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Abstract

Spacecraft attitude stabilization based on active magnetic actuators repre-

sents a challenging problem, since the available control torque is constrained

on a plane orthogonal to the direction of the local geomagnetic field, making

the system instantaneously underactuated. A novel magnetic controller is

proposed, driving a satellite flying on a Low-Earth-Orbit to three-axis stabi-

lization on a prescribed attitude in the Nadir-pointing orbit frame. A proof of

stability is provided for an idealized configuration (axisymmetric spacecraft

with no disturbances). Robustness of the control technique against environ-

mental disturbances, parameter uncertainties, corrupted measurements, and

other control implementation issues is then demonstrated by numerical sim-

ulations, where the effect of magnetic residual dipoles is mitigated by online

estimation.
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Nomenclature

b Geomagnetic field vector expressed in FB, T

CD Spacecraft drag coefficient

ê1, ê2, ê3 Spacecraft principal axes of inertia

FB Body-fixed frame

FI Inertial frame

FO Local-vertical/local-horizontal orbit frame

i Orbit inclination, deg

I3 3× 3 identity matrix

J Spacecraft inertia matrix, kg m2

kε, kζ , λ Control gains, s−1, s−1, rad−1

M = (M1,M2,M3)
T External torque acting on the spacecraft, N m

m = (m1,m2,m3)
T Magnetic dipole moment vector, A m2

n Orbit rate, rad s−1

ô1, ô2, ô3 Orbital axes

rc Orbit radius, km

T Orbit period, s

TBI Coordinate transformation matrix between FI and FB
TBO Coordinate transformation matrix between FO and FB
V Velocity along the orbit, m s−1

0m×n m× n zero matrix

Greek symbols

ε = (ε1, ε2, ε3)
T Body angular momentum error, N m s

ω = (ω1, ω2, ω3)
T Spacecraft angular velocity vector relative to FI , rad s−1

ωr = (ωr1, ω
r
2, ω

r
3)
T Spacecraft angular velocity vector relative to FO, rad s−1

2



ψ, φ, θ 3-1-2 Euler angle sequence, rad

ρ Air density, kg m−3

σ̂ = TBO (0, 1, 0)T Unit vector along the orbit normal

ζ = (ζ1, ζ2, ζ3)
T Inertial angular momentum error, N m s

Subscripts

0 Initial condition at time t0

d Desired value

I Vector components in the inertial frame FI

max Maximum

min Minimum

O Vector components in the orbit frame FO

1. Introduction

Since its successful implementation in early space missions [1], magnetic

actuation has turned into an attractive alternative for attitude control of

spacecraft operating in Low Earth Orbit (LEO). The interest in magnetic

torquers (MTs) is due to different reasons. First of all, savings in weight,

cost, and complexity with respect to other systems are significant, coupled

with high reliability, long operational lifetime, and use of renewable electric

energy. At the same time, the possibility of a smooth modulation of control

torques allows for a reduced interaction between attitude maneuvers and

flexible modes [2]. The use of magnetic actuators, however, poses several

problems in the selection of suitable control strategies, because the coils

generate a torque that lies on a plane orthogonal to the local geomagnetic field

(whose direction varies with time in the orbit frame). This makes the system
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inherently underactuated, with no possibility to provide three independent

control torques at each time instant [3, 4]. This causes several practical issues,

ranging from the inability of tracking an arbitrary attitude to difficulties in

disturbance rejection.

Full actuation can be recovered accounting for the slow variation of the

local geomagnetic field along the orbit, which restores some (albeit limited)

closed-loop performance on a timescale in the order of the orbital period

[5]. These features make magnetic control suitable in practice for 1) small

satellites with mild pointing precision requirements [6], 2) control system

reconfiguration after failure (e.g., after loss of a reaction wheel in a three-

axes stabilized spacecraft with no redundancy) [7], 3) spacecraft detumbling

after ejection from the launch vehicle [8], and 4) momentum dumping of

reaction/momentum wheels during desaturation maneuvers [9]. Conversely,

when more stringent requirements on pointing accuracy are posed, mechani-

cal devices such as reaction/momentum wheels are necessary in the presence

of disturbance torques and uncertain dynamics [10].

A number of control methods have been developed for attitude acquisi-

tion, maneuver, and stabilization of magnetically actuated satellites [11, 12,

13, 14, 15]. Since the well-known B-dot control law was proposed in 1972

[16, 17], a relevant research work has focused mainly on the stability analysis

of magnetic controllers. As an example, local asymptotic stability of atti-

tude equilibrium is addressed by using either periodic optimal control in the

linear case [18, 19] or time-varying controllers [20]. The problem of global

asymptotic stability has also been extensively studied, but to the best of the

authors’ knowledge, a general solution to the problem of global magnetic at-
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titude stabilization on a timescale smaller than the orbit period has not yet

been derived. As a matter of fact, some papers provide encouraging results

for global stabilization in the presence of sufficiently large variations of the

magnetic field along one complete orbit [5, 21].

In this work, a purely-magnetic control law is presented that drives a

LEO spacecraft to three-axis attitude stabilization in the orbit frame from

an arbitrary initial tumbling condition. One of the most critical maneuvers

for a LEO satellite platform is represented by initial attitude acquisition after

release from the launch vehicle. To the best authors’ knowledge, in current

missions such maneuver is performed in three steps: a) a detumbling phase,

which reduces the initial angular rate after deployment; b) acquisition of a

pure spin condition, with spin axis along the normal to the orbit plane; c)

acquisition of the desired attitude in the orbit frame. Phases a) and b) can be

performed (also simultaneously) by means of a magnetic controller, whereas

phase c) is usually performed by using a momentum wheel. A finite-state

machine is needed for switching from one controller to the other, driving to

a larger demand of computational capability.

Morevoer, a purely magnetic attitude control law for payload stabilization

represents an interesting solution for low cost and/or small satellite platforms,

avoiding the use of an expensive (and possibly less reliable) momentum wheel.

With this objective in mind, the study investigates a control law architecture

which can turn this idea into a practical solution, capable of providing full

three-axis control when mechanical actuation is not available, either as a

result of a design choice, aimed at minimizing complexity and cost, or in case

of momentum and/or reaction wheel failure(s), thus extending the potential
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operational lifetime, without the need of redundant mechanical actuation,

which conversely increases weight, complexity and cost.

The proposed approach is developed within the context outlined by the

same authors in [22], where a magnetically actuated spacecraft is driven to

a desired pure-spin condition about a principal axis of inertia. In Ref. [23]

a proof of global exponential stability was derived for a magnetic control

law that simultaneously leads the satellite to 1) a spin condition around a

principal axis of inertia, 2) while pointing the spin axis toward a prescribed

direction in the inertial frame. In the present work, this latter approach is

extended to the case of a spacecraft spinning around the pitch axis (assumed

to be a principal axis of inertia), while the same is being aligned to the

orbit normal. Full three-axis attitude stabilization in the orbit frame is then

achieved by modulating the desired value of the pitch rate as a function of

the residual pitch angle error. A two timescale behavior is forced, by means

of an adequate choice of the control gains, so that the pitch angle correction

task is made sufficiently slower than the spin-and-align dynamics. Three-axis

stabilization is achieved and local stability for the origin of the controlled

system is proven in the framework of singular perturbation analysis, which

establishes robustness of stability properties for the faster dynamics [24].

The time-varying properties of the geomagnetic field in the orbit frame

still play a role in the recovery of full actuation over time intervals in the

order of one orbital period. In the absence of simplifying assumptions on

the geomagnetic field, the proposed stability proof becomes more general

with respect to studies, where a simple dipole model [18] or other particular

assumptions on magnetic field play a role in the stability analysis. In such
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a case, robustness against geomagnetic field model uncertainties needs to

be tested, possibly leading to some performance degradation, not present

in the case of the control approach developed in this paper. In spite of the

local nature of the stability proof, an extensive set of Monte Carlo simulations

demonstrates that convergence is achieved for any randomly generated initial

attitude. Moreover, it also provides empirical evidence to the validity of a

gain sizing technique proposed at the end of the stability proof.

Stability and performance of the closed-loop system are finally tested by

means of numerical simulations in a realistic scenario, accounting for practical

problems, which have been seldom taken care of simultaneously in previous

works [25, 26]. In particular, system robustness is proven in the presence of

environmental disturbances, parameter uncertainties, implementation issues

[27], and actuator saturation limits [28, 29]. To this aim, the effect of large

magnetic residual dipoles is mitigated by online estimation.

The main contributions of the paper and its the application scope can

thus be summarized as follows: (a) a new technique for attitude stabilization

by using magnetic actuators only is presented, with a potential application

for any small-size satellite platform in Low-Earth Orbit; (b) a formal proof

of asymptotic stability is provided, in the ideal case of axisymmetric con-

figuration, with no environmental disturbances; (c) robustness against dis-

turbances, model uncertainties (including three-inertial configurations with

a full inertia matrix), sensors’ noise and bias, actuators dynamics, and sig-

nals’ quantization is demonstrated by means of an extensive set of numerical

simulations; (d) the proposed control algorithm can handle all three phases

of the initial satellite deployment (detumbling, spin acquisition, and attitude
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acquisition), without the need for switching controllers or finite state ma-

chine; (e) a guideline for the choice of the optimal value of control gains is

provided; (f) the forced first-order dynamics on the pitch angle allows for

an analytical estimate of convergence time to the desired pointing attitude;

(g) a more direct physical interpretation of terms is also available, if com-

pared to averaging methods, which hinge on a considerably more complex

mathematical framework.

In the next section, the mathematical model of spacecraft attitude dy-

namics in the presence of external disturbances is recalled. The control

approach is described in the third section and closed loop performance is

discussed in the next one for a realistic test case. A section of concluding

remarks ends the paper.

2. System Dynamics

2.1. Angular Momentum Balance

A sketch of the spacecraft, featuring a set of mutually orthogonal MTs

is represented in Fig. 1. The focus of the paper is on attitude dynamics and

control, hence the orbital motion of the spacecraft center of mass is assumed

to be known and only the angular momentum relative to the spacecraft center

of mass is considered. All vector quantities are expressed in terms of body

frame components, unless otherwise stated.

The evolution of angular velocity components is derived from the an-

gular momentum balance equation, projected onto a frame of body axes,

FB = {P ; ê1, ê2, ê3}, fixed with respect to the spacecraft, assumed rigid, and

centered in its center of mass, P :

Jω̇ + ω × (Jω) = M (1)
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Figure 1: Sketch of spacecraft, relevant frames and 3-1-2 Euler angle sequence.

where ω = (ω1, ω2, ω3)
T is the angular velocity vector of the spacecraft with

respect to an inertial frame FI = {O; î1, î2, î3} (where O is the center of

the Earth and î1, î2, and î3 are three inertially–fixed unit vectors), J =

diag(J1, J2, J3) is the spacecraft inertia matrix (that is, ê1, ê2, and ê3 are

principal axes of inertia), and M is the external torque.

The external torque, M , acting on the spacecraft is the sum of magnetic

and disturbance torques, M (c) and M (d), respectively. Magnetic control

torque is M (c) = m × b, where m is the dipole moment generated by the

MTs and b is the local geomagnetic field vector, expressed in terms of body-

frame components. A circular LEO of radius rc and period T is considered,

such that the orbit rate, n = 2π/T , is constant. Let FO = {P ; ô1, ô2, ô3}

be the local-vertical/local-horizontal orbit frame, where ô3 is the vertical

axis pointing towards the zenith, ô2 is normal to the orbit plane (in the

direction of the orbital angular velocity), and the transverse axis ô1 completes
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a right-handed triad. b is obtained from the transformation b = TBO bO,

where TBO is the coordinate transformation matrix between FO and FB. The

components bO of the geomagnetic field in FO are derived from a suitable

model, such as the tilted dipole [3, 30] or the International Geomagnetic

Reference Field (IGRF) [31].

Without loss of generality, it is possible to assume î2 = ô2, parallel to

the normal to the orbit plane, whereas î1 and î3 are any pair of mutually

perpendicular inertially–fixed unit vectors in the orbit plane. In this way

the coordinate transformation matrix TOI from FI to FO is equivalent to an

elementary rotation matrix for a rotation around the î2 = ô2 axis.

2.2. Attitude Kinematics

The attitude of the spacecraft with respect to FO is described by means

of an unconventional 3-1-2 Euler angle sequence, where the “yaw” angle ψ

around the local vertical ô3 is given by the angular distance between ô2 and

the projection of ê2 on the orbit plane. The “roll” angle φ is represented

by the elevation of ê2 with respect to the orbit plane. The sequence of

elementary rotations is completed by a “pitch” rotation θ around the unit

vector ê2, as represented in Fig. 1. The transformation matrix between FO
and FB, parametrized by means of the 3-1-2 Euler angle sequence, is:

TBO =


cψ cθ − sφ sψ sθ cθ sψ + cψ sφ sθ −cφ sθ

−cφ sψ cφ cψ sφ

cψ sθ + cθ sφ sψ sψ sθ − cψ cθ sφ cφ cθ

 (2)

provided c(·) = cos(·) and s(·) = sin(·). Euler angles evolve as a function

of the angular speed of the spacecraft relative to FO, given by ωr = ω −

TBO ω
orb
O . In particular, ωorbO = (0, n, 0)T is the angular speed of FO with
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respect to the inertial frame FI , with components expressed in FO [32]. The

kinematics of yaw, roll, and pitch angles is written as a function of the angular

speed of the spacecraft relative to FO, namely

ωr1 = φ̇ cos θ − ψ̇ cosφ sin θ (3)

ωr2 = θ̇ + ψ̇ sinφ (4)

ωr3 = φ̇ sin θ + ψ̇ cosφ cos θ (5)

or in terms of the absolute angular velocity vector of the spacecraft, ω =

ωr + nTBOô2:

ω1 = φ̇ cos θ − ψ̇ cosφ sin θ + n (cos θ sinψ + sinφ sin θ cosψ) (6)

ω2 = θ̇ + ψ̇ sinφ+ n cosφ cosψ (7)

ω3 = φ̇ sin θ + ψ̇ cosφ cos θ + n (sin θ sinψ − sinφ cos θ cosψ) (8)

In the latter case, the kinematics of Euler angles in Eqs. (6), (7), and (8) is

conveniently rearranged as follows:

ψ̇ = (−ω1 sin θ + ω3 cos θ + n sinφ cosψ) / cosφ (9)

φ̇ = ω1 cos θ + ω3 sin θ − n sinψ (10)

θ̇ = ω2 + (ω1 sinφ sin θ − ω3 sinφ cos θ − n cosψ) / cosφ (11)

The use of Euler angles deserves some attention, since any sequence of

three elementary rotations is affected by singular configurations [32]. In the

present case, when the second rotation φ is equal to ±90 deg, the pitch axis

ê2 coincides with the local vertical ô3, and the first and third rotations are

performed around the same axis. This situation is unlikely to be encountered
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in practice, for the rotation sequence here adopted. In fact, after a space-

craft is injected into its orbit, an initial detumbling maneuver is performed

in order to dump the angular momentum accumulated during payload ejec-

tion. During this phase, when the attitude information is not yet available,

because of the high rotation rates, the spacecraft is typically driven toward

a pure spin condition by means of some purely magnetic control law. When

a B-dot control law is adopted [16], the principal axis of maximum inertia

gets sufficiently close to the normal to the orbit plane, but different control

techniques are available for aligning any principal axis of inertia to the orbit

normal [22]. Small values of the angles ψ and φ can thus be attained. This

means that φ = ±90 deg is an unlikely situation and the applicability of the

control law described in this paper is not at stake.

Conversely, when a residual pitch rate is expected, both the classical

yaw-pitch-roll (3-2-1) and precession-nutation-spin (3-1-3) sequences will ap-

proach singular configurations during the satellite motion, thus harming prac-

tical applicability of the control law and possibly hindering the search for

closed-loop stability proofs. This motivates the choice of this unusual Euler

angle sequence in the description of attitude kinematics.

2.3. Disturbance Torques

In order to assess robustness of the control laws proposed in the next

section, the four most relevant sources of external disturbance torque M (d)

in LEO are included in the simulation model discussed in the Results sec-

tion: gravity gradient, residual magnetic, aerodynamic, and solar radiation

pressure torques [3]. For a circular orbit, gravity gradient torque is [32]:

M (gg) = 3n2 [ô3 × (Jô3)] (12)
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The torque on the spacecraft due to the interaction of the Earth’s magnetic

field b with spacecraft residual magnetic dipole moment mrm, generated by

on-board electrical systems and circuits, is given by

M (rm) = mrm × b (13)

The interaction of the upper atmosphere molecules with the external sur-

face of the satellite introduces an aerodynamic torque M (a) = rcp × F (a),

where rcp is the position of the center of pressure with respect to the cen-

ter of mass of the satellite, evaluated according to the approach used in [3],

and F (a) is the atmospheric drag force. A simplified model is considered

for F (a) = −0, 5 ρ V 2ACD ô1, where ρ is the density of rarefied air at the

considered orbit altitude, A is the spacecraft cross-sectional area, and CD is

the drag coefficient. Velocity of P with respect to the air is assumed equal

to the speed along the orbit, V = n rc.

A solar radiation pressure torque is also present, M (srp) = rsrp × F (srp),

where rsrp is the vector from spacecraft center of mass to the solar radiation

center of pressure [3]. The solar radiation pressure force F (srp) is written as

[33] F (srp) = −(Φs/c)(1 + qs)As cos(is) ŝ, where Φs is the solar flux density

constant, adjusted for actual distance from the Sun (average value: 1367

W/m2), c ≈ 3 · 108 m/s is the speed of light, and qs is the reflectance factor

(ranging from 0 for perfect absorption to 1 for perfect reflection). A worst

case scenario is considered where the sunlit surface area As is assumed to be a

constant equal to the maximum projection area of the spacecraft solid shape

[34], upon which the angle of incidence of the radiation, is, is assumed to

be zero. As a minor simplification in the simulated environment, no eclipse

phase is considered. Finally, ŝ is the unit vector representing the direction
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of the Sun, assumed to be fixed in the inertial frame and directed from the

spacecraft to the Sun.

3. Attitude Stabilization

3.1. Control Law

The spacecraft attitude stabilization problem in the orbit frame FO is

addressed in an ideal scenario, first, with no external disturbance M (d) (so

that the external torque acting on the spacecraft coincides with the magnetic

control torque, M = M (c)), and assuming an axisymmetric inertia tensor

(with the pitch axis assumed as the symmetry axis).

Letting σ̂ = TBO (0, 1, 0)T be the unit vector parallel to ô2, fixed in

both the orbit and inertial frames, two desired angular momentum vectors,

hd and Hd, are introduced in the body-fixed and in the inertial frames,

respectively. The first one is defined as hd = (0, η(θ), 0)T , which requires

that the angular momentum vector becomes parallel to the symmetry axis,

ê2. The second, Hd = η(θ) σ̂, requires that the angular momentum points

along the (inertially–fixed) orbit normal, ô2. The linear function η(·) : R→ R

is

η(θ) = J2 n (1− λ θ) (14)

with λ being a strictly positive parameter. Correspondingly, two different

angular momentum error variables are introduced, namely

ζ = Hd(θ)− J ω (15)

and

ε = hd(θ)− J ω (16)
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where all vector quantities, including Hd(θ), are expressed in terms of body

frame components [23]. The magnetic control law proposed is:

M (c) =
(
I3 − b̂ b̂

T
)

(kζ ζ + kε ε) (17)

where kζ and kε are positive gains, and b̂ = b/||b|| is the unit vector parallel

to the local geomagnetic field. The control torque is thus proportional to a

combination of the error signals for the deviation of the current value of the

angular momentum from its desired values in the inertial and in the body

frame. The projection operator
(
I3 − b̂ b̂

T
)

accounts for the fact that no

control torque is delivered around the direction of b̂.

From the definition of the error in Eq. (15) and taking into account the

control law in Eq. (17), one has

ζ̇ = −
(
I3 − b̂ b̂

T
)

(kζ ζ + kε ε) + ω × (Hd − ζ) + Ḣd (18)

while the body frame angular momentum error dynamics achieves the form:

ε̇ = −
(
I3 − b̂ b̂

T
)

(kζ ζ + kε ε) + ω × (hd − ε) + ḣd (19)

3.2. Stability Analysis

Let the inverse of the inertia matrix, J−1, be the sum of two contributions.

The first is related to an axisymmetric configuration, J−1a = diag(1/Jt, 1/Js,

1/Jt), where Js, Jt ∈ R+ and Js 6= Jt. The second is a perturbation term such

that J−1 = J−1a + ∆, provided ∆ = diag(δ1, δ2, δ3), δ1 , δ2 , δ3 ∈ R. Without

loss of generality, it is assigned Js = J2 and Jt = (J1 + J3)/2. In this case,

one has δ2 = 0, δ1 = γ/J1 and δ3 = −γ/J3, where γ = (J3 − J1)/(J1 + J3).

Spacecraft attitude dynamics is usually formulated in terms of body-frame

components, that is, in the reference frame where relevant quantities are mea-

sured by on-board sensors to generate the required feedback. This motivates
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the use of FB for introducing all relevant vector quantities. Nonetheless, the

analysis of the momentum-management problem turns out to be remarkably

simpler if error dynamics in Eqs. (18) and (19) is represented in terms of

components in the inertial frame FI . Letting Z = T T
BI ζ = η(θ) ô2 − hI

(hI = T T
BIJω being the angular momentum vector expressed in FI) and

E = T T
BI ε, provided that TBI = TBO TOI (where TOI , related to orbital

motion, is a function of time only), the system describing the angular mo-

mentum error dynamics becomes:

Ż = −
[
T T
BI

(
I3 − b̂ b̂

T
)
TBI

]
(kζ Z + kεE) + η̇ ô2 (20)

Ė = −
[
T T
BI

(
I3 − b̂ b̂

T
)
TBI

]
(kζ Z + kεE)

− T T
BI

{[(
J−1a + ∆

)
TBIE

]
× hd

}
+ T T

BI ḣd

(21)

Note that, in Eq. (20), the term Ṫ
T

OI(0, 1, 0)T = (0, 0, 0)T , thanks to the

choice of the inertial frame described at the end of subsection 2.1. Given

Y =
(
ZT ,ET

)T
, Y ∈ R6, the system in Eqs. (20) and (21) achieves the

form

Ẏ = −A(t)KY − η(θ) [B (t,Y ) +C (t,Y )]− η̇D (t,Y ) (22)

where

A(t) =

 T T
BI

(
I3 − b̂ b̂

T
)
TBI T T

BI

(
I3 − b̂ b̂

T
)
TBI

T T
BI

(
I3 − b̂ b̂

T
)
TBI T T

BI

(
I3 − b̂ b̂

T
)
TBI

 ∈ R6×6 (23)

is a time-dependent matrix,

K =

 kζ I3 03×3

03×3 kε I3

 ∈ R6×6 (24)
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is a gain matrix,

B (t,Y ) =

 03×1

T T
BI

[(
J−1a TBIE

)
× ê2

]


C (t,Y ) =

 03×1

T T
BI [(∆TBIE)× ê2]

 (25)

are gyroscopic coupling terms, and

η̇D (t,Y ) =

 η̇ ô2

T T
BI (η̇ ê2)

 = η̇

 ô2

T T
BI ê2

 (26)

is related to the time derivative of the magnitude of the desired angular

momentum, with η̇ = −λ J2 n θ̇.

For the aim of the present analysis, the dynamics of the pitch angle is also

expressed as a function of the angular momentum error variable Y . Taking

into account the definitions of E, Z, and Y , it is straightforward to re-write

Eq. (11) as:

θ̇ = Q (hd(θ)− TBI S Y )− n cosψ

cosφ
(27)

where

Q = (tanφ sin θ/J1, 1/J2, − cos θ tanφ/J3) ∈ R1×3

and S = (03×3 I3) ∈ R3×6.

In what follows, it is shown that the origin of the closed-loop system in

Eqs. (22) and (27) corresponds to the condition in which spacecraft attitude

is three-axis stabilized in the orbit frame. Exponential stability is addressed

by the following Lemma, provided that γ = 0, namely the spacecraft has

axisymmetric inertia properties about ê2.
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Lemma 1 Consider the nonlinear time-varying system in Eqs. (22) and
(27), with γ = 0. There exist λ, kζ, and kε such that the origin (Y T , θ)T =
07×1 is exponentially stable.

Proof: See Appendix A.

Remark 1 According to the stability proof, the requirements on control

gains and the particular choice of the control signal in Eq. (17) are selected

in order to artificially provide the error dynamics in Eqs. (22) and (27) with

a two-timescale behavior [35]. In the present case, the control effort related

to kζ and kε makes the spacecraft acquire a pure spin condition around

the pitch axis, while aiming the same axis along the orbit normal. Such a

maneuver is characterized by a (relatively) fast transient, whereas the spin

rate approximately tracks the desired value n (1 − λ θ), which depends on

the residual pitch angle. If λ is designed in order to make the pitch angle

correction task sufficiently slow with respect to the spin-and-align dynamics,

three-axis stabilization in the orbit frame is obtained according to Lemma 1,

in the framework of singular perturbation analysis.

Remark 2 The validity of Lemma 1 stems from Theorem 11.4 in [24], which

provides a local exponential stability result for the origin of a system in

standard perturbation form. Nonetheless, one should note from Appendix A

that the fast transient of the inner spin-and-align dynamics is almost globally

stable towards the origin, whereas the nominal pitch angle control loop is

linear. Hence, the nominal slow timescale dynamics is also globally stable.

An extensive set of Monte Carlo simulation provides empirical evidence that,

in spite of the local nature of the result used for the proof of Lemma 1,

an almost global stability is achieved, with the only exception of singular

configurations for the Euler angle sequence adopted in this study.
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Remark 3 The system dynamics described by Eq. (22) cannot be addressed

without taking into account the attitude of the spacecraft, affecting B and

D through the matrix TBI . Nonetheless, such consideration does not hold

for the proof of stability discussed in Appendix A. In fact, the presence of

the attitude matrix only affects the evolution in time of the terms B and

D, influencing the rate of convergence toward the equilibrium, without any

consequence on the asymptotic behavior of the closed-loop system.

3.3. Choice of the Control Gains

The control gains, kζ and kε, should allow for reaching the desired momen-

tum condition in quasi-minimum time. Similarly to the cases described in

[8] and [22], small values of the gains obviously result into slow convergence.

On the other hand, provided the control torque is available along directions

perpendicular to b̂ only, a high value of kζ and kε causes the transverse com-

ponents of error signals, Z⊥ = (I3 − b̂I b̂
T

I )Z and E⊥ = (I3 − b̂I b̂
T

I )E,

perpendicular to the Earth magnetic field, b̂, to rapidly vanish. This makes

the remaining components of Z and E, parallel to b̂, converge to 0 over

many revolutions. A sizing procedure is thus proposed, based on an ap-

proach similar to that presented in [8] for the detumbling maneuver, with

a few relevant differences: 1) system dynamics is now represented in terms

of angular momentum; 2) a non-zero value of the angular momentum, J2 n,

is expected at the end of the maneuver, which in turn requires that 3) the

procedure is rephrased in terms of closed loop dynamics of both Z⊥ and E⊥.

The control gains are thus chosen in such a way that the variation of the

transverse components of the error signals due to the control action is not

faster than their variation associated to spacecraft angular rate, referred to
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as rotational terms.

Let γ = 0 and assume for simplicity that kζ = kε = k. The evolution of

Z⊥ and E⊥, derived from Eqs. (20) and (21), is described by

dZ⊥
dt

= (I3 − b̂I b̂
T

I )
[
−k
(
I3 − b̂I b̂

T

I

)
(Z +E) + η̇ ô2

]
−

d b̂I
dt
b̂
T

I + b̂I

(
d b̂I
dt

)T
Z (28)

dE⊥
dt

= (I3 − b̂I b̂
T

I )

{
−k
(
I3 − b̂I b̂

T

I

)
(Z +E) + T T

BI ḣd

−T T
BI

[(
J−1a TBIE

)
× hd

]}
−

d b̂I
dt
b̂
T

I + b̂I

(
d b̂I
dt

)T
E (29)

Remembering that the pitch angle correction task is slow with respect to the

spin-and-align dynamics, one can disregard the contribution given by η̇ and

ḣd in Eqs. (28) and (29). Summing the two equations one has

d

dt
(Z⊥+E⊥) ≈ −2kA (Z +E)−T IO B T T

IO (Z+E)+C (Z+E)+GE (30)

where A = (I3 − b̂I b̂
T

I ) is the projection operator,

B = (1/‖bO‖2)
[
ḃOb

T
O + bOḃ

T

O − (2/‖bO‖2)(ḃ
T

ObO)bOb
T
O

]
(31)

and

C = ω×IO(b̂I b̂
T

I )− (b̂I b̂
T

I )ω×IO (32)

are related to the rotation rate of the Earth magnetic field with respect to

FI , and G = AT T
BIh

×
d J
−1
a TBI is the gyroscopic term.

Following the same line of reasoning discussed in [8], it is possible to prove

that, for a generic vector v, it is ‖Av‖ ≤ O(‖v‖), ‖Bv‖ = O(2n sin ξm‖v‖)
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(where the angle ξm represents the inclination of the spacecraft orbit relative

to the geomagnetic equatorial plane [3, 30]), ‖Cv‖ = O(n‖v‖), and, finally,

‖Gv‖ ≤ O(n‖v‖). All the rotational terms associated to the matrices B,

C, and G, are thus proportional to the orbit rate, n, whereas the control

term associated to the matrix A is proportional to 2 k. Hence, neglecting the

gyroscopic term G (for a conservative estimate in the inequality), a value of

k such that

k < 0.5 (1 + 2 sin ξm)n (33)

provides a control torque which induces a variation of the transverse compo-

nent of the error signals not faster than the rotational terms.

4. Numerical Validation

The control law proposed in this paper is applied to a LEO micro-satellite,

equipped with a set of three mutually orthogonal MTs. The results of two

simulation test cases are analyzed. The first one is related to a nominal

scenario where all requirements of Lemma 1 are fulfilled, with the aim to

provide a clearer insight into the timescale separation method and validate

the theoretical results. In the second case the control technique is evaluated

for a non-nominal spacecraft mass distribution, in the presence of external

disturbances, and several control implementation issues.

4.1. Case 1: Nominal System

Table 1 shows relevant spacecraft data and orbit parameters, together

with initial conditions for a sample maneuver.

A nonlinear model for spacecraft attitude dynamics is used in the simu-

lations, where numerical propagation of Euler parameters is performed [32].

21



Table 1: Spacecraft and orbit data, with initial conditions for a sample maneuver.

Parameter Symbol Value Units
Spacecraft data
Nominal moments of inertia J?1 = J?3 = Jt 1.416 kg m2

J?2 = Js 2.0861 kg m2

Maximum control dipole mmax 3.5 A m2

Orbit data
Radius (circular orbit) rc 7 021 km
Period T 5710 s
Inclination i 98 deg
Right ascension of the RAAN 137 deg
ascending node
Sample maneuver

Initial Conditions
ω0 (0.2, 2, 0.2)T deg/s

ψ0, φ0, θ0 10,−12,−45 deg

The initial phase during which the satellite is magnetically detumbled after

injection into its orbit is not analyzed here, as it is not relevant in the frame-

work of the present study. In all simulation test cases it is thus assumed

that, after the detumbling phase [16, 23], the spacecraft angular velocity has

been sufficiently reduced with respect to the initial value and the pitch axis

is close to the orbit normal. Initial conditions for a sample maneuver are also

reported in Table 1. The gains for the magnetic control law are selected as

kζ = kε = k̄ = 0.0009 s−1, and λ = λ̄ = 0.08 rad−1. The control dipole is

generated as in [8], namely m = mc =
(
b̂×M (c)

)
/ ‖b‖. It is assumed that

the measurement of attitude variables is ideal and Euler angles are bounded

as follows: −π < ψ ≤ +π, π < θ ≤ +π and −π/2 < φ ≤ +π/2.

No external disturbance is considered and a set of principal axis of inertia
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Figure 2: Pure spin acquisition and pitch axis pointing task (Case 1).

is selected as the body frame, such that J = J? = diag(Jt, Js, Jt). Let

α = cos−1(ô2 · ê2) be the angular distance between the desired spin axis ê2

and the target direction, normal to the orbit plane, ô2. The time history

of spacecraft angular momentum is reported in Fig. 2, where J ω rapidly

converges to the desired value, J ωorb, while pitch-axis pointing is performed

along the orbit normal, with α that approaches zero in about 4 orbits.

Time-scale separation becomes evident in Fig. 3, where Euler angles are

reported. In particular, the yaw and roll angles, ψ and φ (that is, azimuth

and elevation of the pitch axis with respect to the orbit plane, respectively)

stabilize in less than 4 orbits, as it was expected from the analysis of the

misalignment error α. After the initial transient, during which the excess spin

rate about the pitch axis is dissipated, a slow exponential decay characterizes

θ. At t1/Torb = 4, for example, one has θ(t1) = 22.9 deg. The number of

orbits needed for the pitch angle to decrease to θ(t2) = (1− 1/e)θ(t1) ≈ 8.4

deg is given by (t2 − t1)/Torb = 1.88, close to the nominal time constant

τ = 1/(2πλ) = 1.99 orbits predicted according to Eq. (42) in Appendix A.
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Figure 3: Spacecraft attitude error (Case 1).

A Monte Carlo approach is used as in [8] to demonstrate the validity of

the control gain selection method proposed in Section 3.3 and the resulting

capability of the controller to perform attitude stabilization and momentum

management from arbitrary attitude conditions. Spacecraft initial attitude,

angular rates, and phase along the orbit are chosen by means of a pseudo-

random number generator. The same amount of angular momentum, ‖ζ0‖ =

0.1 Nms, is dissipated during each Monte Carlo run. All simulations are

stopped at t = tF when ‖Y ‖ < (0.1 · Js n) and |θ| < 0.1 deg, which represent

error thresholds for fast and slow error variables, respectively.

Two sets of Monte Carlo simulations are performed. In the first set, la-

beled ‘a’, a population of 500 test cases is generated and performance in

terms of convergence time tF is reported in Fig. 4.a for different values of

the gain kζ = kε = k, between k̄/2 and 2 k̄, with λ = λ̄ = 0.08 rad−1. In the

same figure, the standard deviation of tF is represented by vertical segments.

Convergence time, t
(Y )
F , of the fast subsystem is reported in Fig. 4.b, repre-
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b)

c)

senting the time needed by the closed-loop system to satisfy the condition

‖Y ‖ < (0.1 · Js n). For the particular selection of control gains, sufficient

timescale separation is evident between the fast and the slow subsystems. In

all the considered test cases, in fact, it is t
(Y )
F � tF , with the convergence rate

of θ depending on λ parameter only and occurring at least 5 τ ≈ 10 orbits

after the complete stabilization of the Y -error boundary-layer dynamics.

It is interesting to note that the curve representing the average value of

t
(Y )
F shows a minimum for k = 1.25 · k̄ = 0.0011 s−1. An increase of the

gain causes a longer average convergence time, with a wider dispersion of

results, whereas a sharp increase on average convergence time is evident for

k < 0.0009 s−1, following the expected behavior discussed in Section 3.3. As

a last practical issue, an estimate of the maneuver cost in terms of electrical

power consumption is analyzed (Fig. 4.c). Provided the magnetic dipole
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moment is proportional to the current absorbed, the total electrical energy

E necessary for completing the stabilization task is proportional to

E ∝ E =

∫ tF

0

(
3∑
i=1

|mi|

)
dt (34)

Power consumption monotonically increases with k, as expected, so that the

time-optimal choice for the gain may result into a slightly heavier battery

pack, with respect to a case when a smaller control gain is adopted.

In the second set of Monte Carlo simulations, labeled ‘b’, performance

of the closed-loop system is evaluated for different values of λ parameter,

between λ̄/2 and 11 λ̄, with kζ = kε = k̄. The final convergence time, tF ,

rapidly decreases with λ toward a horizontal asymptote with value approx-

imately equal to 2.44 orbits. The latter value results to be slightly above

the average convergence time, t
(Y )
F , of the fast manifold for kζ = kε = k̄,

namely 2.25 orbits (Fig. 5.b). This means that for larger values of λ: 1) the

two-timescale separation becomes less evident, with the convergence rate of

Y becoming comparable to the one of θ; 2) three-axis attitude stabilization

is performed in spite of the fact that timescale separation is not guaranteed;

3) dissipation of the pitch angle error still occurs after the spin-and-align

maneuver task.

It is evident from the analysis of t
(Y )
F in Fig. 5.b that convergence rate

of the fast manifold depends on k only, with no significant effect induced

by λ. It is interesting to note that also the total energy required is almost

independent of λ (Fig. 5.c), implying that most of the energy is used to

dissipate Y . Only a slight increase of E is noted, provided that, for larger

values of λ, the desired angular momentum η(θ) = Js n (1− λ θ) shows major
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a)

b)

c)

oscillations, and more effort is required by the tracking task of the magnetic

controller, with no significant reduction of final convergence time.

4.2. Case 2: Perturbed Uncertain System

Starting from the same initial conditions of Case 1, parameter uncertain-

ties, environmental effects (gravity gradient, aerodynamic, solar radiation

pressure, and residual magnetic torques) and sensor noise are included in the

model for Case 2. This allows to test robustness of the closed-loop system

and validate its capabilities of limiting the effects of disturbances, unmodelled

dynamics, and sensor noise within acceptable pointing accuracy.

A non-nominal mass distribution, with estimated inertia matrix J? =

diag(1.938, 2.086, 0.894) kg m2, is adopted, which does not fulfill the require-

ments of Lemma 1, where axisymmetric configurations only are considered.

Robustness is also demonstrated in the presence of 1) uncertainties in the
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knowledge of spacecraft mass distribution and 2) off-diagonal terms in the

spacecraft inertia matrix. In particular, it is assumed that the magnetic con-

trol law in Eqs. (14) and (17) is based on the knowledge of J = J?, whereas

the actual spacecraft inertia matrix used in simulation is

J =


2.0282 0.0127 −0.0016

0.0127 2.0539 −0.0302

−0.0016 −0.0302 0.8658


Aerodynamic torque is characterized by air density ρ = 6.39 · 10−13

kg/m3 at the considered orbit altitude, with drag coefficient CD = 2.2

assumed for a parallelepiped micro-satellite configuration with dimensions

L1 = L2 = 0.33 m and L3 = 0.66 m (respectively measured along ê1, ê2,

and ê3). In this case, the face areas are given by A1 = A2 = L2 L3 = 0.22

m2 and A3 = L1 L2 = 0.11 m2, while the cross-sectional area for the es-

timation of the drag force F (a) is taken as A = A1. The center of pres-

sure, rcp = (0.0082, 0.0030, 0.0492)T m, identified for the nominal attitude

[3], is assumed to be fixed in the body frame. The solar radiation pres-

sure torque is evaluated by considering a reflectance factor qs = 0.8, typ-

ical for many micro-satellite platforms, with a moment arm assumed as

rsrp = rcp. The direction of the Sun is provided in body frame compo-

nents by the unit vector ŝ = TBI (0.578, 0.578, 0.578)T . The sunlit area is

determined as the maximum projection area of the considered solid shape,

namely As =
√
A2

1 + A2
2 + A2

3 = 0.33 m2 [34], with ŝ normal to As. A resid-

ual magnetic dipole mrm = (0.15,−0.12,−0.10)T A m2, also modeled as a

constant in the body-frame, affects actuation performance.

A zero-mean Gaussian white noise is added to the nominal values of angu-
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lar rate components and estimated Euler angles, with power spectral density

resulting in the standard deviations 0.01 deg/s and 1.07 deg, respectively, for

the sampled white noise signals. Analogous modeling is performed for mag-

netometer measurement noise on each axis, with standard deviation equal

to 3 nT, plus the effect of a residual bias given by (42,−12,−20)T nT. The

control signals are sampled at a frequency of 1 Hz, compatible with current

technology of commercial MTs [36] and a first-order dynamics with a time

constant τm = 20 ms is assumed to characterize the response of each mag-

netic actuator. In particular, a duty-cycle of 800 ms is considered during

which the MTs provide the desired control dipole. During the initial 200

ms of the sampling interval, the MTs are switched-off, allowing the onboard

magnetometer sensor to perform geomagnetic field measurements, the flight

management unit to compute the desired commands, and the MTs to desat-

urate and lessen the generated magnetic field (in this case the MTs fall time,

calculated as 5 τm, is 100 ms).

In order to improve stabilization accuracy and satisfy more stringent

pointing requirements, residual dipole estimation is performed. An Extended

Kalman Filter (EKF) [37] is adopted to estimate the residual dipole, m̂rm.

Recursive estimation is performed online on the basis of magnetometer read-

ings and angular rate information, provided the latter are made available

from a separate estimation task, in the framework of the main attitude and

orbit determination activities. For more details about the recursive formula-

tion of the EKF, the reader is referred to [37].

The estimator is characterized by an update time interval ∆t = tk−tk−1 =

0.1 s, the initial estimate is set to x̂−0 = 06×1, and the predicted covariance es-
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Figure 6: Spacecraft attitude error (Case 2).
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timate is initialized with P−0 = diag(10−9, 10−9, 10−9, 10−5, 10−5, 10−5). The

assigned process noise and observation noise covariance matrices are respec-

tively given by Qk = Q = 10−13 · I6 and Rk = R = 10−8 · I3 T2. Control

gains are selected in matrix form as kζ = kε = diag(0.0069, 0.0138, 0.0230)

s−1 and are respectively applied to ζ and ε, while λ = 0.15 rad−1. The

control dipole is finally generated in order to compensate the residual dipole,

provided the latter is estimated online, namely mk = mc|k − m̂rm|k.

Attitude error variables, reported in Figs. 6 and 7, remain bounded in

the presence of uncertainties and non-modeled disturbances. After the ini-

tial phase, during which the initial angular rates are reduced close to 0 in

approximately 0.1 orbital periods, convergence towards the desired attitude

is almost monotonous, achieving the desired pointing in less than 4 orbits.

Such a performance compares well with other similar test cases reported in

the literature, e.g. in [18], where an oscillatory behaviour of attitude vari-

ables is evident and a longer convergence time is required for achieving the
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Figure 7: Spacecraft angular rates with respect to the orbit frame (Case 2).

a)

b)

c)

desired pointing.

In the presence of disturbances, uncertainties and sensor noise, attitude

stabilization performance in terms of yaw and roll angle errors is in the

order of 2.66 and 3.13 deg 1σ, with mean values respectively given by 1.09

and 0.56 deg. A poorer but satisfactory performance is obtained for the

pitch angle, characterized by only 1.42 deg 1σ error but also by a steady-

state mean value of 3.21 deg (see the enlargement in Fig. 6). The residual

attitude error about the pitch axis is mainly determined by the presence of

the aerodynamic drag, whose lever arm is practically directed along ê3 and

determines the highest torque component about ê2.

Assume that the boresight of a sensor payload or a directional antenna is

directed along −ê3 and needs to be Nadir-pointed for Earth observation or

communication purposes, respectively. In this scenario, β = cos−1(ô3 · ê3) is

adopted to represent the Earth-pointing misalignment error, which reaches

1.58 deg 1σ error and a steady-state mean value of 4.46 deg (in the case when,
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for example, kζ and kε are left unchanged and λ is increased from 0.15 to

0.25 rad−1, note that the steady-state mean value of β reduces from 4.46 to

3.85 deg, while the error standard deviation remains practically unaltered).

Finally, spacecraft angular rates with respect to the target orbit frame

oscillate with a 1σ error standard deviation of approximately 0.0036 deg/s

on each axis. Statistical analysis is performed over 20 orbits in steady state

conditions, demonstrating long term stability of the whole system, at the cost

of keeping the MTs active with a maximum standard deviation of 0.22 A m2,

measured on m1. The enlargement reported in the time-history of m3 in

Fig. 8 shows that, in this more realistic scenario, the MTs are activated with a

frequency of 1 Hz and generate magnetic control dipoles which oscillate about

the non-null values required to fully compensate the residual magnetization.
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5. Conclusions

In the present work, a nonlinear control law applied to a purely magnetic-

actuated Earth-pointing spacecraft is described. The stability proof is ob-

tained under the assumption that a set of principal axes of inertia is selected

as the body-fixed frame. The approach is based on a two-timescale separa-

tion of closed-loop system dynamic modes, where the acquisition of a pure

spin around a prescribed principal axis of inertia, while aiming the spin axis

along the orbit normal, is representative of the fast dynamics. The correction

of the residual attitude error about the spin axis is performed at a slower

rate for a particular choice of control parameters, thus allowing for the ap-

plication of stability results from singular perturbation theory. Numerical

simulations demonstrate the effectiveness of the control method for any ini-

tial attitude and validate the theoretical results. The control laws perform

well in the presence of external disturbances, spacecraft inertia matrix un-

certainties, and control implementation issues such as actuator saturation,

control quantization, and measurement noise. The effect of magnetic resid-

ual dipoles is compensated by recursive online estimation, and satisfactory

pointing accuracy is obtained for a sample small satellite mission for Earth

observation.
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Appendix A. Proof of Lemma 1

Assume that a suitable selection of control parameters λ, kζ , and kε forces

the closed-loop system in Eqs. (22) and (27) to exhibit a two-timescale be-

havior. In particular, let the combined pure spin acquisition and spin-axis

pointing tasks correspond to the fast dynamics, whose timescale is in the

order of τf ∝ 1/n (see discussion on the control gain in Section 3.3, where

one requires that kζ , kε = O(n)). On the other hand, the correction of the

residual pitch error is related to a timescale, Ts ∝ 1/(λn), which can be

made arbitrarily slower than τf , by an adequate choice of λ.

Let x = θ and z = Y be the vectors containing the slow and the fast

variables, respectively. The system in Eqs. (22) and (27) can be recast in

standard form, according to the forced singular perturbation method de-

scribed in [35, 38] (details are omitted for the sake of conciseness):

ẋ = f(t, x,z, ε) (35)

ε ż = g(t, x,z, ε) (36)

where the perturbation parameter is a fast time constant, ε = τf = 1/min(kζ ,

kε) ∝ 1/n, such that

f(t, x,z, ε) = Q (hd(θ)− TBI S Y )− n cosψ

cosφ
(37)

and

g(t, x,z, ε) = −ε [A(t)KY + η(θ)B (t,Y ) + η̇D (t,Y )] (38)

Note that the spacecraft is assumed inertially axisymmetric about the pitch

axis, ê2, so that for γ = 0 it is ∆ = 03×3 and, from Eq. (25),C (t,Y ) = 06×1.

Remembering from Section 3.3 that kε, kζ = O(n), the elements of the matrix
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εK in Eq. (38) are O(1). Similarly, provided ε η(θ) = O(J2), also the second

term is O(1), given the presence of J−1a in the definition of B. Conversely,

the last term, ε η̇D (t,Y ) ∝ ελn = O(λ), is vanishing, if λ� 1.

Given the system in Eqs. (35)-(38), the proof follows directly from the

stability results for singularly perturbed systems (see Theorem 11.4 in [24]).

In particular, it is f(t, 0,06×1, ε) = 0 and g(t, 0,06×1, ε) = 06×1. When

vanishing terms are dropped, the dimension of the state space of Eqs. (35) and

(36) reduces from 7 to 1, because the differential equation (36) degenerates

into the algebraic equation 06×1 = A(t)KȲ + η(θ)B
(
t, Ȳ

)
.

The (slowly varying) desired angular momentum is assumed constant,

η̄ = η(θ̄), and the latter equation is equivalent to the system

˙̄Z = 03×1 = −
[
T T
BI

(
I3 − b̂ b̂

T
)
TBI

] (
kζ Z̄ + kε Ē

)
(39)

˙̄E = 03×1 = −
[
T T
BI

(
I3 − b̂ b̂

T
)
TBI

] (
kζ Z̄ + kε Ē

)
−T T

BI

[(
J−1a TBIĒ

)
× (η̄ê2)

]
(40)

where the degenerate angular momentum error variables Z̄, Ē are constant

vectors in FI , hence the error signal ē = kζ Z̄+kε Ē is also inertially constant.

The right-hand-side of Eq. (39) is equal to the applied control torque,

M I = T T
BIM , which is zero, for any equilibrium of the degenerate system.

This implies that the vector h = Jω is constant in the inertial frame and only

torque-free motion solutions represent admissible steady-states for the fast

system. Considering the right-hand-side of Eq. (40), one has that ˙̄E = 03×1

for M I = 03×1 only if
(
J−1a TBIĒ

)
× (η̄ ê2) = 03×1. Noting that TBIĒ =

ε̄ = (−Jt ω̄1, η̄ − Js ω̄2,−Jt ω̄3)
T , the cross product

(
J−1a ε̄

)
× (η̄ ê2) = 03×1 if

and only if ω̄1 = ω̄3 = 0, that is, a pure spin condition around ê2 is achieved.
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Note that the direction of ê2 is inertially fixed, when h = Js ω̄2 ê2 is inertially

constant, for a torque-free condition.

The angular momentum error vectors expressed in FI achieve the form

Ē = (η̄−Js ω̄2)T
T
BI ê2 and Z̄ = T T

BI(η̄ ô2−Js ω̄2 ê2). A torque-free condition

can be achieved only if

1. the angular momentum error variables are such that the error signal,

ē = kζ Z̄ + kε Ē = 03×1 with Z̄, Ē 6= 03×1 or

2. the angular momentum error variables are such that the error signal,

ē = kζ Z̄ + kε Ē remains parallel to the Earth magnetic field or

3. the equilibrium point at the origin is reached, (Z̄
T
, Ē

T
)T = 06×1.

Condition 1 can be achieved if and only if kζ Z̄ = −kε Ē, that is, kζ(η̄ ô2−

Js ω̄2 ê2) = −kε(η̄ − Js ω̄2)ê2. This, in turn, requires that ê2 and ô2 are

parallel, that is ê2 = ±ô2. For ê2 = ô2, the latter condition is satisfied if

kζ(η̄ − Js ω̄2) = −kε(η̄ − Js ω̄2), which, for strictly positive gains, kζ and kε,

is possible only if η̄ − Js ω̄2 = 0, in which case the magnitude of both error

signals vanishes and Condition 3 is achieved.

The case ê2 = −ô2 is of little interest from both the theoretical and

the practical point of view. For ê2 = −ô2 the spacecraft is turned upside-

down with respect to the desired spin direction. Given the local nature

of Theorem 11.4 in [24] such a condition represents the furthest case from

the required equilibrium. At the same time this situation is unlikely to be

encountered in practice, provided small values for φ and ψ are expected at

the end of the detumbling maneuver (see Section 2.2). Hence, Condition 1
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does not represent a possible equilibrium for fast states in a bounded region

around the desired steady-state condition.

Condition 2 is encountered when the error signal ē becomes parallel to

the direction of the local geomagnetic field vector, b̂, and no magnetic torque

is produced. It is not possible to discard this possibility, in general, but such

a condition cannot be maintained in time. For constant values of Ē and

Z̄, the direction of ē in FI is constant, hence the angle between ē and the

inertially–fixed direction of the normal to the orbit plane, ô2, is also constant.

Conversely, even in the most elementary models of the geomagnetic field, the

angle χ between b̂ and ô2 is time-varying. This can be easily seen for the

simple dipole model, where the components of b in FO are given by bO =

(b1, b2, b3)
T = B0 (cosϑ sin i, cos i,−2 sinϑ sin i)T , where B0 is magnetic field

intensity, ϑ is spacecraft anomaly along the orbit, and i is orbit inclination

[3]. The angle χ is given by χ(ϑ) = atan2(
√
b21 + b23, b2) (where atan2(y, x)

is the four-quadrant inverse tangent function), and the direction of b̂ clearly

depends on ϑ, hence time t, if i 6= 0. In all more realistic models, such as

the tilted dipole [3, 30] or the International Geomagnetic Reference Field

(IGRF) [31], the direction of b̂ is even more erratic and does not allow for

maintaining a non-trivial spin equilibrium with ē constantly parallel to b̂.

Hence also Condition 2 is not an equilibrium for the degenerate fast system.

Excluding the case discussed for Conditions 1 and 2 (and not relevant

equilibria for ê2 = −ô2), the degenerate solution characterizing the fast

manifold is given by z̄ = h(t, x̄) = (Z̄
T
, Ē

T
)T = 06×1. Since Ē = 03×1, one

has ω̄1 = ω̄3 = 0 (as specified above) but also ω̄2 = η(θ̄)/J2 = n (1 − λ θ̄).

Provided Hd = η σ̂, where σ̂ = TBO (0, 1, 0)T , and taking into account the
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formulation of the attitude matrix in Eq. (2), it is straightforward to prove

that the solution Z̄ = 03×1 implies φ̄ = ψ̄ = 0.

The functions f , g, h = 06×1, and their partial derivatives up to sec-

ond order are bounded in a neighborhood of the desired equilibrium. The

degenerate solution z̄ = h(t, x̄) is used to evaluate the unperturbed problem:

˙̄x = f(t, x̄,h(t, x̄), 0) (41)

that reduces from Eq. (27) to

˙̄θ = −nλ θ̄, (42)

the origin of which is exponentially stable. In particular, Eq. (42) appears as

a first-order linear time-invariant system characterized by the time constant

τ = 1/(nλT ) = 1/(2π λ), normalized by the orbit period T . Consider now

the change of variable y = z−h(t, x̄) and define τ = t/ε. The boundary-layer

system
dy

dτ
= g(t, x̄,y + h(t, x̄), 0) (43)

assumes the form:
dy

dτ
= −A(t)K y −B (t,y) (44)

The origin y = 06×1 of the system in Eq. (44) is exponentially stable, uni-

formly in (t, x) (the proof follows the procedure illustrated in the Appendix of

[39]). Hence, according to Theorem 11.4 in [24], there exists ε? > 0 such that

for all ε < ε?, the origin of the system in Eqs. (35) and (36) is exponentially

stable.
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