the SFC extension mentioned in
Section 7.2. It is also well integrated with other existing NFV platforms
such as Open Source MANO.

The established DC slices and the WAN slice interact at the data plane
level by exchanging packet data traffic, and at the orchestration plane level
by exchanging control messages between the CO, WIM and VIM orchestra-
tors. Each DC slice is connected to the WAN slice at the data plane level by
means of VXLAN tunnels established on top of the Virtual Wall management
network.

The VXLAN virtual tunnel endpoint (VTEP) located at the DC slice egress
router appears as an IP-routable interface of the router itself, whereas the
corresponding VTEP located at the WAN slice node is bridged to the OvS in-
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stance running in the same node. This particular setup allows the WAN slice
to act as a layer-2 SDN infrastructure (orchestrated by the WIM) intercon-
necting the three DC slices. The Chain Optimizer slice exchanges messages
with the other slices at the orchestration plane level via the Virtual Wall
management network. Interactions at the network control plane level do
not take place between different slices. This is in line with the envisioned
architecture, where each domain is supposed to adopt its own SDN control
plane solution independently of the choice made by other domains.

For the purpose of the experiments described in this paper, whose main
focus is the dynamic establishment and adaptation of service chains, the
full orchestration of computing and network resources and the lifecycle
management of VNFs are not strictly needed. Indeed, VNF placement and
deployment operations (possibly in appropriate DC locations based on spec-
ified constraints) are out of the scope of this work, which focuses on or-
chestrating VNFs instances so as to properly select VNFs and virtual links
to establish and adapt service chains dynamically and concurrently. For
this reason, the deployment set-up does not run an NFVO platform (e.g.,
Open Source MANO [67], OpenBaton [68]). In our current system imple-
mentation, and without lack of generality, the CO interacts directly with the
VIMs/WIM northbound interfaces. In addition, a set of VNFs are instanti-
ated at the experiment deployment time to be already running at the time
the service chaining is considered. In this context, the specific function
played by the VNF is irrelevant, e.g., either it runs a Firewall or NAT appli-
ance. They are considered only for their capacity to generate and process
traffic data. Thus, they have been basically instantiated as virtual machines
running software modules specifically developed to carry out these exper-
iments, or tools to generate traffic in the network (e.g., iperf [69]). The
VNFs have been deployed in the DCs according to the predefined place-
ment plan shown in Table 1. However, future evolutions of our orchestration
system will require the integration of the proposed orchestration function-
alities with relevant MANO components, i.e., NFVO and VNFM, to perform
service chaining within the context of a Network Service deployment and
lifecycle management.

Finally, the following additional software modules are used to support
the experimental activity: (i) CO-Client GUI which is a web-based GUI that
allows to generate service chain creation and deletion requests and deliver
them to the CO. A service chain request contains an ordered sequence of
types of VNFs that should process the traffic flow, the bandwidth demand,
and some parameters identifying the traffic flow (e.g., source and destina-
tion nodes); (ii) Workload-Processing Latency Publisher: a custom Java ap-
plication that emulates a processing latency profile proportional to the I/O
workload. According to a configurable processing capacity value, this appli-
cation computes a processing latency value as a function of the processing
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Table 1: Placement of the VNF instances on the three edge Cloud DCs.

DC-1 DC-2 DC-3

VNF VNF-1, VNF-2, VNF-5, VNF-6, VNF-5, VNF-6,

Types VNF-3, VNF-4, VNF-7, VNF-8, VNF-7

VNF-5, VNF-6, VNF-9, VNF-10

VNF-7

VNF VNF-1a, VNF-1b, VNF-5d, VNF-6e, VNF-5c, VNF-6c,

instances VNF-2a, VNF-2b, VNF-7d, VNF-7e, VNF-6d, VNF-7b,

VNF-3a, VNF-3b, VNF-8a, VNF-8b, VNF-7c

VNF-4a, VNF-4b, VNF-9a, VNF-9b,

VNF-5a, VNF-5b, VNF-10a, VNF-10b

VNF-6a, VNF-6b,

VNF-7a

capacity and the traffic input rate measured at the network interface. It
also executes a script running in each VNF instance to emulate the effect
of this calculated processing latency by applying this value as a delay to the
output interface, using the Linux Kernel Traffic Control command [70]. The
processing latency value is periodically posted as an ad-hoc defined metric
maintained by the Gnocchi database in the OpenStack deployment for the
benefit of CO computation.

7. Experimental Results

In this section, we provide a set of experimental results to evaluate the
performance of the orchestration system to process service chain requests,
to compute the latency-optimized VNF chains by correctly elaborating mon-
itoring data on processing and network latency, and to set-up VNF chains
across network and cloud domains by properly enforcing the interaction of
the CO with the underlying VIM and WIM orchestrators.

To this purpose, we used the CO-Client GUI to deliver create and delete
service chain requests to the CO with a different set of lengths and re-
quirements. Accordingly, the CO handles the request, computes a latency-
optimized solution and sends out the corresponding forwarding instructions
to the affected VIM and WIM orchestrators. More specifically, a set of dif-
ferent service chain requests with their respective requirements (in terms
of bandwidth and maximum latency) have been generated and sent one by
one to the CO through the CO-Client GUI. An example of the generated
chains sequences is described in Table. 2. As soon as the switches are con-
figured and the chain is established in the edge cloud domains, the traffic
(i.e., an iperf flow [69] with a bit rate equal to 1 Mb/s) starts flowing across
the network.
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Table 2: Example of generated chains sequence.

Sequence Chain Requirements

1 VNF1, VNF2, VNF8 1Mbps 500ms

2 VNF3, VNF6, VNF9, VNF10 1Mbps 500ms

3 VNF4, VNF7, VNF10 1Mbps 500ms

4 VNF4, VNF5, VNF9, VNF10 1Mbps

5 VNF1, VNF2, VNF7, VNF8 1Mbps

7.1. Performance of latency-optimized service chain path computation

We considered the overall response time which is the time measured at
the CO side elapsing from the reception of a request to the delivery of a
response to the client. The overall response time includes the execution
of the VNF selection optimization algorithm by the CO and, if a solution is
found, the time needed for sending the forwarding instructions to VIM and
WIM orchestrators and receiving their reply. We also specifically measured
the computation time needed by the CO to run the VNF Selection algo-
rithm and solve the optimization problem. Table 3 reports the measured
values as a function of the service chain length. As expected, the overall
time required for handling a service chain request increases with the chain
length since the WIM and VIM orchestrators require more time for the chain
setup. Given the relatively limited scale of the experimental setup, the com-
putation time of the optimization algorithm remains in the order of a few
milliseconds (from 2 to 3.2 ms) and it is therefore not shown as a separate
metric in the table. Most of the overall response time is due to the VIMs
and WIM response times, which are analysed in detail in subsections 7.2
and 7.3, respectively.

Table 3: Time needed for service chain deployment

Chain Length Overall response Time [s]

2 64.34

3 69.34

4 74.96

5 82.75

Hereafter, we present a set of tests conducted to evaluate the end-to-
end latency estimation error and to perform a comparative evaluation with
a greedy VNF selection strategy. The tests have been conducted by generat-
ing a set of 10 chain requests, with length 3, VNF types randomly picked up
from the list of available ones and randomly selected source and destination
nodes. Requests are sequentially submitted to the CO and corresponding
UDP traffic flows from source to destination nodes are generated using the
iperf tool. These tests have been conducted in three different scenarios: i)
no background traffic - in this scenario the inter-DC traffic is given by the
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traffic flows of deployed chains; ii) constant background traffic - the latency
between DCs is increased by a constant value (5 ms), using the traffic con-
trol command (tc) in the Linux kernel, after each chain request in order to
emulate a continuous increment of background traffic in addition to traffic
flows traversing deployed chains and iii) step-increasing background traffic
- the inter-DC latency is increased by 50 ms after the third chain request
and by 15 ms after the sixth chain request in order to emulate a step-wise
increment of inter-DC background traffic.

Since the CO makes its decisions leveraging an estimated end-to-end la-
tency, it is relevant evaluating the error introduced. The end-to-end latency
is computed by the CO as the sum of the processing latency collected from
VNFs and inter-DC latency measurements. Therefore, the error in latency
estimation may be affected by inter-DC network delay variations that can
be experienced in the infrastructure and by intra-DC network delays. Fig. 6
shows the relative error between measured and estimated end to end la-
tency. In all scenarios the average relative error is below 3.9%. We consider
such error acceptable.

Figure 6: Estimation error in end-to-end latency computed by the Chain Optimizer

We also compared the performance of the CO with respect to a greedy
strategy, which selects VNF instances with lowest processing time and does
not account for inter-DC network latency. Fig. 7 shows the relative differ-
ence in measured end-to-end latency of deployed chains obtained by the
VNF Selection algorithm of the CO vs. the greedy strategy. The CO outper-
forms the Greedy strategy on average and the relative difference increases
with the background traffic, since this also affects the inter-DC latency. As
shown in the figure, in some cases Greedy outperforms the CO. This is ex-
pected, since the experiments start with the same configuration but at each
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Figure 7: Distribution of relative difference in measured end-to-end latency of deployed chains
between the VNF Selection algorithm at the Chain Optimizer and a greedy strategy

step the two strategies may take different decisions and therefore the in-
frastructure status may evolve differently.

7.2. Performance of service chain path deployment in the cloud

The response time of the VIM for deploying service chains measured in
one of the DC slices as a function of the chain size is shown in Fig. 8. Such
response time is measured from the instant the VIM receives the forward-
ing instructions from the CO, to the instant the VIM replies that the chain
has been correctly deployed, thus including the time required to locate the
needed VNF instances (already running on the servers) and apply all the
necessary traffic steering rules in the OpenStack network components. The
linear growth of the VIM response time with the number of VNFs included
in the service chain clearly shows the significant impact of the size of the
requested chain. However, even for a service chain composed of as many as
10 elements in a single DC, the overall deployment stays below ten seconds.
Considering that chain deployment can run in parallel in different DCs and
that we hardly expect a service chain to include more than a few units of
VNFs, we can conclude that the VIM operations are sufficiently scalable.

In order to better understand the behavior of the VIM response time
and its relation with the service chain size, we decided to analyze in details
the inner mechanisms of the OpenStack SFC extension, which deploys the
actual service chain path in four steps [71]:

1. A Flow Classifier is instantiated, which classifies the incoming traffic
based on header matching rules and selects the packets that must be
forwarded through a given service chain.

25



Figure 8: Response time at the VIM for service chain deployment as a function of the chain
size, for the case of a single instance per VNF type.

2. A number of Port Pairs are then created, each specifying the ingress
and egress ports of a potential element of the chain. Note that each
Port Pair refers to an actual instance of a VNF, and it can be assigned
a weight to be used for load balancing among multiple instances of
the same VNF type. A Port Pair can be either uni- or bi-directional,
depending on how the corresponding VNFs should be traversed by
the packet flow.

3. As many Port Pair Groups are created as the number of elements in
the chain. A Port Pair Group includes the Port Pairs corresponding
to multiple instances of the same VNF type. Weighted load balancing
is automatically applied to a given chain element when a given Port
Pair Group includes more than one Port Pairs, based on the weight
assigned to the latter.

4. Eventually, a Port Chain is created as a binding between one or more
Flow Classifiers and an ordered list of Port Pair Groups, including all
the required configurations in the data plane components (e.g., rel-
evant flow matching and steering rules installed in virtual switches).
The Port Chain then represents the deployment of the service chain
path to be traversed by some given traffic flows, implementing load
balancing if multiple instances of the VNFs are available. A Port Chain
can also be asymmetrical or symmetrical, depending on whether the
packets must traverse the chain only in the forward path or also in
their way back to the source.

Referring to the first example of chain reported in Table 2 and consid-
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Table 4: Breakdown of the VIM response time for service chain deployment in the cloud, for
increasing chain size and a single instance per VNF type.

Service Flow Port Port Pair Port VIM Resp. Time
Chain Size Classifier [s] Pair [s] Group [s] Chain [s] (+/- StDev) [s]

1 0.1602 0.5225 0.0686 0.8524 1.6702 (+/- 0.1233)
2 0.1567 0.5958 0.5768 1.3422 2.7419 (+/- 0.2015)
3 0.1568 0.7155 1.1189 1.7873 3.8478 (+/- 0.3837)
4 0.1587 0.7397 1.2577 2.3155 4.5583 (+/- 0.5231)
5 0.1631 0.7973 1.2990 2.7990 5.1419 (+/- 0.4076)
6 0.1547 1.1460 1.2622 3.2401 5.8900 (+/- 0.1669)
7 0.1575 1.4964 1.4205 3.7319 6.9096 (+/- 0.1192)
8 0.1602 1.7106 1.4427 4.2506 7.6638 (+/- 0.1940)
9 0.1530 2.0064 1.5720 4.7808 8.6235 (+/- 0.2164)
10 0.1563 2.0971 1.6619 5.2477 9.2691 (+/- 0.7349)

ering the VNF placement in DC-1 reported in Table 1, the OpenStack SFC
extension running in DC-1 created two Port Pair Groups (corresponding to
VNF-1 and VNF-2), four Port Pairs (corresponding to the four instances VNF-
1a, VNF-1b, VNF-2a and VNF-2b), one Flow Classifier and One Port Chain.

We measured the contributions from the four steps mentioned above to
the overall VIM response time, as reported in Table 4 for a chain size rang-
ing from 1 to 10 VNFs and a single instance per VNF type. The number of
chain elements does not affect the time needed to create the Flow Classifier,
as in this case we required one flow only to traverse the chain. The chain
size does have an impact on the other contributions, although this is rela-
tively limited when creating Port Pairs and Port Pair Groups, because those
steps require only to update an internal database. What brings the most
significant contribution to the VIM response time is the time to create the
Port Chain: this is the step when all the OpenStack networking configura-
tions are finally applied, including specific OpenFlow rule installation in the
virtual switches. The results quantify how the higher the number of chain
elements, the longer the time needed to perform all configurations.

The number of instances per VNF type is another parameter that affects
the time needed to create a Port Chain and, as a consequence, the overall
VIM response time, as shown in Fig. 9 for the case of a chain size of 4 VNFs,
each with a number of instances ranging from 1 to 5. Finally, the impact of
defining multiple flows (ranging from 1 to 10) on the time to create the Flow
Classifier is shown in Fig. 10, for a chain size of 4 VNFs and 3 instances
per VNF type. The contribution of this step to the response time does not
depend on the chain size nor on the number of instances per VNF type, and
it is limited to sub-second scale.
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Figure 9: Response time at the VIM for service chain deployment as a function of the number
of VNF instances per VNF type, for the case of a chain size of 4 VNFs.

Figure 10: Response time of the Flow Classifier deployment as a function of the number of
flows that must traverse the service chain being deployed, for the case of a chain size of 4
VNFs and 3 instances per VNF type.
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7.3. Performance of service chain path deployment and redirection across
WAN

In this paragraph, we present the performance related to the deployment
of the service chain paths across the WAN domain. More specifically, we
report the overall time required by the WIM to handle a service chain setup
request, the time required by the WAN SDN controller to install the flow
rules for a service chain path, and the time required to perform redirection
in case of switches overload.

Fig. 11 plots the measured overall response time for the 5 chain requests
detailed in Table 2. The response time corresponds to the time elapsing
between the reception of a request by the WIM and the acknowledgement
sent back to the CO. It includes the identification of the switches composing
the service chains paths, the check of their status evaluating their current
load and the time necessary for the setup of the specific flow entries in the
switches flow tables. The error bars indicate the standard deviation from
the measured mean over 10 identically performed measurements for each
chain sequence. The experiments gave a mean of 44.38s with a standard
deviation equal to 4.23s. Results show that the WIM response’s time not
only depends on the length of the deployed service chain but also on the
number of selected DCs where the VNFs are deployed. This is reflected
in the plot where Chain 1 and 3 present a lower time with respect to the
other chains since their length is equal to 3. Among those 2 chains, Chain 1

requires less time since it is deployed in only 2 DCs (DC-1 and DC-2) while
the VNFs composing Chain 3 are deployed in the 3 DCs.

Figure 11: Response time of path service chains.

In Fig. 12, we detail the setup time considering the same 5 paths for the
creation of different sequences of service chains. The setup time represents
the time required by the SDN controller for the configuration of the flow
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entries in all the switches composing the path interconnecting the VNFs
in the chain. As shown by the results, this time also mainly depends on
the service chains length and has an average of 17s which is reasonable in
our opinion. It is worth noting that the time required to setup a path for a
chain spread across 2 DCs is around 15s while it increases up 20s for chains
spreading across 3 DCs.
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Figure 12: Setup time of path service chains.
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Figure 13: Redirection time of path service chains.

In Fig. 13, we show the redirection time, which represents the time nec-
essary for the load-balancing algorithm to adapt the network paths con-
necting the edge cloud domains to the load status information of switches.
In case one or more switches are overloaded, the WIM redirects the traffic
through other available switches by first deleting the old configuration rules
and then setting new ones in the selected switches. Also in this case, the
redirection time depends on the length of the service chains (i.e., number
of flow rules to be deleted and then reconfigured) and is relatively low (i.e.
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around an average of 6s) with respect to the overall setup time.

 0

 20

 40

 60

 80

 100

 1  2  3  4  5

A
v
e

ra
g

e
 S

w
it
c
h

e
s
 L

o
a

d
 [

M
B

]

Switches ID

Baseline
Redirection

Figure 14: Impact of the load-balancing algorithm on the switches load.

Finally, to show the efficiency of the load-balancing algorithm, we evalu-
ated the performance of the SDN network in a larger emulated environment.
More specifically, we used the Abilene topology [72], which is composed of
11 nodes connected in a mesh network. In each node of the topology, we de-
ployed an OpenFlow-enabled emulated switch using the Mininet tool [73]. A
subset of those switches (i.e., 5 out of 11) were connected to emulated cloud
platforms that reproduce the behavior of the data centers. Fig. 14 plots
the average load of the switches connected to the cloud platforms when
the load-balancing algorithm is applied with respect to the baseline. We
can clearly notice that without the redirection mechanism there are high
disparities among the switches in terms of average load where, for exam-
ple, switches 1 and 2 are almost doubly loaded with respect to switches 3

and 5. On the contrary, the application of the load-balancing algorithm in-
troduces an improvement in the results demonstrated by an average load
almost equally distributed among the available switches.

8. Conclusions and Discussion

In this work, we presented the result of an integration effort to build
LASH-5G, an end-to-end orchestration system comprising optimized VNF
selection and dynamic traffic steering control capabilities supporting latency-
aware, adaptive and reliable service chaining over geographically distributed
SDN-based cloud DCs interconnected through SDN WAN. We carried out
experiments to validate and evaluate the performance of the orchestration
system using the Fed4FIRE platform. This federated testbed facility allowed
us to set-up a composite yet integrated SDN/NFV deployment thereby re-
producing a distributed yet realistic 5G infrastructure set-up.
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First, we were able to deploy the OpenStack cloud platform and different
SDN controllers (i.e., ONOS, Ryu) through a substantial multi-domain SD-
N/NFV deployment (i.e., 28 virtual machines spread across 3 cloud domains
interconnected through 5-nodes WAN).

Definitely, this composite cloud deployment allowed us to develop and
fine-tune the VIM software components, especially in terms of handling un-
derlying heterogeneous network controllers. In addition, we could finely
tune the VIM operation to handle all possible cases of needed configura-
tions while enforcing dynamic service chaining rules when multiple cloud
domains are involved (e.g., correctly deploying and updating service chains
while handling different combinations of VNF instances and service end-
points located in different OpenStack nodes and clusters).

Second, we were able to measure communication latency in an inte-
grated network environment while testing the VNF selection algorithm in-
cluded in the CO implementation on top of a dynamic view of underlying
virtual resources and network topology. According to the performance met-
rics measured with the experiments we observed that the computation time
of the algorithm is very low with respect to the time elapsed for forwarding
instructions delivery and chain installation. This is also due to the fact that
the algorithm works on an abstract topology that hinders intra-DC topology
details.

Finally, we used virtual testbeds and their federation features to carry
out experiments using scales that are generally larger than experiments
carried out in a university laboratory. With virtual testbeds, we were able to
start performing significant tests of the system prototype thereby achieving
evaluation process effectiveness and cost savings. As a future work, we plan
to: i) evaluate the orchestration system operation in a more extensive way,
ii) extend the comparative evaluation with alternative VF selection strate-
gies and iii) adopt a container-based setup and Kubernetes orchestration
capabilities.
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