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Abstract—Nowadays, MEMS sensors are widely used in several
applications, including SHM. Although they do not outperform
professional piezo accelerometers, because of their significantly
lower cost and power consumption, they enable extensive, perva-
sive and battery-less monitoring systems. For these applications,
it is critical to assess their performance in typical SHM signal
processing tasks and in realistic monitoring scenarios. This paper
presents an experimental performance evaluation of representa-
tive MEMS devices for SHM applications, providing a guideline
and insightful results about the opportunities and capability of
these devices in challenging scenarios for such COTS components.
Results demonstrate that MEMS-based accelerometers are a
feasible solution to replace expensive piezo-based accelerometers.
Deploying digital MEMS in Low-Power mode is promising to
minimise sensor node energy consumption with savings up to
80% in the best case. Time and frequency domain analysis
shows that MEMS can detect modal frequencies, an important
parameter for damage detection, with a maximum 1.6% error.

Index Terms—SHM; MEMS accelerometers; Low-Power sys-
tem.

I. INTRODUCTION

Civil infrastructures degrade over time due to use, accidental
events, or harsh environmental conditions. Considering the
constant growth of large-scale civil infrastructures built world-
wide, a cost-effective solution for continuous observation of
structural integrity is becoming an essential requirement for
their maintenance [1]. Structural Health Monitoring (SHM)
techniques assess the structural state and determine the re-
quired maintenance and repair. The core component for such
a monitoring system is represented by accelerometers that
have to acquire the vibration of the infrastructure to provide
data for experts’ analysis. Resolution is one of the most
important performance requirements for such an application,
and so far, high-accurate low-noise density piezoelectric-based
sensors are widely recognized as the most accurate transducers
for such operations [2]. In the last decades, MEMS (Micro-
Electro-Mechanical Systems) capacitive accelerometers have
also been introduced and experimented with such scenarios.
Their extreme low-cost and low-power permits to design and
deploy a steady measurement infrastructure for continuous
monitoring, to scale up to hundreds of measurement points for
a single building, which is unfeasible using piezo accelerom-
eters, that are two orders of magnitude more expensive.

Nevertheless, MEMS accelerometers do not outperform piezo
accelerometers because commercial devices are designed to
measure larger bandwidth signals and are characterized by
lower sensitivity, thus requiring complex signal conditioning
electronics to achieve acceptable noise floor [3]. For this
reason, to unveil the potential of these devices, a compar-
ison with piezo accelerometers and a characterization of
representative MEMS device, currently missing in literature,
is needed. This paper presents the characterization in both
time and frequency domains of representative MEMS devices,
focusing on SHM application-specific metrics and using ei-
ther a laboratory set-up and a real infrastructure. Moreover,
we investigate the metrological properties of digital MEMS
that feature two working modes, namely Low-Power (LP)
and High-Performance (HP), allowing to trade sensor power
consumption for measurement accuracy. To this purpose, we
realized a prototyping board, equipped with a pair of digital
MEMS configured one in High-Performance and the other in
Low-Power mode, thus simultaneously measuring the same
stimuli. Comparisons are carried out using a piezoelectric
accelerometer as a reference. This paper has two main con-
tributions: i) We investigate measurement accuracy of analog
and digital MEMS configured in High-Performance and Low-
Power mode comparing with a seismic piezoelectrical ac-
celerometers using both in-lab experiments and measurements
taken on a real-world structure; ii) We provide an evaluation
of the energy consumption of digital devices in Low-Power
mode to highlight the advantages of using such configuration
in place of High-Performance mode. To this purpose, we
designed an energy model tailored to reference state-of-art
nodes. The paper is organized as follows. Section II describes
the related work. Section III introduces the sensors used in
our analysis; Section IV describes our real structures used for
experiments. The methodology of our analysis is discussed
in Section V, whereas results and final discussion are in
Section VI. Section VII concludes the paper.

II. RELATED WORK

In recent year, the MEMS technology has become important
for several applications, such as bioengineering, automation
and structural health monitoring [4]. Since their introduction,
the reliability and performance of such sensors compared to



the earlier, more expensive sensors have been a challenge
to the community. Some works in the literature provided
generic reviews comparing wireless MEMS-based accelerome-
ters sensor boards for SHM [1], and Seismology [5]. Several
evaluations characterized early analog MEMS performances
with lab-based frames. For example, the work in [6] compared
one analog MEMS-based with PCB accelerometers for modal
analysis with three different excitations. Further, [7] delved
more into analog MEMS by characterizing four different
sensors in noise level, frequency, and sensitivity metrics. To
avoid the relatively high noise level of the early MEMS
accelerometer, the work in [8] designed two custom sensors
for SHM applications with low bandwidth, thus resulting in a
diminished noise level of MEMS.

More advanced analog and digital MEMS with deployability
in embedded systems have been introduced to the community
during the last decade, opening an ocean of options. To char-
acterize these new MEMS, [2] evaluated two analog and four
digital commercial MEMS sensors targeting frequency and
damping identification for civil structures. By experimenting
on a small concrete slab structure, they conclude that low-cost
MEMS are feasible options to replace expensive piezoelectric
ones. However, to conduct this conclusion, testing conditions
differ for each sensor type, thus introducing heterogeneity in
the dataset. Similarly, [9] computed displacement over a small
scale reinforced concrete (RC) beam to detect cracks exploit-
ing four different accelerometer sensors. Although MEMS
performed better to detect early cracks in the beam, PZT
detected the final failure of the structure. Small RC structures
characterized sensors better than steel-frame; nevertheless, a
real-life scenario case with a long, aged concrete highway
where ambient noise plays a critical role is missing in the
above-mentioned characterizations.

The work [3] provides the most reliable digital and analog
sensors characterization by prototyping a self-made tri-axial
accelerometer, i.e., Kionix KXR94-2050, and a referenced
accelerometer PCB 356A16, to validate the applicability of
MEMS practically over the cable-stayed bridge in Italy. Exper-
imental Model Analysis (EMA) and Finite Element Analytical
estimations (FEA) demonstrate that MEMS accelerometer can
be a reliable substitute for expensive piezoelectric sensors.
In a similar vein, we further investigate two scenarios (one
real-case and one laboratory) targetting a variety of low-cost
commercial MEMS accelerometers.

Compared to other works, we initially characterize ana-
log and digital MEMS vs piezoelectric sensors in real-life
case experiments. Furthermore, benefiting from recent digi-
tal MEMS’s High-Performance and Low-Power features, we
characterize these two modes both in the time and frequency
domain.

III. ACCELEROMETER SENSORS

This section describes the three different sensors technolo-
gies chosen for the comparisons of this work, including a
highly accurate expensive piezoelectric, PCB393B12, an ultra-
compact linear low-cost analog MEMS, namely LIS344ALH,
and a dual-mode always-on 3D digital MEMS, namely

ISM330DHCX. Other than SHM, smart infrastructure and
inertial navigation are fields of interest for such sensors.

1) PCB393B12: is a uni-axial Integrated Circuit Piezoelec-
tric (ICP) accelerometer sensor benefiting from a low-cost
coaxial cables connector to interface with the data logger. This
sensor operates by applying a constant current signal. The
ICP technology converts the high impedance acquired data
to a low impedance output signal capable of unconditionally
transmitting lines with long cables. Furthermore, the low-noise
output voltage is compatible with data analysis methodologies.

2) LIS344ALH: is an ultra-compact three-axis linear ac-
celerometer including a sensing element and an IC interface
system. The sensing element is fabricated by the STMicroelec-
tronics production line for sensors and actuators in silicon,
and it is adept at detecting accelerations. Similarly, the IC
interface is manufactured deploying the CMOS process with
a high level of integration developed by ST. The major task of
the IC interface is to convert the information acquired by the
sensing element into an analog signal for the external world.

3) ISM330DHCX: is a system-in-package including a high-
performance 3D digital accelerometer and 3D digital gyro-
scope tailored for Industry 4.0 applications. The manufacturing
process for various sensing elements and IC interfaces is
similar to the one described in Sec. III-2. Since it is a digital
system, it introduces adjustability to the system. For instance,
a set of programable computational features such as Machine
Learning (ML) core, an accessible and programmable Finite
State Machine (FSM), and 9 kB FIFO to store data temporarily
and perform real-time analysis, provide the user with an in-
telligent sensor at low power. Furthermore, this accelerometer
benefits from two modes, namely, high-performance and low-
power, where these modes can be used to reduce the system’s
total energy consumption.

IV. STRUCTURAL HEALTH MONITORING FRAMEWORKS &
SCENARIOS

A. SHM Frameworks

Fig. 1 illustrates the two systems used to acquire and store
the data. Fig. 1-A presents the SHM node composed of an
analog MEMS and two digital MEMS accelerometers (one
for low-power configuration and the second one for high-
performance configuration), a temperature sensor, a humidity
sensor, a micro sd-card to store the data, a NB-IoT module
to transmit data to the cloud, and a low power host mi-
crocontroller, STM32L476VGTx, to control the system. The
sampling frequency of the analog accelerometer is 25.6 kHz,
followed by a filtering and subsampling procedure resulting in
a readout frequency of 100 Hz and resolution of 16 bits. The
digital accelerometers configured in HP mode samples mea-
surements at a frequency of 833 Hz and filters them using a on-
board low-pass filter with a cut-off frequency of half the output
data rate. The digital device in LP mode samples at a frequency
of 52 Hz and filters measurements using a on-board low-pass
filter with a constant cut-off frequency of 780 Hz. Both HP and
LP modes produce 16-bits measurements. Figure 1-B provides
the piezoelectric sensor acquisition network, where an ADC
convertor translates the acquired analog signal to a store-able



Fig. 1. The two Acquisition systems were deployed to evaluate the sensors.
In panel A) MEMS-based setup configuration, B) Piezoelectric-based setup
configuration

digital one. This sensor operates with a sampling frequency
of 500 Hz.

B. Experiment Description

1) In-Lab Experiments: This experiment utilised a Material
Test System (MTS) shaker to excite vertically the sensors
described in Sec. III with sinusoidal stimuli. It was carried
out to investigate the performance of measurements sys-
tems benefiting from commercial MEMS and piezoelectric
accelerometer. Since structures operate under low frequency,
we fixed the excitation frequency of the shaker at 10 Hz, while
sweeping the amplitude range of the excitation from 30 to
250µm. The intuition behind this experiment was to simulate
various ranges of input excitation to estimate real-life random
value inputs excitations in long-span bridges or structures. A
plate is attached to the shaker, holding the mounted sensors.
Screws fix the MEMS sensors, and the piezo one is attached
to the bottom of the plate by a steel magnet connector.

2) Concrete Beam Experiment: To assess the performance
of devices under test in a real-world scenario, we carried out
a set of measurements on a concrete beam. The beam was
composed of a concrete slab supported by two steel towers at
each end. The total length of the beam is 25.9 m, while the
width is 1.6 m. The monitoring system described in Sec. IV-A
was mounted at the middle of the beam for the experiment
duration. The experiment started by charging the beam with
an even number of plates (1x1x0.25 m), each weight 1800 kg.
After charging four plates over the beam, some additional
wedge was added to the towers holding the beam to avoid
rigid torsion rotation. The experiment aimed to charge and
discharge the beam until cracks appeared.

V. METHODOLOGY

This section describes the methodology we use to assess
MEMS accuracy and Low-Power mode energy efficiency.
Subsection V-A describes time and frequency domain analysis
to characterize MEMS metrological performance. Subsection
V-B details the energy model we propose and the reference
application and sensor node we tailor it to.

A. Metrological characterization methodology

The primary task of structural health monitoring is to collect
building health information, unveiling potentially harming
issues such as damages and ageing. In dynamic monitoring
applications a set of sensors collect accelerometric data to
feed modal identification algorithms and to perform early

damage detection and structural health assessment analysis.
We compare accelerometer performance in the frequency and
time domain through the analysis of the measurements taken
during the two experiments described in Subsection IV-B.

To evaluate measurement quality in the time-domain, we
first set the relevant metrics for damage detection. Structural
vibrations can be modeled as dampened oscillations depend-
ing on three parameters, namely frequency, amplitude and
damping factor. As such, by fitting the sensor measurements
with this model using the Ordinary Least Squares method,
we evaluate the accuracy of the selected accelerometers in
inferring these structural parameters. The model for the In-
Lab experiments, described in Equation 1, is parametric with
respect to signal amplitude (c0), frequency (c1) and phase (c2).

flab(t) = c0sin(c1t+ c2) (1)
Equation 2 approximates the dynamic behaviour of the beam
as a single degree of freedom spring-mass-damper system. For
this purpose, a further coefficient (c3) is introduced to model
the decay factor of structural oscillations in time.

fbeam(t) = c0e
−c3tsin(c1t+ c2) (2)

Frequency-domain analysis focuses on assessing the quality
of the power spectral density (PSD) that can be obtained
when analysing the measurements of the different devices.
Describing the accuracy of the PSD of a signal is of paramount
importance since most frequency-domain modal identification
and damage detection algorithms are built on top of PSD
computation. For each experiment, we estimate the PSD of
the measured signal using the Welch method, choose the
most prominent peak and compute three metrics: (i) natural
frequency, (ii) amplitude and (iii) width. Peak frequency is an
important parameter to assess structural health and a number
of state-of-the-art damage detection pipelines observe shifts
in the natural frequencies of a structure to detect anomalies
[10]. Peak amplitude and width are also relevant since they
play a role in the estimation of modal shape and structural
damping, two modal parameters that can be observed to detect
changes in structural dynamic behaviour. According to the
Half-Power method, peak width is estimated as the distance
between the peak intercepts at amplitude p/

√
2, where p is the

peak height. For in-lab experiment, the most prominent peak
corresponds to the tone in the spectrum corresponding to the
frequency of the sinusoidal input stimulus applied by the MTS
machine. Instead, for beam measurements the most prominent
peak represents the first modal frequency of the structure. To
complete frequency domain analysis, we estimate device noise
from a “silent” portion of the real-life experiments where no
excitation was applied to the sensors. We estimate noise both
in the frequency domain, computing the square root of the
average of the noise PSD, and in the time domain, computing
the root mean square (RMS) of the measured noise signal.

B. Digital MEMS energy model description

In the context of continous monitoring applications, the
energy budget for a battery-less sensor node needs to be care-
fully evaluated. Recent digital MEMS devices can be driven
two working modes: High-Performance and Low-Power. Low-
Power mode reduces power consumption by duty cycling the



reading circuitry of the sensing element trading measurement
precision for a lower power consumption. However, the impact
of Low-Power mode on the energy consumed by the whole
sensor node has not yet been investigated. Such verification
is important to take into account MCU computation and data
transmission in the energy cost evaluation.

We propose a energy model for a sensor nodes composed of
a digital MEMS accelerometer, a processing MCU and a radio
transceiver, inspired by the one presented in [4]. The MCU
belongs to the STM32L4 series, a System-on-Chip (SoC) opti-
mised for low-power edge computation. It saves energy during
idleness driving the SoC to STOP state which minimises
energy consumption while retaining memory. The sensor is the
StMicroelectronics ISM330DHCX that communicates through
SPI. While the node presented in [4] enables remote commu-
nication using the NB-IoT protocol, we consider Energy Per
Bit (EPB) transmission energy a free parameter. This allows
us to describe how Low-Power mode energy gain changes for
different radio technologies. The monitoring application we
model has the following workload: (a) The MEMS measures
accelerations for ta seconds at a rate of fs Hz. The MCU
wakes-up to read measurements as they are ready and then
returns idle. (b) The MCU processes recorded accelerations to
infer the structural health of the building being monitored. (c)
The result of the processing pipeline is transferred to the radio.
Among the many embedded protocols available we choose
UART since it is widely adopted and available in many radio
transceiver. (d) The radio sends the data to the cloud. Given
components C = {mems,mcu, radio} and workload stages
S = {a, b, c, d}, system energy is modeled as:

E =

S∑
s

ts

C∑
c

Pc,s (3)

Time ta depends on the number of samples taken and fs, the
sampling frequency of the sensor. Time tb is a variable param-
eter to make our model independent on the actual processing
performed by the MCU. Time tc depends on the amount of
data to be moved to the radio for transmission. Pmcu,a, the
power consumed by the MCU during stage a, is the weighted
average in run and stop mode since MCU continously switch
on and off to read new measured acceleration value:

Pmcu,a = xPmcu,run +
(
1− x

)
Pmcu,stop (4)

x =
Bfs

bpsspi
(5)

where x is the fraction of time where the MCU is reading
measurement samples. Here, bpsspi is the rate at which B bits
are transferred over SPI, while fs is the sampling frequency
of the MEMS.

VI. RESULTS

In this section, our main focus is on analyzing the evaluation
of the two MEMS with the accurate piezoelectric accelerom-
eter employing the three domains proposed in Sec. V. Utiliz-
ing a lab-scale shaker, we first evaluate the performance of
each sensor by sinusoidal excitations with a small and large
amplitudes. Then, we study the results achieved in the in-
lab experiments with a real-life scenario on a concrete beam.

TABLE I
ESTIMATION OF NOISE IN THE TIME AND FREQUENCY DOMAIN

PCB LIS ISMH ISML

µg/
√
Hz 10.28 23.98 65.86 436.20

mgRMS 0.06 0.12 0.35 2.19

TABLE II
IN-TIME ANALYSIS FOR THE LAB AND BEAM EXPERIMENTS.

Experiment Signal Frequency [Hz] Signal Amplitude [mg]

PCB LIS ISMH ISML PCB LIS ISMH ISML

LAB 30µm 10.0 10.0 10.0 9.9 10 9 10 24
250µm 10.0 10.0 10.0 9.9 91 86 100 120

Experiment Signal Frequency [Hz] Decay Factor [1e-3]

BEAM 5.50 5.54 5.59 5.57 8.3 8.6 8.3 11.6

Finally, we provide an energy modelling system deploying
MEMS jointly with various communication protocols and a
low-power processing unit.

A. Noise Analysis
Ambient noise is a consistently, non-zero element present

in acquisition systems. Having a low noise level is an essential
key in designing analog and digital devices such as a sensor
to avoid the inference of small valuable signals and noise.

Since the advanced processing methodologies that assess
a structure’s condition deploy both the time and frequency
domain, we performed noise analysis in the time and fre-
quency domain. Tab. I indicates that the piezoelectric sensor,
PCB393B12, benefits from the lowest noise level with only
0.06mgRMS and 10.28µg/

√
Hz for the time and frequency

domain, respectively. The second best place is analog MEMS,
where the noise level is approximately double than the PCB
sensor. On the contrary, the noise level of the digital MEMS
accelerometer increases drastically where Tab. I reports that
ISM in low-power suffers from 2.2mgRMS to 436.2µg/

√
Hz,

i.e. one order of magnitude higher than the piezoelectric sensor
in both time and frequency domain. The former difference
is due to the low power consumption of the digital sensors,
since there is a trade-off betweeen noise level and power
consumption. To conclude, the results in Tab. I show that the
costly piezo sensor benefits from a low noise level; thus,
it could be the best choice for monitoring systems with no
constraint on power consumption. However, analog MEMS
can provide a similar noise level for dense scalable monitoring
systems with constraints on budget and power.

B. Time Analysis
Recent studies have demonstrated the feasibility of deploy-

ing raw time-series signals as input features to monitor large-
scale structures, especially damage detection methodologies.
Therefore, we fit a model based on the formulation described
in Sec.V. For the in-lab experiments, we fit the acquired data
of a sinusoidal impulse where the two critical parameters
are signal amplitude and frequency. Next, we study signals
frequency and decaying exponential factor for the real-life
experiment. Tab. II reports the result of the fitted models for
the former parameters.

For the in-lab experiment, the small amplitude stimuli, i.e.
30µg, Tab.II reports that it is harder for digital MEMS in LP



mode to fit the exact amplitude of the stimuli compared to
the piezo one. However, the digital sensor in HP mimics the
piezo by zero error. ISM in low-power mode deviates from
the nominal value because the signal with a small amplitude
is equal to the noise level; hence the fitting algorithm is
not capable to find the optimum solution for the data. By
increasing the nominal value to 250µg, ISM in low-power
mode error is less than 30 %, while for the other two cases,
the error diminishes to less than 10% compared to the piezo
one, indicating that MEMS operates better with larger signals
than smaller ones. Furthermore, all the sensors can perfectly
fit the signal’s frequency with a slight error for the ISM in
LP mode compared to the nominal value. For the real-life
experiment, we consider the value obtained by the piezo as
the most accurate one, with a 5.5 Hz signal frequency and
8.3 m decaying factor. The bottom part of Tab. II reports that
ISM in HP and LIS can mimic the behaviour of the piezo
with the same decaying factor, whereas the ISM in LP decays
faster by 41.20%. Next, the signal frequency section of Tab. II
reports that LIS has the closest estimation to the piezo with
only 0.04 Hz difference, while ISM has a similar error with
0.09 Hz and 0.07 Hz for HP and LP modes compared to
the piezo sensor, respectively. In conclusion, MEMS-based
sensors imitate the piezo manners in acquiring frequency and
amplitude signals in the time domain. However, the ISM in
low-power decays faster than the other two sensors due to low
sampling rate and high noise level.

C. Frequency Analysis
Frequency Analysis is one of the primary methods used

by civil engineers to monitor structures’ modification and
identify damages by deploying metrics like peak frequency,
amplitude, and width. We utilize the PSD method described
in Section V to extract former frequency parameters. For
the in-lab experiment, we translated 3 minutes of time-series
acquired acceleration into smaller non-overlapping 10-second
windows, resulting in 18 windows ( 3×60

10 = 18). Furthermore,
for the real-life experiment, we deployed only one event with
duration of 15 seconds captured by all the sensors to avoid any
heterogeneity in the frequency domain evaluation. Consider
that a window size of more than 10 seconds does not impact
the result of PSD since no structural response lasts for more
than 10 seconds. However, windows of less than 5 seconds
cause a drop in the accuracy of frequency analysis.

The first part of Tab. III reports the results obtained for
the LAB experiments. The excitation stimuli applied by the
shaker has a frequency of 10 Hz, which is captured as the first
natural frequency by all the sensors in all scenarios. Notice
that ISM in LP mode works as accurately as the piezoelectric
sensor, even in the smallest input range. Compared to the
piezoelectric sensor, the most accurate sensor, the results
reported in the peak amplitude section of Tab. III indicate
11.5%, 4.0%, and 3.4% deviation for LIS, ISM in HP, and
ISM in LP mode in peak frequencies’ amplitude identification,
respectively. Considering the width of the natural frequency,
the last section of Tab. IV indicates a very narrow window for
all the peak frequencies, fixed at 0.1 Hz for all the sensors.
Furthermore, the second part of Tab. III reports the result of

Fig. 2. Low-Power energy gain as a function of processing time and EPB.

the real-life event. Considering the peak frequency, the piezo
sensor identifies 5.5 Hz, further characterised by the MEMS
sensor. The peak amplitude section of Tab. III demonstrates
that similar to the Lab experiment, the analog MEMS deviates
the most by 1.86µg, i.e., 34.5% compared to the piezo one.
Notice that digital MEMS in the LP mode also reports 1.4µg
(25%) mismatch compared to the accurate piezo sensors and
with dissimilarities close to analog one. This mismatch is due
to the low sampling rate of both MEMS, where they cannot
capture the whole amplitude of the exciting stimuli. Finally,
the peak width section in Tab. III provides similar results to
that of peak amplitude, in the sense that digital MEMS, ISM in
HP mode, is capable of following piezo sensor, whereas analog
and digital MEMS in LP mode deviates from piezo by 0.03 Hz.
The former results mainly characterize two outcomes. The
former is both analog and digital MEMS sensors are feasible
candidates to replace the costly, power-hungry piezo sensors,
whereas the latter is the fact that low sampling frequency
can achieve reasonable accuracy modal frequency analysis and
peak width up to maximun 7% error rates. Although deploying
a lower sampling rate impacts parameters like network traffic,
it performs less accurately than a high sampling rate one, given
the peak amplitudes parameter.

D. Low-Power mode energy characterization

We evaluate Low-Power mode energy savings for the work-
load presented in Subsection VI-D. The MEMS measures for
10 s and the MCU runs a damage detection algorithm that
summarises the health status of the structure in a 10 Bytes
payload that is sent to the cloud. The processing time and
the EPB required to send data remotely are considered free
variables in our model. EPB is contained within the range
10−2 − 10−7 Joule that comprises two widely used trans-
mission technologies, namely BLE [11] and NB-IoT [4]. We
assume damage detection pipelines can summarize structure
behaviour within 10 Bytes. Choosing sensor sampling time
needs more care since a hidden relationship exists between the
amount of data a application generates and its processing time.
Such a exploration is left as a future work since it requires
assumptions on the asymptotic complexity of the algorithm
run on the MCU. Here, we focus on postprocessing algorithms
able to process 10 s measurements data within 100 ms.

Table IV details the power and energy numbers used to
feed the energy model. ISM330DHCX High-Performance and
Low-Power consumption is characterized while reading accel-
erations at a rate of 104 Hz with the SPI peripheral driven
at 8 MHz. The radio works in three modes along the four
application stages. In stages a and b it is off, in stage c it



TABLE III
IN-FREQUENCY ANALYSIS FOR THE LAB AND BEAM EXPERIMENTS.

Experiment Peak Frequency [Hz] Peak Amplitude [mg] Peak Width [Hz]

PCB LIS ISMH ISML PCB LIS ISMH ISML PCB LIS ISMH ISML

LAB 30µm 10 10 10 10 0.05 0.04 0.05 0.05 0.1 0.1 0.1 0.1
250µm 10 10 10 10 4.80 4.23 4.50 4.03 0.1 0.1 0.1 0.1

Experiment Peak Frequency [Hz] Peak Amplitude [µg] Peak Width [Hz]

BEAM 5.5 5.5 5.5 5.5 5.39 3.53 5.60 6.79 0.4 0.4 0.4 0.4

TABLE IV
ENERGY MODEL PARAMETERS

Component Status Power [W] Condition

MCU Run 5.5e-2 Core clock at 80 MHz
Idle 4.0e-6 SoC driven in STOP mode

MEMS
Off 3.0e-6 -
HP 6.5e-4

fs = 104 Hz, SPIbps = 8 MHzLP 1.0e-4

Radio Off 0.0e+0 -
Active 5.5e-2 Estimated

Component Status EPB [µJ] Condition

Radio TX
8912 NB-IoT (10 B packet)

43 NB-IoT (10 kB packet)
1 Bluetooth Low Energy

is active but it does not transmit anything, while in stage d
it is active and it sends data to the cloud. Modelling radio
consumption in stage c is challenging because it depends on
many factors such as silicon manifacturing technology, radio
microcontroller internal clock speed and whether radio chip
is embedded in the same SoC of the MCU or not. In this
work, we model radio transceiver active state as an additional
microcontroller and we assign the same power consumption
of the MCU in run mode. The rationale behind this choice
is that we assume radio in active state behaves as a low-
power microcontroller that handles the chip I/O interfaces
while keeping the antenna and the transceiver off.

Figure 2 shows the energy gain obtained using a Low-
Power mode sensor in place of the High-Performance one for
different processing times and EPB. The plot highlights the
existence of two interesting regions corresponding to radios
characterized by EPB larger than 10−3 and smaller than 10−5.
For expensive technologies, such as NB-IoT, energy gain is
largely independent on processing time and lower than 5%.
The reason is that any gain obtained by collecting data in
Low-Power mode is neglected by the energy required for
transmission. Notice that, according to the NB-IoT energy
characterization provided by the authors of [4], larger payloads
lower EPB to 43 µJ , which would increases energy gain up
to 60 %. This is the case for applications where make sense
to collect a number of results on the edge before sending
data to the cloud. Cheap communication technologies, such
as BLE, show a energy gain larger than 40 %, bounded by the
processing time required to run the damage detection pipeline.
In this scenario, the design knobs available to increase energy
gain are either selecting a less intensive processing pipeline
or to select a MCU able to deliver a larger amount of FLOPS
per Joule consumed.

VII. CONCLUSIONS

In this work, we provide an experimental evaluation of
analog and digital MEMS accelerometers for structural health
monitoring applications. Low-Power mode, a configuration
available for modern digital MEMS is also tested from the
metrological and energy efficiency point of view. Initially, we
discuss the three criteria by which sensors are evaluated: the
time and frequency domain and the energy modelling domain.
Noise analysis of the sensors shows that the piezoelectric
sensor is the less noisy device, with only 10.28µg/

√
(Hz).

While in-lab experiments show that MEMS low-cost sensors
mimic piezo sensors for modal frequency analysis, we show
in the real-life experiment that MEMS-based accelerations
diverge maximum by 1.6% error. Finally, we quantify energy
efficiency of Low-Power mode compared to High-Performance
ones, for different transmission technologies. Energy gain
stands between 40% and 80% for BLE, depending on the
MCU processing time. Lastly, NB-IoT energy gain can reach
up to 60% if larger payloads are considered, while it is 5%
for 10 B of payload.
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