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A B S T R A C T

Cable-Driven Parallel Robots (CDPRs) move an end-effector (EE) using cables arranged in a
parallel fashion. If a CDPR employs fewer cables than its EE degrees of freedom (DoFs), the robot
is generally underactuated and underconstrained. Consequently, only a subset of the EE DoFs
can be assigned for trajectory planning purposes, and the EE pose cannot be inferred by only
relying on forward kinematics. Consequently, it is not trivial to assess the robot workspace (WS),
even though WS computation is of paramount importance in analyzing the robot’s performance.
This paper introduces a novel algorithm for the computation of the reachable static WS of
generic underactuated CDPRs, namely the set of EE positions that are statically attainable with
at least one orientation and characterized by positive and bounded cable tensions. The algorithm
leverages a novel geometrico-static problem, which, given a candidate EE position, seeks an
orientation satisfying a stable static equilibrium characterized by a desired tension distribution.

. Introduction

A cable-driven parallel robot (CDPR) is a parallel manipulator whose end-effector (EE) is moved by cables instead of rigid-
ink legs. CDPRs present specific advantages over traditional parallel robots, such as a remarkably large reachable workspace [1],
chieved by spooling long cables on servo-actuated winches. Since guaranteeing positive tensions in cables is a necessary requisite
o control the pose of the robot, the unilateral constraints imposed by cables complicate the system control.

A CDPR is generally underactuated (UA), or kinematically deficient, if it is equipped with a number 𝑛 of actuated cables that
s smaller than the EE degrees of freedom (DoFs), 𝑛𝑑 . Each actuated (taut) cable imposes a geometrical constraint on the pose of
he EE , 𝜻 , and said constraint depends on the length of the cable. Since the number of geometrical constraints equals the number
of actuated cables, and 𝑛 < 𝑛𝑑 , the forward geometric problem of the UACDPR is intrinsically underdetermined [2]. Namely, an

nfinity of EE poses corresponds to a set of assigned cable lengths. Actuation deficiency also complicates trajectory planning [3]:
ince the rank of the robot geometric Jacobian is at most 𝑛 < 𝑛𝑑 , not every EE DoF is instantaneously controllable [4]. In a parallel
obot, actuation deficiency strictly implies constraint deficiency [5]: the EE is underconstrained and thus preserves mobility even
f its actuators are locked. The EE mechanical equilibrium must be considered to compute physically attainable EE configurations.
espite these limitations, UACDPRs are suitable for applications where enhanced workspace accessibility and mechanical simplicity
re favored, and limited mobility and control of their EE is acceptable [6–8]. On the other hand, research on both theoretical and
ractical aspects of UACDPRs is at an early stage. Geometrico-static problems [2,9], and the stability of their solutions [4,10,11] were
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investigated, as well as trajectory planning to limit the EE natural oscillations while moving between equilibrium set-points [3,12].
Feedback strategies compensating for forward kinematics deficiencies were developed [13,14], and feedback control was proposed
for regulating the EE task while damping and removing unwanted oscillations [15–18].

A robotic manipulator’s workspace (WS in short) can be defined as the set of configurations that can be reached by its EE , given some
physical limits of the specific system at hand. It is a crucial property that defines the robot’s possible applications, and its analysis
needs to be carried out at the design stage of any manipulator to determine the EE motion range and possibly its performance
in a determined set of configurations. It is often of practical interest to limit WS evaluation or analysis to a subset of all the
attainable EE configurations if the robot is built for a specific purpose or has a non-conventional architecture [19]. For example,
the constant-orientation or translational WS is the set of all possible locations of the EE reference point that can be reached with a
given orientation [20], the orientation WS is the set of all possible orientations of the EE that can be reached with a given position
of the reference point [21], and the reachable WS is the set of all possible locations of the EE reference point that can be reached

ith at least one orientation [22]. To assess if a configuration of the EE belongs to the WS, several criteria may be considered, such
s cables not interfering with themselves and the environment [23–25]. Since cables can only pull, a criterion specific to CDPRs is
rench closure or feasibility [26–28], namely the ability of the EE to counteract a prescribed set of wrenches with cables exerting

a bounded positive tension. If the set of wrenches is limited to the gravitational one, the constraint becomes static-feasibility [29],
and allows one to determine the workspace where the manipulator can be brought to rest. On the other hand, recent studies also
considered inertial actions among the wrenches applied to the EE , thus defining the concept of dynamic WS [30,31].

To the knowledge of the authors, only two works attempted to propose a methodology for the computation of the workspace
f UACDPRs, focusing on the computation of the reachable and statically-feasible (often referred to as static) workspace (RSW ) of

a 4-cable system [32] and of a 3-cable system [22]. In [32], the authors discretized the translational task space and looked for
any EE orientation satisfying static equilibrium for a prescribed position by solving an inverse geometrico-static problem (GSP); if
an orientation was found, and the cable tensions were within bounds, the EE position was included in the RSW . In the authors’
opinion, this algorithm is limited by two main factors: (i) not all the geometrico-statically feasible poses of the EE of a UACDPR
are stable [2,10] and thus reachable; (ii) no particular orientation is found by the algorithm, as long as it is feasible: this hinders
the practical use of said algorithm, where some theoretically feasible orientations are practically non-attainable [33], due to lack
of continuity between adjacent poses or cable becoming slack due to feedback errors. The authors of [22], instead, focused on
computing the boundaries of 3-cable-robot RSW ; to this end, they proposed a boundary formulation and a model for translating
uch a formulation in linear equalities and inequalities, which are then numerically solved; the models developed by the authors
ere tailored to 3-cable systems, and may not be directly applicable to other architectures.

This paper proposes a novel algorithm for the computation of the RSW of any UACDPR. To this end, the translational task
space is discretized to devise a set of candidate positions, which are added to the RSW iff (i) an EE orientation, compatible with
static equilibrium, is computed, (ii) the resulting EE equilibrium configuration is stable, and (iii) the cable tensions, computed in said
equilibrium, are within given positive bounds. To this end, a modified inverse GSP is formulated for each candidate position as a set
f non-linear equations. The classical inverse GSP, requiring as many assigned task-space variables as cables, is modified to require
nly a given position, as well as some parameters influencing cable tensions: a single orientation with a desired cable tension distribution
an thus be found for a given assigned position, which in turns allows one to compute a series of statically reachable set-points which
an be used both for performance quantification or trajectory planning for any UACDPR. Workspace computation and performance
uantification are often used to drive optimal design, and are performed iteratively; trajectory planning, on the other hand, may
eed to run in real-time. Thus, three techniques are employed to speed up computation. On the one hand, wrench feasibility and
quilibrium stability are checked only if a statically feasible orientation exists, thus are performed as ‘‘ex-post’’ checks, instead
f being considered as constraints in the solution process. Then, candidate RSW positions are scanned according to a predefined
ationale, so that each tentative solution is the actual solution to the nearest solved problem: this strategy ensures the highest
hance to find continuous solutions throughout the workspace. Finally, the problem Jacobian is derived, and embedded into the
olution procedure. Our method has three distinctive features with respect to the state of the art: (i) it can deal with any UACDPR
rchitecture, (ii) an orientation is computed to achieve a specific tension distribution (if possible), and (iii) WS poses are continuous.

This article is an extension of the conference paper presented in [34], where only the 4-cable robot was investigated. With respect
o [34], the current paper presents the following original contributions:

• the workspace-computation algorithm can handle UACDPRs with any number of cables comprised between 2 and 5;
• an application to trajectory planning is proposed, to show the algorithm potentiality;
• an analytical formulation of the Jacobian of the modified inverse GSP is presented in the Appendix, which can drastically

increase the computational efficiency of the workspace-computation algorithm.

In the following, Section 2 introduces the inverse GSP of UACDPRs, and its original modification. Section 3 details the workspace
computation algorithm, and Section 4 proposes its application to 2- to 5-cable UACDPR. Section 5 provides an example of our
algorithm merits for trajectory planning, and Section 6 draws conclusions.

2. Inverse geometrico-static problem

This Section briefly recalls the classical geometrico-static model of an UACDPR (borrowed from [10]), and introduces the
2

modified inverse GSP, to be used for workspace computation.
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Fig. 1. UACDPR geometric model.

A mobile EE is linked to the frame with 𝑛 < 𝜇 extendable cables, coiled and uncoiled by motorized winches (𝜇 = 6 in 𝑆𝐸(3),
𝜇 = 3 in 𝑆𝐸(2)); the difference between the number 𝜇 of DoFs and the number 𝑛 of cables is denoted by 𝜅 = 𝜇 − 𝑛. 𝑂𝑥𝑦𝑧 is a fixed
eference system attached to the robot frame, and 𝑃𝑥′𝑦′𝑧′ is a moving reference system attached to the EE ; the pose of the latter
s described by the position vector 𝒑 of 𝑃 and the rotation matrix 𝐑, which in turn is parametrized by a minimal set of angles 𝝐,

namely 𝐑 = 𝐑(𝝐). The EE generalized coordinates are thus 𝜻 =
[

𝒑𝑇 𝝐𝑇
]𝑇 .

Cables are modeled as massless straight segments.1 Each cable is guided into the workspace by a swiveling pulley, which can
rotate with respect to a support hinged to the robot frame (Fig. 1). Point 𝐷𝑖, 𝐵𝑖, and 𝐴𝑖 are, respectively, the i-th cable entry point
into the pulley, its exit point from the pulley, and its attachment point on the EE . The position vector from 𝑂 to 𝐷𝑖 is constant and
denoted by vector 𝒅𝑖 in 𝑂𝑥𝑦𝑧 (Fig. 1(a)). If the position vector from 𝑃 to 𝐴𝑖 in 𝑃𝑥′𝑦′𝑧′ is 𝑃 𝒂′𝑖 , the position vector 𝒂𝑖 from 𝑂 to 𝐴𝑖
in 𝑂𝑥𝑦𝑧 is given by:

𝒂𝑖 = 𝒑 + 𝒂′𝑖 = 𝒑 + 𝐑 𝑃 𝒂′𝑖 , 𝒂′𝑖
𝛥
= 𝐑 𝑃 𝒂′𝑖 (1)

The position vector of 𝐵𝑖 from 𝑂, denoted by 𝒃𝑖, depends on the platform pose and the pulley model [4,12]. The constant unit vector
𝒌𝑖 denotes the swivel pulley axis in 𝑂𝑥𝑦𝑧, whereas the unit vector 𝒖𝑖 is directed from 𝐷𝑖 to 𝐶𝑖, the pulley center, and 𝒘𝑖 = 𝒌𝑖 × 𝒖𝑖,
with × denoting the vector product. Unit vector 𝒏𝑖 points from 𝐶𝑖 to 𝐵𝑖, and unit vector 𝒕𝑖 = 𝒘𝑖 × 𝒏𝑖 is directed as the cable exiting
the pulley (Fig. 1(b)). Assuming the pulley is frictionless, the cable lies on the plane passing through unit vector 𝒌𝑖 and point 𝐴𝑖.
Accordingly, if 𝑟𝑖 is the radius of the i-th pulley, then:

𝒃𝑖 = 𝒅𝑖 + 𝑟𝑖
(

𝒖𝑖 + 𝒏𝑖
)

(2)

If 𝝆𝑖
𝛥
= 𝒂𝑖 − 𝒃𝑖, 𝑙𝑖 is the cable length comprising the rectilinear part ‖𝝆𝑖‖ and the arc Ú𝐵𝑖𝐷𝑖 wrapped on the pulley, and (⋅) indicates

the scalar product, the geometric constraint imposed by the i-th cable on the platform is given by:

𝝆𝑖 ⋅ 𝝆𝑖 −
[

𝑙𝑖 − Ú𝐵𝑖𝐷𝑖

]2
= 0 (3)

.1. Inverse geometrico-static problem

The static model is derived considering the external actions acting on the EE , namely the cable tensions and the gravitational
rench (Fig. 2). Mechanical equilibrium of the EE yields:

Ξ𝑇 𝝉 − 𝒇 = 𝟎6×1, 𝒇 = 𝑚
[

𝒈
�̃�′𝒈

]

(4)

here 𝒈 is the gravitational acceleration, 𝑚 and 𝐺 are the EE mass and center of mass, 𝑃 𝒔′ and 𝒔′ = 𝐑 𝑃 𝒔′ are the position vectors
from 𝑃 to 𝐺 respectively in 𝑃𝑥′𝑦′𝑧′ and 𝑂𝑥𝑦𝑧, (⋅) denotes the skew-symmetric representation of a vector, 𝟎6×1 is a null vector of

1 The cable model is kept as simple as possible, mainly because introducing elasticity or sagging would affect neither the formulation of the modified inverse
eometrico-static problem, which will be introduced in Section 2.2, nor the workspace computation algorithm of Section 3, as the static equilibrium equation
ould remain the same. What would change, indeed, is the analytical formulation of the Jacobian matrix, which may become appreciably more complex (and
3

ut of the scope of this paper).
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Fig. 2. EE static model.

dimension 6, 𝝉 = [𝜏1,… , 𝜏𝑛]𝑇 is the array containing the cable tensions, and Ξ𝑇 ∈ R6×𝑛 (usually referred to as structure matrix) is
the transpose of the inverse kinematics Jacobian matrix Ξ, whose i-th row is [35]:

Ξ𝑖 =
[

𝒕𝑇𝑖 −𝒕𝑇𝑖 �̃�
′
𝑖
]

(5)

The geometrico-static model is established considering Eqs. (3) for 𝑖 = 1,… , 𝑛 and (4):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝝆1 ⋅ 𝝆1 −
[

𝑙1 − Û𝐵1𝐷1

]2
= 0

⋮

𝝆𝑛 ⋅ 𝝆𝑛 −
[

𝑙𝑛 − Û𝐵𝑛𝐷𝑛

]2
= 0

Ξ𝑇 𝝉 − 𝒇 = 𝟎6×1

(6)

The non-linear system (6) has 𝑛 + 6 equations in 2𝑛 + 6 variables, namely the position and orientation parameters of the EE , the 𝑛
cable lengths, and the 𝑛 cable tensions. We establish the forward GSP by assigning cable lengths and solving for cable tensions and
the EE pose; alternatively, the inverse GSP is defined by assigning a subset of 𝑛 coordinates of the EE pose and solving for cable
lengths, cable tensions, and the remaining EE coordinates. Both problems are well-posed since they comprise 𝑛+6 equations in 𝑛+6
unknowns. They may admit multiple real solutions: a solution is acceptable if the equilibrium is stable [10], and cable tensions are
strictly positive and bounded within 𝜏𝑚 and 𝜏𝑀 , which are, respectively, the minimum and the maximum tension limit, to be set in
advance depending on the application.

Regarding the workspace computation, one can resort to joint-space discretization, compute several possible cable length sets,
and use a forward GSP problem to find reachable configurations. Unfortunately, it was shown that, this way, it is statistically
unlikely to obtain feasible equilibrium configurations with all cables taut for 4- and 5-cable robots [2]. Alternatively, one can use
task-space discretization and solve, at each iteration, a corresponding inverse GSP. However, the classical formulation of the inverse
GSP has some disadvantages, especially when used for 4- and 5-cable systems. Even though the position of the EE is a natural
choice as part of the assigned subset of EE coordinates, selecting the additional coordinates is cumbersome [36]. In addition, [33]
showed that orientation parameters might vary in a minimal range, so it is impractical to strictly assign them: the overall equilibrium
onfiguration may not be robust against model and control uncertainties. The authors of [32] proposed only to assign the EE position,
nd to solve the resulting underdetermined system with a non-linear least square optimization, accepting any orientation and cable
ensions that would satisfy minimum and maximum tension limits. This strategy, though simple, cannot guarantee to produce EE
quilibrium poses that are practically usable as set-points for trajectory planning [37] since the equilibrium poses may be unstable,
nd thus not reachable, and orientation continuity between adjacent poses is not guaranteed. Moreover, this strategy makes the
erformance quantification of the reachable EE position possibly unfair [33], since the random orientation computed by the method
nfluences the performance of the overall configuration. Differently from 4- and 5-cable robots, for 3-cable robots the problem is
implified, since one may only assign the EE position [22].

.2. Modified inverse geometrico-static problem: Spatial case

The limitations outlined above motivated the authors to propose a modified formulation of the inverse GSP, where only the EE
osition is assigned, and the EE orientation is found so that, at the equilibrium, a desired tension distribution is achieved, when
ossible. As an additional benefit of this method, the computed equilibrium configurations can be used as practical control set points
f the robot, since adjacent poses are continuous and a specified tension distribution is guaranteed.

The static equilibrium in Eq. (4) can be divided into force and moment equilibria:

Ξ𝑇
𝐹 𝝉 − 𝑚𝒈 = 𝟎3×1 (7)

Ξ𝑇 𝝉 − 𝑚�̃�′𝒈 = 𝟎 (8)
4

𝑀 3×1
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where Ξ𝑇
𝐹 ∈ R3×𝑛 and Ξ𝑇

𝑀 ∈ R3×𝑛 are obtained from the first and the last three rows of Ξ𝑇 , respectively. Then, we seek a tension
distribution 𝝉 in the form:

𝝉 = 𝝉0 + 𝝉⟂, 𝝉0
𝛥
= 𝑚Ξ−𝑇

𝐹 𝒈, 𝝉⟂
𝛥
= Ξ𝑇⟂

𝐹 𝝀 (9)

where 𝝀 ∈ R(3−𝜅)×1 is an array of parameters to be determined, Ξ−𝑇
𝐹 ∈ R𝑛×3 is any right inverse of Ξ𝑇

𝐹 and Ξ𝑇⟂
𝐹 ∈ R𝑛×(3−𝜅) is any

right nullspace of Ξ𝑇
𝐹 , if any exists (see the Introduction of [38] for additional details).2 A possible formulation of Ξ−𝑇

𝐹 and Ξ𝑇⟂
𝐹

is provided in Eq. (A.7) of Appendix. The principal advantage of the proposed formulations is their explicit analytical expressions,
which can be symbolically differentiated (which is useful for the numerical implementation). Regardless of the number of cables
employed, Ξ𝑇

𝐹Ξ
−𝑇
𝐹 is the identity matrix of order 3, while a right nullspace resulting in Ξ𝑇

𝐹Ξ
𝑇⟂
𝐹 = 𝟎3×(3−𝜅) only exists for 4- and

5-cable robots. For the 3-cable case, 𝑛 = 𝜅 = 3 (and thus 𝜅 − 3 = 0), Ξ𝑇
𝐹 is a square generally-full-rank matrix, Ξ−𝑇

𝐹 is a standard
inverse matrix, and Ξ𝑇⟂

𝐹 is not defined. The tension distribution in Eq. (9) always satisfies force equilibrium, but it may not satisfy
moment equilibrium. If we substitute Eq. (9) in Eq. (8), the modified GSP can be formulated as:

𝑚
(

Ξ𝑇
𝑀Ξ−𝑇

𝐹 − �̃�′
)

𝒈 +Ξ𝑇
𝑀Ξ𝑇⟂

𝐹 𝝀 = 𝟎3×1 (10)

which is a system of 3 non-linear equations in 9 − 𝜅 variables (the EE position and orientation, respectively 𝒑 and 𝝐, and 𝝀), and
can be described by:

𝝓 (𝒑, 𝝐,𝝀) = 𝟎3×1, 𝝓
𝛥
= 𝑚

(

Ξ𝑇
𝑀Ξ−𝑇

𝐹 − �̃�′
)

𝒈 +Ξ𝑇
𝑀Ξ𝑇⟂

𝐹 𝝀 (11)

We call inverse the problem where the position is assigned, and the orientation and 𝝀 are computed as solutions of Eq. (11).
When 𝑛 = 3, the problem is square and allows one to compute a discrete set of possible EE orientations [39]. In this case, no tension
distribution can be specified, and Eq. (11) can be simplified as:

𝝓3 (𝝐) = 𝟎3×1, 𝝓3
𝛥
= 𝑚

(

Ξ𝑇
𝑀Ξ−𝑇

𝐹 − �̃�′
)

𝒈 (12)

When 𝑛 = 4 or 5, the problem is underdetermined and generally admits infinite solutions. The problem becomes square if a
pre-defined tension distribution is specified. In practice, one may formulate 𝝀 as an explicit function of the EE position and
rientation according to several state-of-the-art criteria (see [40], chapter 3, Section 7), depending on the desired tension-distribution
erformance, namely 𝝀 = 𝝀 (𝝐). This aspect is detailed in Section 4 but, in general, Eq. (11) can be formulated as:

𝝓4,5 (𝒑, 𝝐) = 𝟎3×1, 𝝓4,5
𝛥
= 𝑚

(

Ξ𝑇
𝑀Ξ−𝑇

𝐹 − �̃�′
)

𝒈 +Ξ𝑇
𝑀Ξ𝑇⟂

𝐹 𝝀 (𝝐) (13)

Eqs. (12) and (13) are two systems of 3 non-linear equations in 3 unknowns, namely the elements of 𝝐. Depending on the number
f cables 𝑛 and the formulation used to compute 𝝀, a finite set of solutions may be found numerically, e.g. by a Newton–Raphson
lgorithm. After a solution is found, its wrench feasibility and equilibrium stability must be assessed. Wrench feasibility requires
𝑚 ⪯ 𝝉 ⪯ 𝜏𝑀 , where the symbol ⪯ denotes element-wise inequality between a scalar and a vector quantity. In contrast, equilibrium
tability requires the positive sign of the eigenvalues of the so-called free motion stiffness matrix 𝐊⟂

𝑓 described in [4]:

𝐊⟂
𝑓

𝛥
= Ξ⟂𝑇 (𝐊 +𝐐)Ξ⟂ (14)

here Ξ⟂𝑇 ∈ R𝜅×6 is any left nullspace of Ξ𝑇 (Ξ⟂𝑇Ξ𝑇 = 𝟎𝜅×𝑛) and 𝐊 is computed as:

𝐊
𝛥
=

𝑛
∑

𝑖=1
𝜏𝑖

[

𝐓𝑖 −𝐓𝑖�̃�′𝑖
�̃�′𝑖𝐓𝑖 −�̃�′𝑖𝐓𝑖�̃�′𝑖

]

+
𝑛
∑

𝑖=1
𝜏𝑖

[

𝟎3×3 𝟎3×3
𝟎3×3 �̃�𝑖�̃�′𝑖

]

(15)

𝐓𝑖
𝛥
=

‖𝒖𝑖 × 𝒏𝑖‖𝒘𝑖𝒘𝑇
𝑖

𝒖𝑖 ⋅
(

𝒂𝑖 − 𝒅𝑖
) +

𝒏𝑖𝒏𝑇𝑖
‖𝝆𝑖‖

, 𝐐
𝛥
=
[

𝟎3×3 𝟎3×3
𝟎3×3 −𝑚�̃��̃�′

]

(16)

If the equilibrium configuration of the EE is stable and wrench feasible, cable lengths can be computed through Eq. (3), and the
configuration is considered reachable. It is worth noting that the solution set may change by changing the formulation of 𝝀, namely
the desired tension-distribution performance of the equilibrium configuration.

2.3. Modified inverse geometrico-static problem: Planar case

This section briefly summarizes the difference in the Modified Inverse GSP when the robot is a 2-cable planar UACDPR (𝑛 = 2)
nd 𝜇 = 3, since vectors and matrices have different sizes compared to the spatial case, and their use and definitions may not
e straightforward. All geometric vectors are now 2-dimensional: if motion occurs on the 𝑥𝑦 plane, with 𝑦 being the direction of
ravity, the third component, in the 𝑧 direction, is omitted, and 𝐑 is a 2 × 2 rotation matrix about the 𝑧 axis (see [14] for details
n implementation). Consequently, Eqs. (7) and (8) can be rewritten as:

Ξ𝑇
𝐹 ,𝑃 𝝉 − 𝑚𝒈 = 𝟎2×1 (17)

2 Please note that the order of operation in transposing a matrix and obtaining its nullspace is not commutative. A matrix 𝐀 ∈ R𝑏×𝑐 , with 𝑏 < 𝑐 and rank(𝐴) = 𝑏,
𝑇

5

has a right nullspace whose dimension is 𝑐 × (𝑐 − 𝑏), whereas 𝐀 has a left nullspace whose dimension is (𝑐 − 𝑏) × 𝑐.
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Ξ𝑇
𝑀,𝑃 𝝉 − 𝑚�̃�′𝒈 = 0 (18)

where Ξ𝑇
𝐹 ,𝑃 ∈ R2×2 and Ξ𝑇

𝑀,𝑃 ∈ R1×2, since Ξ𝑇 ∈ R2×3. Equivalently to the spatial 3-cable case, Ξ𝑇
𝐹 ,𝑃 is a square generally-full-rank

matrix, Ξ−𝑇
𝐹 ,𝑃 is a standard inverse matrix, and Ξ𝑇⟂

𝐹 ,𝑃 = 𝟎2×1, and thus the modified inverse GSP in Eq. (10) becomes:

𝑚
(

Ξ𝑇
𝑀,𝑃Ξ

−𝑇
𝐹 ,𝑃 − �̃�′

)

𝒈 = 0 (19)

which allows one to compute a discrete set of orientations without the possibility of specifying a tension distribution. The free-motion
stiffness matrix 𝐊⟂

𝑓 is now a scalar:

𝐾⟂
𝑓

𝛥
= Ξ⟂𝑇 (𝐊 +𝐐)Ξ⟂ (20)

where Ξ⟂𝑇 ∈ R1×3 is any left nullspace of Ξ𝑇 (Ξ⟂𝑇Ξ𝑇 = 𝟎1×2) and 𝐊, 𝐐 ∈ R3×3. Stability is assessed by checking the positive sign
of 𝐾⟂

𝑓 .

3. Workspace computation algorithm

This section details the main aspects of the workspace computation algorithm for UACDPRs, namely its aim, advantages,
shortcomings, and numerical implementation details. The algorithm is based on discretizing the EE positions so that a regular
Cartesian grid of nodes covers the potential workspace. Each node is then tested to see whether it belongs to the workspace by first
numerically solving Eq. (11) with an iterative scheme, such as the Newton–Raphson one, and then checking if the solution is both
wrench-feasible and stable. The main advantage of this strategy is the simplicity of implementation, whereas the most noticeable
drawbacks are:

• the accuracy of the workspace boundary depends on the grid resolution, and the computation time grows exponentially with
the resolution;

• correct boundary representation may involve a large number of nodes.

However, our aim is not the accurate determination of the workspace boundaries or volume, but the quick determination of a
finite set of configurations that: (i) are locally continuous with respect to neighboring configurations, so that the EE can reach them
in practice while statically maintaining cable tensions within given bounds and with a given tension distribution, and (ii) may be
assessed for local or global performance evaluation. The main steps for workspace calculation are summarized as follows:

1. lower and upper limits of the EE position coordinates, respectively
[

𝑥𝑙 , 𝑥𝑢
]

,
[

𝑦𝑙 , 𝑦𝑢
]

, and
[

𝑧𝑙 , 𝑧𝑢
]

, are assigned in order to define
a limiting box where the workspace is investigated;

2. the intervals defined by lower and upper limits are divided by a regular grid of 𝑛𝑔 nodes, where 𝑛𝑔 is odd (thus, there is a
central node in each interval);

3. for each node, a numerical solution of the modified inverse GSP in Eq. (11) is sought;
4. if there is a solution, wrench feasibility, and stability are checked;
5. if the checks in item 4 are satisfied, the configuration is added to the workspace;
6. consecutive nodes are checked along predefined directions; if a solution in item 3 is not found or the checks in item 4 are not

satisfied, a point outside the workspace is found, workspace exploration is stopped along the current direction, and another
direction is explored.

A possible pseudocode of the workspace computation algorithm is given in Alg. 1, where only the exploration of one quadrant is
given for brevity’s sake. Exploring the other quadrants only requires changing the limits of the for-loops, and does not add relevant
information for implementation.

The proposed algorithm relies on the numerical solution of the modified inverse GSP in Eq. (11), which is a set of 3 non-
linear equations in 3 unknowns. Regardless of the numerical method employed for solving Eq. (11) (e.g. Newton–Raphson,
Levenberg–Marquardt, etc.), 3 issues are important for achieving a fast, accurate, and continuous solution to the problem:

• the tension distribution computation method must be continuous for small pose displacements;
• the method needs to be input a tentative solution near the expected one, namely an initial guess;
• an analytical formulation of the Jacobian of Eq. (11), namely 𝑱 = 𝜕𝝓∕𝜕𝝐, is preferably to be provided.

The first and second issues are related to solution accuracy and continuity. There is a vast literature related to tension distribution
algorithms, and their continuity issues (see [40], Chapter 3, Section 7), but several methods, typically characterized by an explicit
analytical expression, are continuous (e.g. the barycentric method used in [41]). Then, if 𝝀(𝝐) is a continuous and differentiable
function, the numerical solution of Eq. (11) is continuous and differentiable as well, if and only if (i) Eq. (11) is not ill-posed,
and (ii) a suitable initial guess is provided to the solver; inputting a user-provided tentative solution in the first node, and using
the solution to the closest problem in the Euclidean sense for all other nodes3 should ensure solution continuity in practice: the

3 There are workspace exploration strategies that can streamline such a tentative solution selection [42], but they are not investigated here, since they are not
6

undamental for understanding and implementing the results proposed in this paper.
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Algorithm 1: Workspace Computation Algorithm Pseudocode
Data:

[

𝑥𝑙 , 𝑥𝑢
]

,
[

𝑦𝑙 , 𝑦𝑢
]

,
[

𝑧𝑙 , 𝑧𝑢
]

, 𝑛𝑔 , 𝜏𝑚 , 𝜏𝑀 , UACDPR geometry and inertial parameters
esult: Set of configurations 𝜻 belonging to the workspace
f 𝑛𝑔 is even then

𝑛𝑔 = 𝑛𝑔 − 1
end
𝑥𝑐 = (𝑥𝑙 + 𝑥𝑢)∕2 /* 𝑥-coordinate of the central node */
𝑐 = (𝑦𝑙 + 𝑦𝑢)∕2 /* 𝑦-coordinate of the central node */
𝑐 = (𝑧𝑙 + 𝑧𝑢)∕2 /* 𝑧-coordinate of the central node */
𝑔 = 𝟎3 × 1 /* orientation initial guess for the first node */
= 1

nitialize an empty workspace /* Computation of the workspace in the quadrant */
/* defined by the intervals

[

𝑥𝑐 , 𝑥𝑢
]

,
[

𝑦𝑐 , 𝑦𝑢
]

, and
[

𝑧𝑐 , 𝑧𝑢
]

*/
or 𝑥 𝐟𝐫𝐨𝐦 𝑥𝑐 to 𝑥𝑢 by (𝑥𝑢 − 𝑥𝑙)∕𝑛𝑔 do

for 𝑦 𝐟𝐫𝐨𝐦 𝑦𝑐 to 𝑦𝑢 by (𝑦𝑢 − 𝑦𝑙)∕𝑛𝑔 do
for 𝑧 𝐟𝐫𝐨𝐦 𝑧𝑐 to 𝑧𝑢 by (𝑧𝑢 − 𝑧𝑙)∕𝑛𝑔 do

𝒑𝑘 = [𝑥, 𝑦, 𝑧]𝑇

if Workspace is not empty then
𝝐𝑔 ← 𝝐𝑖 so that ‖𝒑𝑘 − 𝒑𝑖‖ is minimum, and 𝒑𝑖 is the i-th point of the workspace, with 𝑖 < 𝑘 /* Update initial guess */

end
𝝐𝑘 ← Solve Eq. (11) for a given 𝒑𝑘, with initial guess 𝝐𝑔
if 𝝐𝑘 is a solution of Eq. (11) 𝐚𝐧𝐝 𝜻𝑘 =

[

𝒑𝑇
𝑘 , 𝝐

𝑇
𝑘

]𝑇 is wrench feasible and stable then
Assign 𝜻𝑘 to the workspace
𝑘 = 𝑘 + 1

else
Exit the innermost for-loop /* The workspace border is met, and the exploration in a given direction is
terminated */

end
end

end
nd

Fig. 3. Stable and wrench-feasible equilibrium for 𝐩 = [0, 0, 0]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and cable exit points
from the frame are in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

configurations computed in adjacent nodes are expected to be continuous, since each modified inverse GSP uses a neighboring
problem solution as the tentative solution for the numerical solver. However, no analytical proof of continuity is available, and
we cannot guarantee that discontinuities do not occur in very special situations. Section 5 presents a numerical example showing
the continuity of the results of our algorithm in a typical practical case. It should be noted that this algorithm requires that the
solution to the very first modified inverse GSP is selected carefully: depending on this choice, different solutions can be propagated
throughout the rest of the algorithm, corresponding to non-practically usable EE working modes (see Fig. 3). Many solutions to the
first problem, among which the user can select the desired one, can be obtained with algorithms for randomly selecting various
initial guesses (e.g. MATLAB multistart).

Providing an analytical formulation of the Jacobian of Eq. (11), though limitedly affects the accuracy or continuity of the problem
solution, is important for computing performance since finite-difference approximations significantly increase the computation time
7

(see [43], Chapter 8, Section 1). The details about the computation of 𝑱 are provided in Appendix.
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Fig. 4. Schematics of the 2-cable UACDPR for 𝐩 = [0, 0, 0]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and swiveling pulleys are
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
2-cable UACDPR geometric parameters.
𝑖 1 2

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

0
−1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.0 0.0

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

0
−0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0.1
0.1

⎤

⎥

⎥

⎦

4. Workspace computation examples

In this section, the method for workspace computation outlined in Section 3 is applied to a 2-cable robot, a 3-cable robot, two
-cable robots, and a 5-cable robot. For illustrative purposes, suitable tension-distribution methods are chosen for the 4- and 5-cable
obots. The EE mass is 10 kg, and its center-of-mass-position in 𝑃𝑥′𝑦′𝑧′ is 𝑃 𝒔′ = [0, 0, 0.05]𝑇 m. The lower and upper limits of the
EE position coordinates, needed as input parameters by the workspace algorithm, are taken as 𝑥𝑙 = min

(

𝒅𝑖,𝑥
)

, 𝑥𝑢 = max
(

𝒅𝑖,𝑥
)

,
𝑦𝑙 = min

(

𝒅𝑖,𝑦
)

, 𝑦𝑢 = max
(

𝒅𝑖,𝑦
)

, 𝑧𝑙 = −1m, 𝑧𝑢 = max
(

𝒅𝑖,𝑧 − 0.16
)

m, for 𝑖 = 1,… , 𝑛, which result in a prism including each cable entry
point in its pulley, an arbitrary inferior limit for the 𝑧 coordinate, and a safety superior limit for the 𝑧 coordinates so that cables
are never all coplanar. The geometric and inertial parameters of the robots used in the following subsections are inspired by several
configurations of the IRMAL@B prototype of the University of Bologna [44] 𝑛𝑔 is set to 101 for enhanced border-reconstruction
accuracy, and, for each architecture, the workspace for two sets of cable-tension limits is evaluated to show how they impact the
reachable-workspace size. The limits are 𝜏′𝑚 = 30N and 𝜏′𝑀 = 100N, or 𝜏′′𝑚 = 5N and 𝜏′′𝑀 = 500N, where the latter define a broader
tension range. The direction of each swiveling-pulley axis 𝒌𝑖 (𝑖 = 1,… , 𝑛) is [0, 0, 1]𝑇 for all robots. The workspace computation
algorithm, with a Newton–Raphson method for the solution of the modified inverse GSP (see [43], Chapter 11, Section 1), was
implemented in Matlab on a PC with a 10th generation i7 Intel processor and 16 Gb of RAM.

4.1. 2-cable UACDPR

The geometric parameters and a schematic of the 2-cable robot can be found in Table 1 and Fig. 4. The results of the workspace
computation are shown in Fig. 5, where the two tension limit sets [𝜏′𝑚, 𝜏

′
𝑀 ] and [𝜏′′𝑚 , 𝜏

′′
𝑀 ] were considered. Fig. 5(b) shows a larger

workspace than the one in Fig. 5(a) since the most limiting factors defining workspace boundaries appear to be the tension limits, but,
when these limits are large enough, the suspended 2-cable UACDPR can reach most of the area below its pulleys. The computational
time was 5.8 s for the workspace in Fig. 7(b), and 11.4 s for the workspace in Fig. 7(a).

4.2. 3-cable UACDPR

The geometric parameters and a schematic of the 3-cable robot can be found in Table 2 and Fig. 6. The results of the workspace
′ ′ ′′ ′′
8

computation are shown in Fig. 7, where the two tension limit sets [𝜏𝑚, 𝜏𝑀 ] and [𝜏𝑚 , 𝜏𝑀 ] were considered. Fig. 7(b) shows a larger
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Fig. 5. Hull representation of the 2-cable UACDPR workspace (units are in meters).

Fig. 6. Schematics of the 3-cable UACDPR for 𝐩 = [0, 0.3, 0]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and swiveling pulleys are
n red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
3-cable UACDPR geometric parameters.
𝑖 1 2 3

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

−1
1.155
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
1.155
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.577

1

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.025 0.025 0.025

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

−0.1
0.116
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
0.116
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.058
0.1

⎤

⎥

⎥

⎦

workspace than the one in Fig. 7(a) since the most limiting factors defining workspace boundaries appear to be the tension limits.
It is worth observing that the considered 3-cable UACDPR, which is suspended, can reach most of the volume below its pulleys. The
reachable volume laterally shrinks the more the EE is distant from its pulleys in the 𝑧 direction, due to some cables reaching lower
9



Mechanism and Machine Theory 193 (2024) 105551E. Ida’ and M. Carricato
Fig. 7. Hull representation of the 3-cable UACDPR workspace (units are in meters).

tension limits. The computational time was 3.1min for the workspace in Fig. 7(b), and 15.3min for the workspace in Fig. 7(a). In order
to assess how much the analytical formulation of the Jacobian matrix impacts the computational time, the workspace in Fig. 7(b)
was also obtained by solving the modified inverse GSP with Matlab Fsolve function, using a Levenberg–Marquardt algorithm, and
sharing the workload related to finite-difference Jacobian approximation among 8 cores. Instead of 3.1min, the computation time
was 2 h and 22min.

4.3. 4-cable UACDPRs

We propose a formulation for 𝜆 ∈ R that aims at reaching the largest wrench-feasible workspace possible, by looking for a tension
distribution that is ‘‘the farthest’’ from the tension limits; our technique is derived from the barycentric approach of [41]. Due to
Eq. (9), the wrench feasibility condition can be written as:

𝜏𝑚 ⪯ 𝝉0 + 𝝉⟂ ⪯ 𝜏𝑀 (21)

Each i-th inequality (𝑖 = 1,… , 4) in Eq. (21) can be written as:

𝜏𝑚 − 𝜏0,𝑖 ≤ 𝜆Ξ𝑇⟂
𝐹 ,𝑖 ≤ 𝜏𝑀 − 𝜏0,𝑖 (22)

namely

𝜆𝑚,𝑖 ≤ 𝜆 ≤ 𝜆𝑀,𝑖 (23)

where

𝜆𝑚,𝑖 =

{
(

𝜏𝑚 − 𝜏0,𝑖
)

∕Ξ𝑇⟂
𝐹 ,𝑖 , if Ξ𝑇⟂

𝐹 ,𝑖 ≥ 0
(

𝜏𝑀 − 𝜏0,𝑖
)

∕Ξ𝑇⟂
𝐹 ,𝑖 , if Ξ𝑇⟂

𝐹 ,𝑖 < 0
(24)

𝜆𝑀,𝑖 =

{
(

𝜏𝑀 − 𝜏0,𝑖
)

∕Ξ𝑇⟂
𝐹 ,𝑖 , if Ξ

𝑇⟂
𝐹 ,𝑖 ≥ 0

(

𝜏𝑚 − 𝜏0,𝑖
)

∕Ξ𝑇⟂
𝐹 ,𝑖 , if Ξ𝑇⟂

𝐹 ,𝑖 < 0
(25)

For each EE configuration, a wrench-feasible tension distribution is obtained if 𝜆𝑚,𝑚𝑎𝑥 = max(𝜆𝑚,1,… , 𝜆𝑚,4) ≤ 𝜆𝑀,𝑚𝑖𝑛 =
min(𝜆𝑀,1,… , 𝜆𝑀,4). In case a feasible distribution exists, ‘‘the farthest’’ distribution from the tension limits is obtained as 𝜆 =
(𝜆𝑚,𝑚𝑎𝑥 + 𝜆𝑀,𝑚𝑖𝑛)∕2. If a feasible distribution does not exist, the same formulation of 𝜆 results in the closest distribution to a feasible
one.

The geometric parameters and a schematic of an exemplary 4-cable robot can be found in Table 3 and Fig. 8. The results of the
workspace computation are shown in Fig. 9, where two tension limit sets [𝜏′𝑚, 𝜏

′
𝑀 ] and [𝜏′′𝑚 , 𝜏

′′
𝑀 ] are considered. As for the 3-cable

robot, Fig. 9(b) shows a larger workspace than the one in Fig. 9(a), since the most limiting factors defining workspace boundaries
appear to be the tension limits. Like the 3-cable robot, the 4-cable UACDPR, in suspended configuration, can reach most of the volume
below its pulleys. Computational time was 2.7min for the workspace in Fig. 9(b), and 33.2min for the workspace in Fig. 9(a).

We also investigate the workspace of a particular type of 4-cable robot, equivalent to a 3-cable robot with an additional cable
installed in a more elevated position and whose exit point from the frame is centered in the 𝑥𝑦 plane with respect to the other three
10
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Fig. 8. Schematics of the 4-cable UACDPR for 𝐩 = [0, 0, 0]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and swiveling pulleys are
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Hull representation of the 4-cable UACDPR workspace (units are in meters).

Table 3
4-cable UACDPR geometric parameters.
𝑖 1 2 3 4

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

−1
1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1
−1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
−1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.025 0.025 0.025 0.025

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

−0.1
0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−0.1
−0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
−0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
0.1
0.1

⎤

⎥

⎥

⎦

11
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Fig. 10. Schematics of the (3+1)-cable UACDPR for 𝐩 = [0, 0.3, 0.2]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and swiveling
pulleys are in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Hull representation of the (3+1)-cable UACDPR workspace (units are in meters).

Table 4
(3+1)-cable UACDPR geometric parameters.
𝑖 1 2 3 4

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

−1
1.155
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
1.155
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.05
1.5

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.577

1

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.025 0.025 0.025 0.025

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

−0.1
0.116
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
0.116
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.058
0.1

⎤

⎥

⎥

⎦

12
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Fig. 12. Schematics of the (4+1)-cable UACDPR for 𝐩 = [0, 0, 0.2]𝑇 (units are in meters). The EE is schematized in blue, cables are in black, and swiveling
pulleys are in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

cables. Due to its peculiar geometry, we call this robot a (3+1)-cable UACDPR, and its geometric parameters and schematics can be
found in Table 4 and Fig. 10. The results of the workspace computation are shown in Fig. 11, where two tension limit sets [𝜏′𝑚, 𝜏

′
𝑀 ]

nd [𝜏′′𝑚 , 𝜏
′′
𝑀 ] are considered. It is interesting to notice that when narrow tension limits are considered (Fig. 11(a)), the workspace is

maller than the one of the 3-cable robot (Fig. 7(a)). On the contrary, for wider tension limits (Fig. 11(b)), the (3+1)-cable UACDPR
an cover almost all the workspace of the 3-cable robot and is additionally able to reach the volume above the three lateral cables.
omputational time was 1.9min for the workspace in Fig. 11(b), and 14.5min for the workspace in Fig. 11(a).

4.4. 5-cable UACDPR

For 5-cable UACDPRs, we must define a suitable formulation for 𝝀 = [𝜆1, 𝜆2]𝑇 ∈ R2. We adapted the method proposed in [45],
which primarily aims at determining if a tension distribution exists by computing a feasible convex polygon in the space spanned
by 𝜆1 and 𝜆2. Potential polygon vertices in the 𝜆1𝜆2 plane are determined by the intersections between the lines given by Eq. (9),
which provide limit values for 𝝀. Each vertex may be computed by considering the intersection between two lines in the 𝜆1𝜆2 plane,
namely computing the solution to:

{

Ξ𝑇⟂
𝐹 ,𝑖𝝀 = 𝜏𝑢 − 𝜏0,𝑖

Ξ𝑇⟂
𝐹 ,𝑗𝝀 = 𝜏𝑣 − 𝜏0,𝑗

(26)

where 𝑢, 𝑣 = 𝑚,𝑀 and 𝑖, 𝑗 = 1,… , 5, with 𝑖 ≠ 𝑗, and Ξ𝑇⟂
𝐹 ,𝑖 and Ξ𝑇⟂

𝐹 ,𝑗 are the i-th and j-th rows of Ξ𝑇⟂
𝐹 , respectively. If a feasible

polygon exists, it contains the 𝝀’s for which an admissible tension distribution can be computed. Without detailing how the polygon
vertices can be efficiently found (see [45]), two cases are possible, depending on whether the polygon exists. If the polygon exists
and has 𝑛𝑝 vertices 𝝀𝑞 , with 𝑞 = 1,… , 𝑛𝑝, 𝝀 is computed as the algebraic mean of their coordinates:

𝝀 = 1
𝑛𝑝

𝑛𝑝
∑

𝑞=1
𝝀𝑞 (27)

If the polygon does not exist, 𝝀 is the vertex resulting in a tension distribution closest to wrench feasibility in the Euclidean sense,
as in [46]. Analytically speaking, 𝝀 is still described by Eq. (27), but with 𝑛𝑝 = 1, and with a different choice of 𝝀𝑞 .

As a 5-cable UACDPR, we propose a particular architecture investigated in [47], which is equivalent to a 4-cable robot with
an additional cable installed in a more elevated position and whose exit point from the frame is centered in the 𝑥𝑦 plane with
respect to the other four cables. We call this robot a (4+1)-cable UACDPR, and its geometric parameters and schematics can be
found in Table 5 and Fig. 12. The results of the workspace computation are shown in Fig. 13, where two tension limit sets [𝜏′𝑚, 𝜏

′
𝑀 ]

and [𝜏′′𝑚 , 𝜏
′′
𝑀 ] are considered. Similarly to the comparison between the (3+1)-cable robot and the 3-cable one, when narrow tension

limits are considered (Fig. 13(a)), the workspace volume of the (4+1)-cable UACDPR is smaller than the one of the 4-cable robot
(Fig. 9(a)). On the contrary, for wider tension limits (Fig. 13(b)), the (4+1)-cable UACDPR is able to cover almost all the workspace
of the 4-cable robot and is additionally able to reach the volume above the four lateral cables. Computational time was 14.5min for
the workspace in Fig. 13(b), and 53.9min for the workspace in Fig. 13(a). The (𝑛+1)-cable robot architectures, with 𝑛 = 3, 4, appear
o be useful, if suitable tension limits are used, for tasks involving the positioning of a payload in the same workspace of 𝑛-cable
13
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Table 5
(4+1)-cable UACDPR geometric parameters.
𝑖 1 2 3 4 5

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

−1
1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1
−1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
−0.05
1.5

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
−1
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.025 0.025 0.025 0.025 0.025

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

−0.1
0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−0.1
−0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
−0.1
0.1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.1
0.1
0.1

⎤

⎥

⎥

⎦

Fig. 13. Hull representation of the (4+1)-cable UACDPR workspace (units are in meters).

robots, but also requiring to lift such load above the installation area of the 𝑛-cable robot pulleys, as the one presented in [47].
Depending on 𝑛, the overall rough shape of the workspace changes, and one can use 𝑛 = 3 if a triangular prism workspace is needed
or 𝑛 = 4 if a rectangular prism is more appropriate.

5. Application: Trajectory planning

This section (i) highlights the merits of our methodology for the computation of statically feasible and continuous trajectory set
points, and (ii) shows that our method is capable of correctly computing the workspace boundaries.

A series of successive set points is computed by solving Eq. (11) along four linear trajectories, with each one of them connecting
two points on the plane characterized by 𝑧 = −0.5m in the 4-cable UACDPR workspace shown in Fig. 9(b) (see Fig. 14(a)). The first
trajectory starts from a point 𝐴 well inside the workspace borders (the cable tension limits considered in this example are 𝜏′′𝑚 = 5N
and 𝜏′′𝑀 = 500N) and arrives in 𝐵, on the workspace border as computed in Section 4.3. The second and third trajectories, from 𝐵 to
𝐶 and from 𝐶 to 𝐷 respectively, are outside the workspace border due to some cable tensions being below the minimum threshold
𝜏′′𝑚 .4 Once the EE reaches 𝐷, on the border, its returns with a final trajectory to 𝐴. Each assigned position set point is reported in
Fig. 14(b), and, computed as:

𝒑𝑖𝑗 (𝑠𝑘) = 𝒑𝑖 +
(𝒑𝑗 − 𝒑𝑖)𝑠𝑘
‖𝒑𝑗 − 𝒑𝑖‖

, 𝑖 = 𝐴, 𝐵, 𝐶, 𝐷 𝑗 = 𝐵, 𝐶, 𝐷, 𝐴 (28)

where:

𝒑𝐴 =
⎡

⎢

⎢

⎣

0.6
0.6
−0.5

⎤

⎥

⎥

⎦

m, 𝒑𝐵 =
⎡

⎢

⎢

⎣

0.7
0.9
−0.5

⎤

⎥

⎥

⎦

m, 𝒑𝐶 =
⎡

⎢

⎢

⎣

0.9
0.9
−0.5

⎤

⎥

⎥

⎦

m, 𝒑𝐷 =
⎡

⎢

⎢

⎣

0.9
0.7
−0.5

⎤

⎥

⎥

⎦

m

4 Eq. (11) is solved with a tension distribution which is the nearest to a feasible one, as introduced in Section 4.3.
14
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Fig. 14. Assigned trajectories.

Fig. 15. The modified inverse GSP results over the assigned trajectories.

𝑠𝑘 ∈ 0, 0.001, 0.002,… , ‖𝒑𝑗 − 𝒑𝑖‖

In Fig. 14(b), the abscissa 𝑠 cumulates the total distance of each 𝑠𝑘. The results of the modified inverse GSP over the assigned
rajectories are shown in Fig. 15. The computed orientation parameters 𝝐 are displayed in Fig. 15(a), where the continuity of each
roblem solution can be appreciated. Fig. 15(b) shows the cable tensions computed after the problem solution. It can be seen that
he tensions of several cables fall below 𝜏′′𝑚 when the EE set point is between point 𝐵 and 𝐶, or 𝐶 and 𝐷, as expected. Nonetheless,
he computed tensions are continuous.

. Conclusions

This paper introduced an algorithm for the computation of the reachable static workspace of generic UACDPRs and demonstrated
its application on robots with 3, 4, and 5 cables. The algorithm was based on the definition of a modified inverse geometrico-static
problem, which allows one to compute feasible EE orientations characterized by a desired tension distribution when the EE position
is assigned. An analytical formulation of the Jacobian of the modified inverse geometrico-static problem was also introduced to
speed up computation. The application of the algorithm showed that, for any architecture, the most limiting factors for the reachable
15
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static workspace were the limits set for the cable tensions. Additionally, we showed that our algorithm is able to compute continuous
statically feasible set points to be used for trajectory planning.
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ppendix. Analytical formulation of the Jacobian of the modified inverse GSP

Even though 𝑱 is the derivative of 𝝓 with respect to 𝝐 (see Eq. (11)), it is convenient to differentiate 𝑱 with respect to the full
EE pose 𝜻 , because this leads to a simpler analytical expression. We start by differentiating the left side Eq. (4), which yields [4]:

𝜕
(

Ξ𝑇 𝝉 − 𝒇
)

𝜕𝜻
= 𝜕Ξ𝑇

𝜕𝜻
𝝉 −

𝜕𝒇
𝜕𝜻

+Ξ𝑇 𝜕𝝉
𝜕𝜻

(A.1)

where:
𝜕Ξ𝑇

𝜕𝜻
𝝉

𝛥
= 𝐊𝐃, −

𝜕𝒇
𝜕𝜻

𝛥
= 𝑸𝑫 (A.2)

𝐊 and 𝐐 are respectively given in Eqs. (15) and (16). Matrix 𝐃 ∈ R6×6, relating the EE twist 𝒗 with �̇� , only depends on the choice
of the orientation parametrization; for example, if 𝝐 =

[

𝜃𝑥, 𝜃𝑦, 𝜃𝑦
]𝑇 , and 𝐑 = 𝑹𝑥

(

𝜃𝑥
)

𝑹𝑦
(

𝜃𝑦
)

𝑹𝑧
(

𝜃𝑧
)

, with 𝑹𝑥, 𝑹𝑦, and 𝑹𝑧 being
elementary rotation matrices about 𝑥, 𝑦, and 𝑧 axes, and 𝑐𝑥 = cos 𝑥 and 𝑠𝑥 = sin 𝑥, we have [12]:

𝒗 = 𝐃(𝝐)�̇� , 𝐃(𝜖)
𝛥
=
[

𝐈3×3 𝟎3×3
𝟎3×3 𝐇(𝝐)

]

, 𝐇 (𝝐) =
⎡

⎢

⎢

⎢

⎣

1 0 𝑠𝜃𝑦
0 𝑐𝜃𝑥 −𝑠𝜃𝑥 𝑐𝜃𝑦
0 𝑠𝜃𝑥 𝑐𝜃𝑥 𝑐𝜃𝑦

⎤

⎥

⎥

⎥

⎦

(A.3)

The leftmost definition in Eq. (A.2) is a product between the derivative of a matrix with respect to a vector, which is a 3-dimensional
tensor, and a vector, and the result of this operation is a matrix. Computational details can be found in the Appendix of [4].

The expression of 𝐉 is more easily derived by considering Eq. (8) instead of Eq. (11) since they only differ for the explicit
expression of the tension distribution. Accordingly:

𝐉 =
𝜕
(

Ξ𝑇
𝑀𝝉 − 𝑚�̃�′𝒈

)

𝜕𝜻
=

𝜕Ξ𝑇
𝑀

𝜕𝜻
𝝉 − 𝑚

𝜕�̃�′𝒈
𝜕𝜻

+Ξ𝑇
𝑀

𝜕𝝉
𝜕𝜻

(A.4)

The first two terms on the right side of Eq. (A.4) are simply the last three rows (namely rows from 4 to 6) of the first two terms on
the right side of Eq. (A.1), which are provided in Eq. (A.2) and denoted by

(

𝐊46 +𝐐46
)

𝐃. The rest of the Jacobian is then computed
by evaluating the derivative of the tension distribution 𝝉 in Eq. (9) as:

𝜕𝝉
𝜕𝜻

=
𝜕𝝉0
𝜕𝜻

+ 𝜕𝝉⟂
𝜕𝜻

,
𝜕𝝉0
𝜕𝜻

= 𝑚
𝜕
(

Ξ−𝑇
𝐹

)

𝜕𝜻
𝒈, 𝜕𝝉⟂

𝜕𝜻
=

𝜕
(

Ξ𝑇⟂
𝐹

)

𝜕𝜻
𝝀 +Ξ⟂

𝐹
𝜕𝝀
𝜕𝜻

(A.5)

where it is worth remarking that 𝜕𝝉⟂∕𝜕𝜻 is defined only for 𝑛 = 4 or 5. The calculation of 𝜕𝝀∕𝜕𝜻 depends on the specific choice of
tension distribution algorithm, and it will be detailed in Appendix A.1 for the 4-cable UACDPR, and in Appendix A.2 for the 5-cable
UACDPR. The remaining derivatives in Eq. (A.5) depend on the specific formulations employed for Ξ−𝑇

𝐹 and Ξ⟂
𝐹 , since they are not

unique. We propose using a formulation borrowed from [20], which simplifies computation. We partition the cable tension array 𝝉
and matrix Ξ𝑇

𝐹 so that:

Ξ𝑇
𝐹 𝝉 = Ξ𝑇

𝐹𝑑𝝉𝑑 +Ξ𝑇
𝐹𝑐𝝉𝑐 , 𝝉 =

[

𝝉𝑇𝑑 𝝉𝑇𝑐
]𝑇 , Ξ𝑇

𝐹 =
[

Ξ𝐹𝑑 Ξ𝐹𝑐
]𝑇 (A.6)

where 𝝉𝑑 ∈ R3×1 and 𝝉𝑐 ∈ R(3−𝜅)×1 are the first 3 and last 3 − 𝜅 elements of 𝝉, and Ξ𝐹𝑑 ∈ R3×3 and Ξ𝐹𝑐 ∈ R3×(3−𝜅) are the first 3
and last 3 − 𝜅 columns of Ξ𝐹 , respectively. Ref. [20] showed that, according to this partition, 𝝀 holds a physical meaning, which is
𝝀 = 𝝉𝑐 , if and only if:

Ξ−𝑇
𝐹 =

[

Ξ−𝑇
𝐹𝑑

]

, Ξ𝑇⟂
𝐹 =

[

−Ξ−𝑇
𝐹𝑑Ξ

𝑇
𝐹𝑐
]

(A.7)
16
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p

and consequently, if Eq. (A.7) is substituted in Eqs. (7) and (9), it can be shown that:

𝝉𝑑 = 𝑚Ξ−𝑇
𝐹𝑑𝒈, 𝝉0 =

[

𝝉𝑇𝑑 𝟎1×(3−𝜅)
]𝑇 , 𝝉⟂ = Ξ𝑇⟂

𝐹 𝝉𝑐 (A.8)

Notice that Ξ−𝑇
𝐹 = Ξ−𝑇

𝐹𝑑 for 𝑛 = 3, and Ξ𝑇
𝐹𝑑 is not singular, thus invertible, if the first three cables are not coplanar, since the rows

of Ξ𝑇
𝐹𝑑 are the cable directions 𝒕𝑇𝑖 , with 𝑖 = 1, 2, 3. Accordingly, as long as at least three cables are not coplanar, one can always

re-order cables to obtain a non-singular Ξ𝑇
𝐹𝑑 . According to this formulation, we can evaluate 𝜕𝝉0∕𝜕𝜻 and the first term of 𝜕𝝉⟂∕𝜕𝜻

as5:

𝜕𝝉0
𝜕𝜻

=

[

𝑚
𝜕Ξ−𝑇

𝐹𝑑
𝜕𝜻 𝒈

𝟎𝜅×6

]

=

[

−𝑚Ξ−𝑇
𝐹𝑑

𝜕Ξ𝑇
𝐹𝑑

𝜕𝜻 Ξ−𝑇
𝐹𝑑𝒈

𝟎𝜅×6

]

=

[

−Ξ−𝑇
𝐹𝑑

𝜕Ξ𝑇
𝐹𝑑

𝜕𝜻 𝝉𝑑
𝟎𝜅×6

]

(A.9)

𝜕
(

Ξ𝑇⟂
𝐹

)

𝜕𝜻
𝝀 = −

⎡

⎢

⎢

⎣

(

𝜕Ξ−𝑇
𝐹𝑑

𝜕𝜻 Ξ𝑇
𝐹𝑐 +Ξ−𝑇

𝐹𝑑
𝜕Ξ𝑇

𝐹𝑐
𝜕𝜻

)

𝝀

𝟎𝜅×6

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Ξ−𝑇
𝐹𝑑

(

𝜕Ξ𝑇
𝐹𝑑

𝜕𝜻 Ξ−𝑇
𝐹𝑑Ξ

𝑇
𝐹𝑐 −

𝜕Ξ𝑇
𝐹𝑐

𝜕𝜻 𝐈𝜅×𝜅
)

𝝀

𝟎𝜅×6

⎤

⎥

⎥

⎦

(A.10)

Both Eq. (A.9) and (A.10) contain products between 3-dimensional tensors and vectors, as in Eq. (A.2). According to the technique
resented in the Appendix of [4], it can be shown that:

𝜕Ξ𝑇
𝐹𝑑

𝜕𝜻
𝝉𝑑 = 𝐊𝐹𝑑𝐃, 𝐊𝐹𝑑

𝛥
=

3
∑

𝑖=1
𝜏0,𝑖

[

𝐓𝑖 −𝐓𝑖�̃�′𝑖
]

(A.11)

(

𝜕Ξ𝑇
𝐹𝑑

𝜕𝜻
Ξ−𝑇

𝐹𝑑Ξ
𝑇
𝐹𝑐 −

𝜕Ξ𝑇
𝐹𝑐

𝜕𝜻
𝐈𝜅×𝜅

)

𝝀 = −𝐊⟂
𝐹𝐃, 𝐊⟂

𝐹
𝛥
=

𝑛
∑

𝑖=1
𝜏⟂𝑖

[

𝐓𝑖 −𝐓𝑖�̃�′𝑖
]

(A.12)

Thus substituting Eq. (A.11) in Eq. (A.9), and Eq. (A.12) in Eq. (A.10):

𝜕𝝉0
𝜕𝜻

= −
[

Ξ−𝑇
𝐹𝑑𝐊𝐹𝑑
𝟎𝜅×6

]

𝐃,
𝜕
(

Ξ𝑇⟂
𝐹

)

𝜕𝜻
𝝀 = −

[

Ξ−𝑇
𝐹𝑑𝐊

⟂
𝐹

𝟎𝜅×6

]

𝐃 (A.13)

Once 𝜕𝝀∕𝜕𝜻 is also computed, the Jacobian 𝐉 is given by the last 3 columns of Eq. (A.4), namely the last 3 columns of:
(

𝐊46 +𝐐46 −Ξ𝑇
𝑀

([

Ξ−𝑇
𝐹𝑑𝐊𝐹𝑑

𝟎𝜅×6

]

+

[

Ξ−𝑇
𝐹𝑑𝐊

⟂
𝐹

𝟎𝜅×6

]))

𝐃 +Ξ𝑇
𝑀Ξ𝑇⟂

𝐹
𝜕𝝀
𝜕𝜻

(A.14)

.

A.1. Computation of 𝜕𝜆∕𝜕𝜻 for the 4-cable UACDPR

In this case (see Section 4.3) 𝝀 is a scalar and equal to 𝜆 = (𝜆𝑚,𝑚𝑎𝑥 + 𝜆𝑀,𝑚𝑖𝑛)∕2, where 𝜆𝑚,𝑚𝑎𝑥 = max(𝜆𝑚,1,… , 𝜆𝑚,4), 𝜆𝑀,𝑚𝑖𝑛 =
min(𝜆𝑀,1,… , 𝜆𝑀,4), and 𝜆𝑚,𝑖 and 𝜆𝑀,𝑖 for 𝑖 = 1,… , 𝑛 are given by Eqs. (24) and (25) respectively. Accordingly:

𝜕𝜆
𝜕𝜻

= 1
2

( 𝜕𝜆𝑚,𝑚𝑎𝑥
𝜕𝜻

+
𝜕𝜆𝑀,𝑚𝑖𝑛

𝜕𝜻

)

(A.15)

where, if the cable indexes maximizing 𝜆𝑚 and minimizing 𝜆𝑀 are respectively denoted by 𝛼 and 𝛽:

𝜕𝜆𝑚,𝑚𝑎𝑥
𝜕𝜻

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Ξ𝑇⟂
𝐹 ,𝛼𝜕𝜏0,𝛼∕𝜕𝜻−(𝜏𝑚−𝜏0,𝛼)𝜕Ξ𝑇⟂

𝐹 ,𝛼∕𝜕𝜻
(

Ξ𝑇⟂
𝐹 ,𝛼

)2 , if Ξ𝑇⟂
𝐹 ,𝛼 ≥ 0

−Ξ𝑇⟂
𝐹 ,𝛼𝜕𝜏0,𝛼∕𝜕𝜻−(𝜏𝑀−𝜏0,𝛼)𝜕Ξ𝑇⟂

𝐹 ,𝛼∕𝜕𝜻
(

Ξ𝑇⟂
𝐹 ,𝛼

)2 , if Ξ𝑇⟂
𝐹 ,𝛼 < 0

(A.16)

𝜕𝜆𝑀,𝑚𝑖𝑛

𝜕𝜻
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Ξ𝑇⟂
𝐹 ,𝛽𝜕𝜏0,𝛽∕𝜕𝜻−

(

𝜏𝑀−𝜏0,𝛽
)

𝜕Ξ𝑇⟂
𝐹 ,𝛽∕𝜕𝜻

(

Ξ𝑇⟂
𝐹 ,𝛽

)2 , if Ξ𝑇⟂
𝐹 ,𝛽 ≥ 0

−Ξ𝑇⟂
𝐹 ,𝛽𝜕𝜏0,𝛽∕𝜕𝜻−

(

𝜏𝑚−𝜏0,𝛽
)

𝜕Ξ𝑇⟂
𝐹 ,𝛽∕𝜕𝜻

(

Ξ𝑇⟂
𝐹 ,𝛽

)2 , if Ξ𝑇⟂
𝐹 ,𝛽 < 0

(A.17)

The derivative of 𝜏0,𝑖 with respect to 𝜻 is provided by the i-th row of the leftmost term in Eq. (A.13), whereas 𝜕Ξ𝑇⟂
𝐹 ,𝛼∕𝜕𝜻 and 𝜕Ξ𝑇⟂

𝐹 ,𝛽∕𝜕𝜻
can be shown to be, respectively, the 𝛼-th and the 𝛽-th row of:

𝜕Ξ𝑇⟂
𝐹

𝜕𝜻
= −

[

Ξ−𝑇
𝐹𝑑𝐀
𝟎1×6

]

𝐃, 𝐀
𝛥
=

4
∑

𝑖=1
Ξ𝑇⟂

𝐹 ,𝑖
[

𝐓𝑖 −𝐓𝑖�̃�′𝑖
]

(A.18)

5 We recall that, since Ξ𝑇
𝐹𝑑 is an invertible matrix, then Ξ𝑇

𝐹𝑑Ξ
−𝑇
𝐹𝑑 = 𝐈3×3 and Ξ𝑇

𝐹𝑑Ξ
−𝑇
𝐹𝑑𝒗 = 𝒗 for any 𝒗 ∈ R3×1. If 𝒗 does not depend on 𝜻 , then

𝑇 −𝑇 𝑇 −𝑇 −𝑇 −𝑇 𝑇 −𝑇
17

𝜕Ξ𝐹𝑑∕𝜕𝜻 Ξ𝐹𝑑𝒗 +Ξ𝐹𝑑𝜕Ξ𝐹𝑑∕𝜕𝜻 𝒗 = 𝟎3×6, and thus 𝜕Ξ𝐹𝑑∕𝜕𝜻 𝒗 = −Ξ𝐹𝑑 𝜕Ξ𝐹𝑑∕𝜕𝜻 Ξ𝐹𝑑𝒗.
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A.2. Computation of 𝜕𝝀∕𝜕𝜻 for the 5-cable UACDPR

For the 5-cable UACDPR, 𝝀 is computed in Eq. (27) as the algebraic means of points 𝝀𝑞 in the 𝜆1𝜆2 plane, computed in their turn
as the solution of Eq. (26). As a consequence:

𝜕𝝀
𝜕𝜻

= 1
𝑛𝑝

𝑛𝑝
∑

𝑞=1

𝜕𝝀𝑞
𝜕𝜻

(A.19)

where 𝜕𝝀𝑞∕𝜕𝜻 can be computed, after appropriately selecting 𝑖, 𝑗, 𝑢 and 𝑣, by differentiating Eq. (26). If 𝝀𝑞 is the solution of Eq. (26)
for assigned 𝑖, 𝑗, 𝑢 and 𝑣, and 𝝉⟂𝑞 = Ξ𝑇⟂

𝐹 𝝀𝑞 , then:

𝜕𝝀𝑞
𝜕𝜻

= −Ξ−𝑇⟂
𝐹 ,𝑖𝑗

(

𝜕𝝉0,𝑖𝑗
𝜕𝜻

+
𝜕Ξ𝑇⟂

𝐹 ,𝑖𝑗

𝜕𝜻
𝝀𝑞

)

, Ξ𝑇⟂
𝐹 ,𝑖𝑗 =

[

Ξ𝑇⟂
𝐹 ,𝑖

Ξ𝑇⟂
𝐹 ,𝑗

]

(A.20)

where 𝜕𝝉0,𝑖𝑗∕𝜕𝜻 is a matrix composed by the i-th and j-th rows of the leftmost term in Eq. (A.13), and
(

𝜕Ξ𝑇⟂
𝐹 ,𝑖𝑗∕𝜕𝜻

)

𝝀𝑞 can be shown
to be the matrix composed by the i-th and j-th rows of:

𝜕Ξ𝑇⟂
𝐹

𝜕𝜻
𝝀𝑞 = −

[

Ξ−𝑇
𝐹𝑑𝐊

⟂
𝑞

𝟎2×6

]

𝐃, 𝐊⟂
𝑞

𝛥
=

5
∑

𝑖=1
𝝉⟂𝑞,𝑖

[

𝐓𝑖 −𝐓𝑖�̃�′𝑖
]

(A.21)
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