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Abstract

We present two new diagnostics based on the intrinsic shape alignments of group/cluster size dark matter halos to
disentangle the effect of f (R) gravity from that of massive neutrinos. Using snapshot data from a series of the
DUSTGRAIN-pathfinder N-body simulations for a Planck ΛCDM cosmology and three f (R) gravity models with
massive neutrinos (ν), we first determine the probability density functions of the alignment angles between the
shape orientations of massive halos and the minor principal axes of the local tidal fields. The numerically obtained
results turn out to agree very well with the analytic formula derived under the assumption that the anisotropic
merging along the cosmic web induces the halo shape alignments. The four cosmologies, which several standard
diagnostics failed to discriminate, are found to yield significantly different best-fit values of the single parameter
that characterizes their analytic formulae. We also numerically determine the spatial cross-correlations between the
shape orientations of neighbor group/cluster halos, and find them to be in good agreements with a fitting formula
characterized by two parameters, whose best-fit values are found to differ substantially among the four models. We
also discuss the limitations and caveats of these new diagnostics that must be overcome for their application to real
observational data.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Cosmology (343)

1. Introduction

If the scientific precept occam’s razor were to be blindly
used, then the standard ΛCDM cosmology based on Einstein’s
general relativity (GR) with a dominant cosmological constant
(Λ) and cold dark matter (CDM) would win over all
nonstandard ones since it is the simplest and most effective
paradigm within which almost all observations can be
explained (for a recent review, see Blanchard et al. 2022, and
references therein). Nevertheless, the notorious fine-tuning
problem of Λ (see Weinberg 1989; Carroll 2001, for reviews)
has always left much room for us to come up with various
alternatives in the faint hope that a more fundamental and
natural description of the universe might become possible.
Meanwhile, to survive multiple stringent observational tests, an
alternative model must yield almost identical growth and
expansion histories to the ΛCDM counterpart. In other words,
the viability of an alternative cosmology is ensured only
provided that it cannot be readily discriminated from the
ΛCDM one by the conventional diagnostics based on the
expansion and growth histories.

For instance, some f (R) gravity models combined with
massive neutrinos (ν) and CDM have been shown to be
indistinguishable from ΛCDM cosmology by such powerful
standard probes as the density power spectrum, evolution of the
cluster abundance, and matter-to-halo bias factor (Baldi et al.
2014; Hagstotz et al. 2019). Here, f (R) gravity is a modified
gravity (MG) whose dynamics is described by the same

Einstein–Hilbert action but with Ricci scalar, R, replaced by an
arbitrary function, f (R) (Buchdahl 1970; Starobinsky 1980; Hu
& Sawicki 2007; Li & Barrow 2007). It predicts the presence of
a fifth force in addition to gravity, but recovers GR in high-
density environments via a screening mechanism called the
chameleon (Khoury & Weltman 2004). The strength of a fifth
force is quantified by the absolute value of its derivative, called
the scalaron, at the present epoch, |fR0|≡ |df/dR|z=0 (for a
review, see Sotiriou & Faraoni 2010). The current observa-
tional constraint is |fR0| 3.7× 10−6 on the cluster scale (e.g.,
Boubekeur et al. 2014).
However, if neutrinos (ν) have non-zero total mass, Mν> 0,

then the observational data could allow |fR0| to have larger
values than this constraint, since the presence of massive
neutrinos would simultaneously suppress structure formation,
thereby counteracting the enhancement due to the fifth force.
Some combination of Mν with |fR0| can beguile the standard
diagnostics not to detect the presence of free streaming
neutrinos and a fifth force by producing growth histories
consistent with that of the standard ΛCDM case within
observational uncertainties (Baldi et al. 2014). Breaking this
dark sector degeneracy between the ΛCDM and the νCDM-
+f (R) cosmologies requires an acutely sensitive nonlinear
diagnostic that can perceive and react to a subtle difference
between them in spite of their very similar growth and
expansion histories. What has so far been proposed as such
diagnostics includes the evolution of supercluster straightness,
nonlinear growth rate, nonlinear redshift distortions, evolution
of the drifting average coefficient of the isolated cluster
abundance, high-order weak lensing statistics, and the high-
redshift size distribution of cosmic voids (Giocoli et al. 2018;
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Peel et al. 2018; Hagstotz et al. 2019; Wright et al. 2019; Ryu
et al. 2020; Contarini et al. 2021).

Very recently, Chuang et al. (2022) suggested that the
intrinsic shape alignment of galactic halos can be useful as a
probe of gravity, showing by N-body simulations that its
strength significantly differs between the ΛCDM and a f (R)
gravity model with fR0= 10−5 (fR5). Here, the intrinsic shape
alignment of galactic halos refers to the phenomenon that the
shape orientations of galactic halos exhibit a tendency of being
preferentially aligned with the hosting filaments, which is
believed to originate from the occurrence of anisotropic
merging along the filamentary cosmic web (Altay et al. 2006;
Hahn et al. 2007; Zhang et al. 2009, 2013; Chen et al. 2016;
Lee 2019, and references therein). The fR5 model that Chuang
et al. (2022) mainly considered, however, has been already well
known to be readily distinguishable from ΛCDM cosmology
by the aforementioned conventional diagnostics themselves
(Baldi et al. 2014), since its growth and expansion histories
significantly differ from that of ΛCDM cosmology. In other
words, it is not a surprise that the strength of the intrinsic shape
alignments of galactic halos differs between the ΛCDM and the
fR5 models. A critical question that arises in light of Chuang
et al. (2022)’s model is whether or not halo shape alignment
could provide a new independent clue to the nature of gravity
and DM beyond the constraints put by those standard statistics.

In this Paper, we intend to explore if the intrinsic shape
alignments of group/cluster size halos can break the dark

sector degeneracy between ΛCDM and νCDM+f (R) cosmol-
ogies. We choose the group/cluster size halos rather than their
galactic counterparts, since the shape orientations of those
massive halos have long been well known to exhibit much
stronger intrinsic alignments with the filaments (e.g., Altay
et al. 2006; Hahn et al. 2007; Zhang et al. 2013; Lee 2019). The
plan of this paper is as follows. In Section 2, we will briefly
review the analytic prescriptions for the intrinsic shape
alignments of DM halos with the tidal fields and present a
new formula for the spatial correlations of the shape
orientations of group/cluster halos. In Section 3, we will
numerically examine if and how efficiently two new diag-
nostics based on the intrinsic shape alignments of group/cluster
size halos can break the dark sector degeneracy among the
ΛCDM and three different νCDM+f (R) cosmologies. In
Section 4, we will summarize the results and discuss the
advantages and disadvantages of these new diagnostics
compared with the conventional ones.

2. A Brief Review of the Analytic Model

Suppose that a DM halo is found at some position, x, where
the local tidal tensor, T= (Tij), smoothed on the scale of Rf, has
three eigenvectors, {e1, e2, e3}, corresponding to three
eigenvalues, {λ1, λ2, λ3|λ1� λ2� λ3}. The eigenvectors, e1
and e3, are parallel to the directions of maximum and minimum
matter compression, respectively. Since the sum of the three

Figure 1. Numerically obtained probability density functions of the absolute values of the cosines of the angles between the cluster shapes and the directions of
minimum matter compression (black filled circles with errors) compared with the analytic model with one best-fit parameter (red solid line), on the scale of
Rf = 3 h−1 Mpc at z = 0 for the four different cosmologies.
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eigenvalues of T is equal to the local density, δ, the traceless
tidal tensor, =˜ ( ˜ )T Tij , can be obtained as dº -˜ ( )T T I3ij ij ij,
where Iij is a 3× 3 identity matrix. To single out only the
anisotropic effect of the tidal field on the orientations of DM
halo shapes, we will deal with T̃ rather than T.

Suppose also that the DM halo has an ellipsoidal shape
whose inertia momentum tensor, U= (Uij), has three eigenva-
lues and corresponding eigenvectors. Let û denote a unit
vector parallel to the major eigenvector of (Uij) correspond-
ing to its largest eigenvalue. We will refer to û as the halo
shape orientation throughout this paper. If a halo formed
through an anisotropic merging along the cosmic web, its shape
orientation, û, is expected to be in the direction of minimum
matter compression. To describe quantitatively this expected
alignment of û with e3, Lee (2019) proposed the following
analytic formula for the probability density function of q º∣ ∣cos
∣ ˆ · ˆ ∣u e3 :
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Here, {ˆ ˆ ˆ }e e e, ,1 2 3 are the orthonormal eigenvectors of the unit
traceless tidal tensor, ºˆ ˜ ∣ ˜∣T T T , in parallel to {e1, e2, e3}

corresponding to its three eigenvalues l l l l l+ +{ ˆ ˆ ˆ ∣ ˆ ˆ, ,1 2 3 1
2

2
2

l =ˆ }13
2

, θ and f are the spherical polar and azimuthal angles of
û, respectively, in the principal frame of T̂ , and dt is an empirical
parameter introduced to measure the strength of the û–ê3

alignment tendency. Lee (2019) showed that the best-fit value of
dt varies with Rf, reaching its maximum possible value when

prº [ ( )]R M3 4f m
1 3, where ρm is the mean density of the

universe and M is the halo mass. This optimal smoothing scale
amounts to four times the halo virial radius, Rf∼ 4rvir (Libeskind
et al. 2013a).
If the shape orientations of DM halos are truly aligned with

the direction of minimum matter compression parallel to ê3,
then it is expected that the large-scale coherence of T̂ would
induce shape–shape alignments between neighbor halos. Lee
et al. (2008) defined the spatial cross-correlation function of û
as:

h = á + ñ -( ) ∣ ˆ ( ) · ˆ ( )∣ ( )u x u x rr
1

3
, 22

where r is a separation vector and 1/3 is the value of
á + ñ∣ ˆ ( ) · ˆ ( )∣u x u x r 2 in the asymptotic limit that r≡ r/|r| goes
to infinity. The ensemble average in Equation (2) is to be taken
over the halo pairs separated by the same distance, r.
The functional behavior of η(r) should be closely linked with

the spatial cross-correlations of the tidal fields, Cijkl(r)≡
〈Tij(x)Tkl(x+ r)〉, the analytic expression for which was derived
by Lee & Pen (2001) in the linear limit where T can be

Figure 2. Same as Figure 1 but on the scale of Rf = 5 h−1 Mpc.
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described as a Gaussian random field:
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Here, ξ(r) is the two-point correlation function of the linear
density field and J3(r) and J5(r) represent the third and fifth
moments of ξ(r), respectively, defined as (Lee & Pen 2001):
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where P(k) is the linear density power spectrum and W(k, Rf) is
the top-hat window function with a filtering radius of Rf. The
spatial cross-correlations of the traceless tidal tensor,

º á + ñ˜ ( ) ˜ ( ) ˜ ( )r x x rC T Tijkl ij kl , can be obtained from

Equation (3) as:
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Equation (7) reveals that the spatial correlation of T̃ in the
linear regime depends on the background cosmology through
two linear quantities, ξ(r) and J3(r)− J5(r). If ξ(r) behaved like
a power-law function of r, then C̃ijkl would depend only on ξ(r)
since J3 would be equal to J5. The large-scale coherence of the
anisotropic tidal field, which deviates ξ(r) from the simple
power-law scaling, plays the role of linking C̃ijkl to
J3(r)− J5(r).
Proposing an ansatz that the spatial cross-correlations of the

halo shape orientations can be expressed in terms of ξ(r) and
J3(r)− J5(r) like C̃ijkl, we put forth the following two-parameter
fitting formula for η(r):
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where σ(Rf) is the rms fluctuation of the linear density field
smoothed on the scale of Rf and g1 and g2 are two free
parameters introduced to measure the strength of the cross-
correlations of the halo shape orientations. The first parameter,
g1, measures the strength of the shape–shape alignments

Figure 3. Same as Figure 1 but on the scale of Rf = 8 h−1 Mpc.
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between the halos with comparable masses, while the second
one, g2, between the halos with different masses. Like dt in
Equation (1), these two parameters are expected to vary with
the smoothing scale, having their maximum possible values on
the scale of Rf∼ 4rvir (Libeskind et al. 2013a).

3. Numerical Analysis

We utilize a data subset from the DUSTGRAIN-pathfinder
project (Giocoli et al. 2018), a series of DM-only N-body
experiments that simulated various νCDM+f (R) cosmologies
as well as a ΛCDM cosmology, with the help of the MG-
GADGET code (Puchwein et al. 2013). For the DUSTGRAIN-
pathfinder simulations, the widely applied Hu–Sawicki formula
was used to specify f (R) (Hu & Sawicki 2007), and the scheme
developed by Viel et al. (2010) was applied to treat the massive
neutrinos as hot DM particles. The linear box size (Lbox), the
total number of DM particles (Npar), and the particle mass
resolution (mpar) of the simulations are Lbox= 750 h−1 Mpc,
Npar= 7683, and mpar= 8.1× 1010 h−1Me, respectively. We
refer the readers to Giocoli et al. (2018) and Puchwein et al.
(2013) for full descriptions of the DUSTGRAIN-pathfinder
project and the MG-GADGET code, respectively.

For our analysis, we consider the Planck ΛCDM (Planck
Collaboration et al. 2016) and three different νCDM+f (R)
cosmologies, namely, fR6 with |fR0|= 10−6 and Mν= 0.0 eV,
fR6+ 0.06 eV with |fR0|= 10−6 and Mν= 0.06 eV, and
fR5+ 0.15 eV with |fR0|= 10−5 and Mν= 0.15 eV. These
three νCDM+f (R) models have been known to be highly

degenerate with the Planck ΛCDM cosmology by the standard
diagnostics based on the growth history (Baldi et al. 2014;
Hagstotz et al. 2019). Especially, the fR6+ 0.06 eV and
ΛCDM pair shares an identical normalization amplitude of the
linear density power spectrum, σ8, while the fR5+ 0.15 eV and
fR6 pair exhibits a negligibly small difference in σ8 between
each other (see Table 1).
For each of the four cosmologies, we apply the Rockstar

algorithm (Behroozi et al. 2013) to the DM particle snapshot at
z= 0 to obtain a catalog of DM halos which lists a variety of
their properties such as their position (x), virial mass (M), and
shape. Basically, the method devised by Allgood et al. (2006)
was incorporated into the Rockstar algorithm to determine the
ellipsoidal shape of a DM halo, providing information on the
direction of the shape orientation of each halo, û, as well as on
the intermediate-to-major axial ratio, p. Applying a mass cut of
Mcut= 8.1× 1012 h−1Me and an axial ratio cut of pcut= 0.9 to
the virial mass and intermediate-to-major axial ratios, we make
a selection of massive triaxial distinct halos without being

Figure 4. Numerically obtained mean absolute values of the cosines of the angles between the cluster shapes and the directions of minimum matter compression on
three different scales for the four different cosmologies.

Table 1
Numbers of Selected Group/Cluster Halos for each Cosmology

Model |fR0| ∑mν σ8 N8.1 N10.1 Nsync

(eV)

ΛCDM L 0.0 0.847 217567 159969 208500
fR6 10−6 0.0 0.861 242418 176106 208500
fR6+0.06eV 10−6 0.06 0.847 238003 173164 208500
fR5+0.15eV 10−5 0.15 0.864 226161 168259 208500
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embedded in any larger halos. These two conditions are to
ensure a relatively high degree of accuracy in the determination
of the shape orientations of the selected halos.5 The fifth
column of Table 1 also shows the number of selected massive
halos, N8.1, for each model. Employing the T-reconstruction
routine described by Lee (2019), we determine the unit
traceless tidal tensor, T̂ , smoothed on the scale of Rf at the
position of each selected halo. Via the similarity transforma-
tion, we find three eigenvalues, l̂1, l̂2, l̂3, and corresponding
eigenvectors, ê1, ê2, and ê3 of T̂ (see also Lee et al. 2021).

For each selected halo, we calculate q º∣ ∣ ∣ ˆ · ˆ ∣u ecos 3 .
Splitting the range of q ∣ ∣0 cos 1 into twelve short bins
of equal length, qD cos , and counting the numbers of those
halos whose values of q∣ ∣cos fall in each bin, ΔN, we
numerically determine the probability density function,

q q= D D ´(∣ ∣) ( )p N Ncos cos tot , where Ntot denotes the
total number of selected massive halos at z= 0. Plugging the
mean values of l̂1, l̂2, l̂3 averaged over the selected halos into
Equation (1), we fit the analytic formula to the numerical
results with Poissonian errors by adjusting the parameter dt via
χ2(dt)-minimization. The error in dt is calculated as one

standard deviation, sdt, from the maximum likelihood distribu-
tion, cµ -( ) [ ( ) ]p d dexp 2t t

2 .
Figure 1 plots the numerically obtained q(∣ ∣)p cos (black

filled circles) with Poisson errors as well as the analytic
formula, Equation (1), with the best-fit parameter (red solid
line) on the scale of Rf= 3 h−1 Mpc at z= 0 for the four
different cosmological models. This choice of Rf= 3 h−1 Mpc
is made by compromising between the particle resolution of the
simulations and the validity of Equation (1). As can be seen, all
of the four models exhibit the existence of strong û–ê3
alignments, but differ from one another in the functional
behavior of q(∣ ∣)p cos , which is excellently described by the
analytic formula with the best-fit value of dt. We also repeat the
same calculation for two different cases of the smoothing
scales, Rf= 5 h−1 Mpc and 8 h−1 Mpc, the results of which are
shown Figures 2–3, respectively. The good agreements
between the numerical and analytical results seem to be robust
against the variation of Rf. For a given cosmology, however,
the û–ê3 alignment becomes stronger for the case where the
tidal field is smoothed on the smaller scale, inconsistent with
what Lee (2019) found for the ΛCDM case.
Figures 4 and 5 show how significantly the four models

differ from one another in the ensemble average, qá ñ∣ ∣cos , and
in the best-fit value of dt, respectively, for the three cases of Rf.
Note that the single parameter, dt, of the analytic formula varies
more strongly with the four models than qá ñ∣ ∣cos , demonstrat-
ing the efficiency of the analytic formula in distinguishing
among the four models. The success of Equation (1) in
matching the numerical results and its efficiency in

Figure 5. Best-fit values of the shape correlation parameter on three different scales for the four different cosmologies.

5 As shown by Allgood et al. (2006), the minimum number of particles, 1000,
corresponding to the mass cut of Mcut = 8.1 × 1013 h−1 Me in the current
analysis, is in fact required to ensure a negligible degree of numerical
contamination in the determination of the halo shapes. However, the current
analysis cannot afford to this high value of Mcut since the number of the halos
would drastically drop due to the relatively low particle resolution of the
simulations.
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discriminating degenerate models implies that the nature of
gravity and DM must leave a unique imprint on the shape
orientations of group/cluster halos relative to the large-scale
tidal fields by modulating the anisotropic occurrence of the
merger events along the cosmic web.

Our explanation for the nonmonotonic or incoherent change
of dt with |fR| and ∑mν, is as follows. The strength of the shape
alignments of group/cluster halos with the tidal field is
determined not only by how rapidly the density fluctuations
grow but also by how anisotropic the large-scale cosmic web
becomes in the nonlinear regime. The incoherent change of dt
simply reflects the fact that the strength of this alignment is the
consequence of the delicate counterbalance between the two
effects. The high value of |fR| enhances the density growth,
spurring the hierarchical merging, which can enhance the shape
alignments. But, at the same time, the high value of |fR| makes
the cosmic web less anisotropic (i.e., more isotropic), which
can weaken the shape alignments. Similarly, the high value of
∑mν can have similar dual effects on the shape alignments
since the presence of more massive neutrinos can suppress
more severely the density growth, deterring the hierarchical
merging process, while it can also make the cosmic web more
anisotropic.

The monotonic increase of dt as the background changes
from the ΛCDM to the fR6+ 0.06 eV model implies that in
these ranges of 0� |fR|� 10−6 and 0�∑mν/eV� 0.06, the
gravity and neutrinos are strong and massive enough,
respectively, to have an enhancing effect on the shape

alignments. The lowest value of dt exhibited by the
fR5+ 0.15 eV model implies that at these high values of
|fR|= 10−5 and ∑mν/eV= 0.15, the gravity and neutrinos are
so strong and so massive, respectively, that they have the
opposite effect of reducing the shape alignments. This
incoherent variation of dt with |fR| and ∑mν is in fact a
manifestation of its potential to discriminate degenerate
cosmological models, which both of the linear and nonlinear
density correlations fail to achieve. In other words, our statistic
can complement the other conventional diagnostics based on
the density growth history since it brings out a different aspect
of the nonlinear evolution of the halos in the cosmic web—
depending not only on how fast the halos grow but also on how
anisotropic merging process the halos undergo.
Although it turns out that q(∣ ∣)p cos is very powerful in

principle to distinguish among degenerate models, the practical
success of this statistic is contingent upon the availability of
prior information on the background cosmology for the
reconstruction of the real-space tidal fields. Another diagnostic
based on the shape orientations of DM halos, which does no
require such prior information, is its spatial cross-correlation,
η(r). For the numerical determination of η(r), we calculate the
separation distance, r, between each pair of selected halos with
shape orientations, say, û1 and û2. Dividing the range of r into
multiple bins of equal length Δr= 2 h−1 Mpc, we compute the
ensemble average, á - ñ∣ ˆ · ˆ ∣u u 1 31 2

2 , over halo pairs whose
separation distances fall in [r, r+Δr] to obtain η(r). Then, we
create 1000 bootstrap resamples of the halo pairs falling in each

Figure 6. Numerically obtained halo shape–shape cross-correlation functions (black filled circles) compared with the analytic model with the two best-fit parameters
(red solid curves) for the four different cosmologies at z = 0.

7

The Astrophysical Journal, 945:15 (14pp), 2023 March 1 Lee, Ryu, & Baldi



of the r bins, and calculate the one standard deviation scatter
among the resamples as the associated error, ση.

The analytic formula for η(r), Equation (8), is fitted to the
numerically obtained η(r) by adjusting two parameters, g1 and
g2, via χ2(g1, g2)-minimization. To evaluate ξ(r), J3(r), and
J5(r) in Equation (8), we consistently use the same linear

density power spectrum of the Planck ΛCDM model for all of
the four models, mimicking the realistic situation where no
prior information regarding the background cosmology is
available. If η(r) is truly a powerful discriminator of
nonstandard models, then the best-fit values of g1 and g2
would significantly differ among the four models, despite the
same linear density power spectrum being consistently used to
evaluate the analytic formula.
Figure 6 plots the numerically derived η(r) (black filled

circles) at z= 0 as well as the analytic formula (red solid line)
with the best-fit parameters, g1 and g2, for the four models. It
also shows the values of the reduced χ2, i.e., c cºn nf

2 2 ,
where nf denotes the degrees of freedom equal to the number of
bins subtracted by 2, the number of free parameters. As can be
seen, for each model, we detect a clear signal of strong spatial
cross-correlation of the halo shape orientations over a large
distance up to 20 h−1 Mpc, and find good agreement between
the numerical results and the analytic formula with the best-fit
parameters for all of the four models. Figure 7 plots the 68%,
95%, and 99% contours of χ2(g1, g2) for the four models.
The statistical differences in η(r) between two degenerate

models can be effectively quantified by measuring the
distances in the configuration space spanned by the two
aforementioned parameters. Let s s s{ }g g, , , ,g g g g1 2 1 2 1 2

and
s s s¢ ¢ ¢ ¢ ¢ ¢{ }g g, , , ,g g g g1 2 1 2 1 2

denote two sets of the first and second
best-fit parameters of η, their marginalized errors, and the
covariance between them for the two models, respectively,
which can be all obtained from the numerically obtained
posterior distributions p[− χ2(g1, g2)/2]. Defining the distance

Figure 7. 68%, 95%, and 99% confidence regions of the χ2-values in the configuration space spanned by the two shape correlation parameters.

Figure 8. Signal-to-noise ratios of the differences among the ΛCDM, fR6,
fR6 + 0.06 eV, and fR5 + 0.15 eV cosmologies.
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D between them as º - ¢ + - ¢[( ) ( ) ]D g g g g1 1
2

2 2
2 1 2, we

determine the associated errors by the following error
propagation formula as:
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Figure 8 plots D/σD for each pair of the four cosmologies. The
two degenerate models, fR6 and fR5+ 0.15 eV, yield the
highest signal-to-noise ratio, D/σD 3, while the other two
degenerate models, ΛCDM and fR6+ 0.06 eV, produce only a
1.74 signal-to-noise ratio. Note also that the substantial signal-
to-noise ratios are found from the other two pairs: D/σD= 2.39
(D/σD= 2.41) for the ΛCDM and fR6 (fR6+ 0.06 eV and
fR5+ 0.15 eV) models.

To see if the result would depend on our specific choice of
Mcut for the selection of the halos, we repeat the whole analysis
but with a higher mass cut, Mcut= 10.1× 1012 h−1Me. The
number of the halos, N10.1, selected by applying this higher
mass cut for each model is provided in the sixth column of
Table 1. Figures 9–11 plot the same as Figures 6–8 but from
the halos selected by applying Mcut= 10.1× 1012 h−1Me,

respectively. As can be seen from Figure 9, the analytic
formula, Equation (8), still works quite well in describing the
numerical results, demonstrating its robustness against the
variation ofMcut. A comparison of Figure 7 with Figure 10 also
proves the consistency in the trends of the two parameters with
the four models, except for the contour sizes, in spite of the
change of Mcut. Figure 11 reveals that this new statistic based
on η is in principle capable of breaking the degeneracy between
the fR6 and fR5+ 0.15 eV models, still producing a significant
signal-to-noise ratio, D/σD> 3.
There is, however, one more test that η(r) must pass for its

validity to be confirmed as a discriminator of degenerate
cosmologies. Even though the mass and axial ratio distributions
of the four degenerate models are quite similar to one another,
they are not identical. Since the shape–shape correlations are
strongly dependent on the halo mass and axial ratios, it should be
necessary to inspect whether or not the detected difference in η(r)
among the degenerate models are due to differences in the mass
and axial ratio distributions. For this inspection, we control the
halo samples from the four models so that they share identical
mass and axial ratio distributions. The seventh column of Table 1
also lists the total number of halos, Nsync, belonging to the
controlled samples for each model. Figures 12–13 plot the number
counts of the halos as a function of their mass and axial ratios,
respectively, from the original (top panel) and controlled (bottom
panel) subsamples. As can be seen, the small but nonnegligible
differences in the mass and axial ratio distributions among the four
models disappear as the controlled subsamples replace the
original ones.

Figure 9. Same as Figure 6 but for the case of a higher mass cut, 10.1 × 1012 h−1 Me, is applied.
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Figures 14–16 plot the same as Figures 6–8 but for the
controlled subsamples. As can be seen, the signal-to-noise
ratios from the controlled samples diminish down to insignif-
icant values for all of the cases. The highest value of D/σD is
found to be 2.56 from the fR6 and fR5+ 0.15 eV pair, while

the other degenerate pairs, ΛCDM and fR6+ 0.06 eV yield
only 1.49. Nonetheless, we suspect that these lower values of
D/σD should be ascribed to the much smaller sizes of the

Figure 10. Same as Figure 7 but for the case of a higher mass cut, 10.1 × 1012 h−1 Me, is applied.

Figure 11. Same as Figure 8 but for the case of a higher mass cut,
10.1 × 1012 h−1 Me, is applied. Figure 12. Number distributions of the halos belonging the original (top panel)

and controlled (bottom panel) samples from the four models as a function of
halo mass.
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controlled samples compared with the original ones (see
Table 1), noting that the trends of the variation of η(r) and its
two parameters with the four models seem to be robust,
insensitive to whether or not the samples are original or
controlled.

4. Summary and Conclusion

We have put forth two diagnostics based on the shape
orientations of group/cluster halos to break the dark sector
degeneracy between standard ΛCDM and nonstandard νCDM-
+f (R) cosmologies. One is the statistical tendency of the halo
shape orientations being preferentially aligned with the
directions of minimum matter compression in parallel to the
minor principal directions of the linearly reconstructed tidal
fields, while the other is their spatial cross-correlations.
Analysing data subsets from the DUSTGRAIN-pathfinder
simulations performed for the ΛCDM, fR6, fR6+ 0.06 eV,
and fR5+ 0.15 eV cosmologies, we have determined the first
diagnostics at z= 0. The numerical results have been compared
with the analytic single parameter formula developed by Lee
(2019) under the assumption that the intrinsic shape alignments
of the DM halos originate from the anisotropic occurrence of
merging events along the cosmic web (e.g., West 1994;
Faltenbacher et al. 2002; Kasun & Evrard 2005; Libeskind
et al. 2013b; Wittman et al. 2019, and references therein).

Finding an excellent agreement between the analytical and
numerical results, we have shown that the best-fit parameter of
the analytic formula very effectively quantifies the significant
differences in the alignment strengths between the degenerate
models. The difference in the best-fit value of the parameter has
turned out to be as significant as 6σ (10σ) between the ΛCDM
and fR6+ 0.06 eV (between the fR6 and fR5+ 0.15 eV)
cosmologies, despite the two models sharing almost the same
growth histories and same normalization amplitudes of their
linear density power spectra. It has been also confirmed that
this result, the success of the analytic formula and its potential
to discriminate degenerate models from each other, is robust

against variations of the smoothing scale of the tidal fields from
Rf= 3 to 8 h−1 Mpc.
Meanwhile, expecting that the large-scale coherence of the

linear tidal fields would induce the shape orientations of the
massive halos to be spatially cross-correlated (West 1994;
Onuora & Thomas 2000; Faltenbacher et al. 2002; Kasun &
Evrard 2005; Altay et al. 2006; Smargon et al. 2012), we have
devised a two-parameter formula expressed in terms of the
linear density two-point correlation function and its third and
fifth moments for the halo shape–shape correlation. It has been
found that the differences in the two best-fit parameters are as
substantial as ∼1.49σD (∼2.56σD) between the ΛCDM and
fR6+ 0.06 eV (between the fR6 and fR5+ 0.15 eV) cosmol-
ogies, when no prior information on the background cosmol-
ogy has been used to evaluate the analytic formula and the halo
samples have been controlled to have identical mass and axial
ratio distributions. This result indicates a much larger sample of
group and cluster halos will be required to test the potential of
the second diagnostic as cosmological discriminators.
It is worth discussing why we have utilized the massive

group/cluster halos rather than the galactic counterparts as the
main targets for these new diagnostics. In the original work of
Chuang et al. (2022), who for the first time suggested the halo
intrinsic shape alignments as a test of f (R) gravity, their
analysis was made exclusively on the galactic scale under the
assumption that the intrinsic shape alignments of galactic halos
are observable since the shape orientations of the DM
components of galactic halos should be well aligned with
those of their observable stellar components. However, a recent
numerical analysis based on high-resolution hydrodynamical
simulations revealed that this assumption cannot be justified on
the galactic scale, witnessing significant misalignments
between the shape orientations of the DM and stellar
components of the galactic halos (Lee & Moon 2022). The
same numerical analysis also revealed that the hot gas and DM
components exhibited strong shape alignments with each other
and that the alignments become stronger on larger mass scales.
Given these numerical clues along with the fact that the shape
orientations of galaxy groups and clusters are often determined
from the distributions of their hot gas components (e.g.,
Zaroubi et al. 2001), the intrinsic shape alignments of the
group/cluster halos should be a better indicator of the nature of
gravity and DM than those of the galactic halos.
Although galaxy groups/clusters are much less abundant

than galaxies, which is likely to cause larger statistical errors,
another merit of using them as the main targets is that their
shape orientations reflect much better the anisotropic merging
along the large-scale filamentary web (Altay et al. 2006; Hahn
et al. 2007). The analytic formulae expressed in terms of the
linear quantities must work better in approximating the intrinsic
spin alignments and spatial correlations on the group and
cluster scales (Lee 2019) than on the galactic scales. Moreover,
our diagnostics require only single redshift observations at
z= 0, unlike the previously suggested probes to break the dark
sector degeneracy, like the nonlinear growth rate, nonlinear
redshift distortions, evolution of the drifting average coefficient
of the isolated cluster abundance, high-order weak lensing
statistics, and high-redshift size distribution of cosmic voids, all
of which require multiple redshift observations (e.g., Giocoli
et al. 2018; Peel et al. 2018; Hagstotz et al. 2019; Wright et al.
2019; Ryu et al. 2020; Contarini et al. 2021).

Figure 13. Number distributions of the halos belonging the original (top panel)
and controlled (bottom panel) samples from the four models as a function of
halo axial ratio.
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Notwithstanding, our new diagnostics bear a couple of
momentous limitations ascosmological discriminators they are
to be applied to observational data. First, it is still quite difficult
to determine the shape orientations of the group/cluster halos
with high accuracy in practice, since what is readily measurable
from the optical, X-ray emission, and Sunyaev–Zeldovich
effect surveys (Boldt et al. 1966; Sunyaev & Zeldovich 1969;
Sarazin 1988; Yee & Gladders 2002) is two-dimensional
images of their baryonic components projected onto the plane
of the sky, which themselves suffer from a nonlinear redshift-
space distortion effect (Jackson 1972; Kaiser 1987; Hamilton &
Hamilton 1998). Although complementary methods based on
strong and weak gravitational lensing effects (Bartelmann 2010)
are often used to measure directly the three-dimensional shapes
of cluster halos, they can be applied only to very massive
clusters with masses 1015 h−1Me that can produce lensing
signals strong enough to trace the dark matter distribution
inside the clusters’ virial radii (see Kneib & Natarajan 2011, for
a review). For this reason, it would be highly desirable to
model how the shape tracers of the group/cluster halos rather
than their shapes themselves are spatially correlated and to
investigate whether or not the tracer–tracer correlations can
break the dark sector degeneracy. This investigation, however,
would require us to examine first the dependence of the shape–
tracer relation on the background cosmology. Besides, it would
be much harder to find an analytic formula expressed in terms
of the linear quantities for such tracer-tracer correlations, given

that the shape tracers are expected to be nonlinearly biased
(Harvey et al. 2021, and references therein).
The second limitation comes from the fact that our

diagnostics are interdependent rather than independent of other
diagnostics. In other words, although they can play a
complementary role of distinguishing between any nonstandard
cosmologies degenerate with the standard one whose initial
conditions are all specified, they may not be powerful enough
to constrain independently the key cosmological parameters
themselves. Since the differences in the halo shape correlations
among the νCDM+f(R) models might be reproduced by
changes of the six cosmological parameters within the standard
paradigm, it would be idealistic to explore how our diagnostics
would behave in a much larger parameter space for an
assessment of their true potential as a cosmological probe. Our
future work will be in the direction of performing this more
comprehensive work to overcome the limitations of our new
diagnostics.
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Figure 14. Same as Figure 6 but for the controlled samples.
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