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Abstract
In this paper I analyse some regularization models for the reconstruction of X-rays
Computed Tomography images from few-view projections. It is well known that the
widely used low-cost Filtered Back Projection method is not suitable in case of low-
dose data, since it produces images with noise and artifacts. Iterative reconstruction
methods based on themodel discretization are preferred in this case.However, since the
problem has infinite possible solutions and is ill-posed, regularization is necessary to
obtain a good solution. Different iterative regularization methods have been proposed
in literature, but an organized comparison among them is not available. We compare
some regularization approaches in the case of few-view tomography by means of
simulated projections from both a phantom and a real image.
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1 Introduction

X-rays Computed Tomography (CT) [1] is an imaging technique used in different
application areas, such as medicine, engineering and arts, to reveal information about
the inner structure of an object or a human organ. In particular,motivated by an increas-
ing focus on the potentially harmful effects of X-rays ionizing radiation, a recent trend
in medical CT research is to develop safer protocols to reduce the radiation dose. This
allows to apply CT techniques to a wider class of medical examinations, including vas-
cular, dental, orthopedic, musculoskeletal, chest and mammographic imaging. Safer
protocols are of interest not only formedicine but also formaterials science and cultural
heritage, to prevent damage to the subject under study, due to excessive radiations.
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One technique to reduce the radiation exposure is to lower the number of X-rays
projections. In this case, the protocols are named as sparse tomography (or sparse-
view, few-view tomography). Figure 1 shows a graphical draft of the acquisition and
reconstruction process. In the first column is it sketched the geometry of the acquisition
process, where an X-rays source moves along a circular trajectory; in the second
column the set of acquired data (also called sinogram) is represented; in the third
column the reconstructions obtained with the Filtered Backprojection (FBP) method
[2] are shown. In the first row the classical full dose CT case is represented, where
the source spans the whole circular trajectory; in the second row a sparse-view full-
angle tomography is considered where a reduced number of views is taken in the
whole circular orbit. A different sparse-view geometry using few projections is called
limited-angle tomography (see the third row of Fig. 1). Here, a further reduction
of X-rays scans is made by limiting the source trajectory to a C-shaped path, i.e.
by restricting the 360-degrees angular scanning interval to a range smaller than 180
degrees. In some tomographic applications, the human anatomy does not allow a
complete circular motion to the X-rays source, thus the use of a reduced range is
mandatory and the resulting technique is called tomosynthesis. An example is breast
imaging, where the breast is in a stationary position between the detector surface and
the compression plate. The resulting scans are fast but the sinogram is incomplete and
the reconstruction process is quite difficult.

As clearly visibile from Fig. 1 the traditional analytic FBP algorithm produces
images with striking artifacts. Hence, regularized iterative methods, which minimize
a suitable function modelling the noise, are commonly used in these cases [3] in place
of FBP. However, since the reconstruction problem is ill-posed [2] it is necessary to
introduce regularization.

Aim of this work is to compare different regularization models for CT image
reconstruction. In literature, several works using one of these models and showing
its efficiency have been presented, but there isn’t any fair comparison between them.

The paper is organized as follows. In Sect. 2 some regularization models for image
reconstruction are shortly described; in Sect. 3 numerical experiments using different
regularization approaches for 2D image reconstruction from few views are presented
and discussed; finally in Sect. 4 we draw some conclusions.

2 Iterative regularized approach

The model-based iterative methods (for a possible classification see [4] and the ref-
erences therein) solve the linear system obtained from the discretization of both the
object and the acquisition device (also called detector). In the following, we present
for simplicity the analysis for the 2D case. The extension to 3D is straightforward.

Suppose the discrete object is of size nx × ny , the detector of size n p and the
projections are collected from nθ angles. Hence, the linear system

Ax = y (1)
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Fig. 1 Sketches of the tomographic image reconstruction workflow, for full-view, sparse-view full-angle
and limited-angle protocols (from top to bottom, respectively). From the different geometries on the left,
the acquired projections and the reconstructed image of the Shepp-Logan phantom. The missing portions
of sinogram in the sparse-view and limited-angle protocols are depicted in light gray

represents the discretization of the Radon transform [5]. It relates the object x ∈
Rnx×ny with the sinogram y ∈ Rn p×nθ , collecting all the projections, through the
matrix A, called projection matrix. In the case of few-views, n p × nθ < nx × ny , the
linear system (1) admits infinite possible solutions.

To overcome this problem, the linear system is usually replaced by a least-squares
problem:

minx‖Ax − y‖22. (2)

Moreover, since Eq. (1) is the discretization of a mildly ill-posed problem (i.e. the
integral Radon equation), then the solution of (2) is sensitive to noise present on the
data and regularization is needed [2].
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2.1 Regularization by iteration

The simplest form of regularization is regularization by iteration [6]. The normal
equations of (2) can be solved by a fast iterative method, such as the Conjugate
Gradient Least-Squares (CGLS) algorithm, stopped after few iterations, far before
convergence [7]. Several criteria have been proposed to suitably stop the iterations
before noise enters the solution [8, 9].

2.2 Regularization by function

Another possible, and mostly used, strategy is to use regularization functions which
impose prior information on the solution. The so calledmodel based iterative methods
compute the CT image by solving a constrained or unconstrained minimization prob-
lem involving a data-fit function F(x) and a regularization function R(x). Common
choices for the a data-fit function F(x) are the least-squares, which models gaussian
white noise, and the Kullback-Leibler divergence, modelling Poisson noise. In this
work, we always consider the least-squares data-fit:

F(x) = 1

2
‖Ax − b‖22. (3)

Concerning the regularization function R(x), there are more possible choices.
The unconstrained formulation of the minimization problem has the form:

minx‖Ax − y‖22 + λ2R(x), (4)

where λ is the regularization parameter balancing the data-fit and regularization terms.
A non negative constraint on the solution can also be added as:

minx≥0‖Ax − y‖22 + λ2R(x). (5)

Themost classical regularization approach is the so called Tikhonov regularization,
where

R(x) = ‖Dx‖22 (6)

and D is usually chosen as one of the follwing:

1. the identity operator I ;
2. the discrete gradient operator G, usually computed with finite differences.

Tikhonov minimization problem (4) can be re-written as:

minx‖ Ãx − ỹ‖22 (7)
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where:

Ã =
(

A
λD

)
b̃ =

(
b
0

)

The problem (7) can be solved by applying the CGLS to the normal equations.
Widely used alternatives to Tikhonov function are sparse promoting regularization

functions, such as the l1 norm. In this case,

R(x) = ‖x‖1
and the differentiable minimization problem (5) is solved here by FISTAmethod [10].

Another sparse promoting regularizer is the Total Variation (TV), defined as:

T V (x) =
N∑
j=1

‖∇x j‖2.

where ∇(·) is the discrete gradient operator. The resulting minimization problem (5)
is solved again by FISTA. For its edge preserving properties and its effectiveness in
removing noise, TV is the most used regularization function in medical CT imaging
[11, 12].

A smoothed version of TV is often considered, by introducing a small positive
parameter β which makes the TV function differentiable in zero:

T Vβ(x) =
N∑
j=1

√
‖∇x j‖22 + β2

In the numerical experiments we have set β = 10−3. When considering T Vβ the
Scaled Gradient Projection (SGP) method is used to solve the differentiable problem
(5) (see [12] for more details on SGP method on CT image reconstruction).

3 Numerical experiments

Some numerical tests have been executed on both a phantom from the Tomophantom
package [13] and a real image from theMayo Clinic data set [14], shown in Fig. 2. For
the implementation of the forward and backward projection operators and of some of
the model-based iterative reconstruction methods we have used the Python version of
the Core Image Libray (CIL) [15] (www.ccpi.ac.uk/cil).

We compare the traditional analytic FBP method with the following regularized
iterative approaches:

• Regularization by iteration by means of CGLS method stopped after few (8) iter-
ations (hence used as regularization by iteration) and near convergence (at 100
iterations). In the following we will name them as CGLS(8) and CGLS(100),
respectively;

123

www.ccpi.ac.uk/cil


ANNALI DELL’UNIVERSITA’ DI FERRARA

Fig. 2 Ground truth images

• Tikhonov regularization with D = I and D = G. We name them as TIK(I) and
TIK(G), respectively;

• L1 regularization;
• Total Variation regularization in its smoothed and non-smoothed versions. We
name them as TV(s) and TV, respectively.

We evaluate the reconstructions obtained from the different methods by computing
the Mean Squared Error (MSE), Mean Absolute Error (MAE) and Peak Signal to
Noise Ratio (PSNR) metrics defined as:

MSE = 1

N

N∑
i=1

(x − x̃)2,

MAE = 1

N

N∑
i=1

|x − x̃ |,

PSN R = 10log10
max |x |
MSE

,

where N = nx × ny is the number of pixels of the reconstructed image x̃ and x is the
ground truth image.

By using the forward projector function available in CIL, we simulate the projec-
tions considering 60 angles equally spaced in [0, 180] degrees. In all the experiments
reported in this section, the regularization parameter λ is heuristically chosen by trial
and error to get the lowest possible MSE value.

3.1 Tests on the phantom image

The first test problem consists in reconstructing the phantom image from 60 noise-free
projections. In Fig. 3 we see some reconstructions. The FBP image (top left) is clearly
corrupted by streaking artifacts, due to the sparse view and lack of data, which are
reduced, but yet visible, in theCGLS(100) (top center). Sincewe are considering noise-
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Fig. 3 Reconstructions from noise-free projections. In the top row (from left to right): FBP,
CGLS(100),TIK(I). In the bottom row (from left to right): TIK(G), L1, TV

free projections, the CGLS do not show semi-convergence and the images produced
by CGLS(100) and CGLS(8) are very similar. In the Tik(I) image (top right) the
artifacts are still present whereas the Tik(G) (bottom left) reconstruction is less noisy
but slightly out of focus. The L1 regularization (bottom center) has a good contrast but
some noise is visible inside the circles. Finally, we appreciate the good accuracy and
high quality of the reconstructions obtained with TV regularization (bottom right).

In Fig. 4 we report some plots of a single row of the image. In all the plots, the
blue line represents the ground truth. In the top left figure, the ground truth signal is
compared with the FBP one, which is highly oscillating as expected. In the top right
one, we can see the results obtained with CGLS(8) (orange line ), CGLS(100) (green
line) and Tik(G) (red line). Tik(G) appears smoother than CGLS. The bottom right
graphic confirms that TV regularization is outstanding in recovering the true signal
and removing noise.

In the second test problem white gaussian noise with variance 0.01 is added to the
previously tested phantom sinogram. Figure 5 contains some reconstructions. When
data are affected by noise we can appreciate the difference between CGLS(8) (top left)
and CGLS(100) (top center) reconstructions. The noise on the projections produces
semi-convergence and, if CGLS is not properly stopped, it also affects the solution,
as visibile in the CGLS(100) image. The CGLS(8) image is less noisy, but slightly
blurred. Tik(G) (top right) reconstruction is quite blurred and artifacts are visible in
the flat regions. We can infer that the 2-norm regularization is not effective in well
recovering the object contours from noisy data. In the L1 image (bottom left) the
circles have sharp edges but the noise has not been completely removed. The TV
method (bottom central) provides a reconstruction with high contrast and no noise but
the image looks cartoon: the objects are very flat and homogenoeus. This is a well
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Fig. 4 Plot profile of a row in the phantom test problem (noise-free projections). The blue line is from the
true image in all the plots. Top left: FBP reconstruction (orange line); top right: CGLS(8) (orange line),
TIK(I) (green line), TIK(G) (red line); bottom left: L1 (orange line); bottom right: TV (orange line)

Fig. 5 Reconstructions from noisy projections. In the top row (from left to right): CGLS(100), CGLS(8),
TIK(G). In the bottom row (from left to right): L1, TV, TV(s)

known unwanted effect of TV function. Finally, the TV(s) image visually appears as
the most accurate reconstruction, similar to the TV one, but less blocky.

Table 1 summarizes the results of these two experiments, reporting the values of
theMSE,MAE and PSNRmetrics for all the reconstructions obtained on the phantom
test image. The first three columns are from noise-free data and the last three columns
from noisy sinograms. They are in agreement with the visual results reported in Figs. 3
and 4 and confirm that the TV-based iterative reconstructions (in particular the TV(s)
model) outperform the others for all the considered metrics.
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Table 1 MSE,MAE and PSNRvalues for the reconstructionswith no noisy projections (first three columns)
and noisy projections (last three columns)

Method MSE MAE PSNR MSE(n) MAE(n) PSNR(n)

FBP 2.5 e-02 1.2 e-01 64.00 7.3 e-02 1.2 e-01 59.49

CGLS (100it) 7.4 e-02 5.7 e-01 69.41 1.9 e-02 1.1 e-01 65.31

Tik (I) 7.5e-03 5.6 e-02 69.35 2.0e-02 9.9 e-02 65.06

Tik(G) 1.2e-02 5.4 e-02 67.31 1.2e-02 5.6 e-02 67.26

L1 5.3e-03 3.2e-02 70.89 1.1 e-02 5.3e-02 67.60

TV 4.3e-03 2.7e-02 71.77 4.8e-03 3.1 e-02 71.21

TV(s) 2.0e-04 3.8e-02 85.11 4.4e-04 7.3e-02 81.60

In bold, the best values obtained

3.2 Tests on a chest CT image

The last test problem is created from the real CT image of a chest shown in Fig. 3 by
simulating 60 projections in [0, 180] degrees and by adding white noise with variance
0.005. As clearly visible from Fig. 2, the CT image of the chest is quite different
from the previously considered phantom. It presents many small details over a dark
background and smoothed regions along the borders of the lungs.

Figure 6 shows some reconstructions obtained with the considered methods. In the
first row the FBP image (on the left) is clearly damaged by noise; the L1 image (on
the right) appears well contrasted with neat object contours. Few noise as speckle is
still visible, but it does not alter the objects shape. In the second row, the TV image
(on the left) appears smooth and the details inside the lungs are noticeable; however
the dark regions look spotty, as effect of the TV function. Also in this test problem,
the TV(s) image (bottom right) seems the best reconstruction.

The plots in Fig. 7 confirm the considerations deduced from the images. TV regu-
larization (bottom) suppresses the noise but cannot reproduce the peaks, whereas the
L1 reconstruction (top right) is a bit more noisy but it follows the fast changes of the
blue line (representing in all the plots the ground truth). The other reconstructions
(CGLS and Tikhonov) (top left) are not very accurate.

Finally, Table 2 reports the MSE, MAE and PSNR obtained in this experiment. The
best values (highlighted in bold) are again obtained with the TV(s) regularization.

4 Conclusions

In this paper I have investigated the effects of regularization in the reconstruction
of X-rays CT images from few views. Due to the lack of data, the linear system
deriving from the model discretization has infinite possible solutions. Regularization
is necessary not only to suppress noise (as in all the ill-posed inverse problems), but
also to choose a suitable solution among the many possible ones.

Themost common regularization approaches have been analysed: regularization by
iteration and regularization by function, with Tikhonov regularization, Total Variation
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Fig. 6 Reconstructions of the chest image. Top left: FPB; top right: L1; bottom left: TV; bottom right:
TV(s)

Fig. 7 Plot profile of a row in the chest test problem. The blue line represents the ground truth in all the
plots. Top left: CGLS(8) (orange line), TIK(I) (green line), TIK(G) (red line); Top right: L1 (orange line);
bottom : TV (orange line)
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Table 2 MSE, MAE and PSNR
values for the reconstructions of
the chest image

Method MSE(n) MAE(n) PSNR(n)

FBP 5.7e-02 1.9e-01 60.5

CGLS(8) 3.1e-03 3.8e-02 73.1

TIK(G) 2.e-03 3.1e-02 73.7

L1 3.6e-03 4.e-02 72.5

TV 1.8e-03 2.5e-02 75.5

TV(s) 1.0e-03 1.8e-02 77.9

andL1norm.The results obtained on 2D test problemswith simulated projections from
a sparse geometry show that the images reconstructed by the various regularization
approaches are quite different, hence a correct choice of regularization is of primary
importance to obtain the image with desired features. For example, TV regularization
produces highly contrasted images where the noise is almost completely absent, but
the objects are flat and cartoon. On the contrary, the images reconstructed with L1
regularization are slightly noisy, but well contrasted and more realistic. TV smoothed
regularizer is a good compromise between TV and L1: it produces images with very
few noise residual and good contrasted objects.

A very important consideration regards the computational time. The regularization
per iteration (obtained by stopping the iterative method after very few iterations) are
quite blurred but they are computed in much lower time with respect to the other
methods. This is essential in real applications where the time available for the CT
exam is limited.

To complete the analysis, in the future I intend to consider 3D experiments and
possibly real data. Other regularization techniques will also be tested, such as Gener-
alized Total Variation or Nonlocal Mean Filter, to cite only some. Finally, the role of
the regularization parameter will be investigated.
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