
Vol. 52, 3–16 ©2022
http://doi.org/10.21711/231766362022/rmc521

On Kohn’s sums of squares of complex
vector fields

Alberto Parmeggiani

Department of Mathematics, University of Bologna, Piazza di Porta S. Donato

5, 40126 Bologna, ITALY

Abstract. This is a survey of some recent alternative way of proving
a subelliptic estimate, first proven by J. J. Kohn, for certain sums of
squares of complex vector fields. My approach here makes it possible
to extend the result also to more general families of complex vector
fields, to perturbations of sums of squares operators by a first-order
complex term and furthermore to a pseudodifferential setting.
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1 Introduction

Let Ω ⊂ Rn be an open set and let X1(x,D), . . . , XN (x,D) be first-
order partial differential operators with smooth real coefficients, without
zeroth-order terms (D = −i∂). For each x ∈ Ω, consider the real vector
space LX(x) spanned by the vector fields iX1, . . . , iXN , and their repeated
commutators [iXj1 , [iXj2 , [. . . , [iXjh−1

, iXjh ]] . . .], ] 1 ≤ jh ≤ N , frozen at
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the point x. Hörmander’s celebrated hypoellipticity theorem for sums of
squares ([2] or [3]) states the following.

Theorem 1.1. Let P =
∑N

j=1X
∗
jXj . Suppose that for every x ∈ Ω one

has LX(x) = TxΩ. Then P is C∞-hypoelliptic, that is,

singsupp(Pu) = singsupp(u), ∀u ∈ D′(Ω).

It is well-known from Fedii and Morimoto that the Lie-algebra condi-
tion LX(x) = TxΩ, for all x ∈ Ω, is not necessary for the C∞-hypoellipticity
to hold (see the references in [8]; in what follows, I will mainly refer to the
bibliography of [8] to cite some of the many important contributions, and
to the bibliography of the books cited here). However, when the coeffi-
cients are analytic, Derridj proved that the Lie-algebra condition is also
necessary for the C∞-hypoellipticity. The situation regarding analytic-
hypoellipticity is completely different (see the literature concerned with
the Treves conjecture) and to this day quite open.

The main step in the proof of Theorem 1.1 is a subelliptic estimate, that
is, an energy estimate of the following kind: There exists ε > 0 (necessarily
smaller than or equal to 1, i.e. 1/2 of the order of the operator) such that
for any given compact K ⊂ Ω there is CK > 0 such that

||u||2ε ≤ CK

(
Re(Pu, u) + ||u||20

)
, ∀u ∈ C∞

c (K). (SEε)

Notice that when P = P ∗ (i.e. P is formally self-adjoint), the real part
in the inner product can be omitted. However, we prefer to keep it in the
above estimate because we shall consider cases in which we add to P a not
necessarily self-adjoint first-order operator Q.

It was Rothschild and Stein [9] who obtained the sharp subelliptic ex-
ponent ε = 1/k, where k is the number of brackets necessary to span
the tangent space (iXj has length 1, [iXj , iXj′ ] has length 2 and so on).
One has also results by J. J. Kohn (whose proof is the one followed by
Treves and by Hörmander in their respective books on pseudodifferential
and Fourier integral operators and on the analysis of linear partial differ-
ential operators) and by F. Treves in his study of hypoellipticity. Sub-
sequent work by Oleinik and Radkevich extended greately the result to
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more general operators with real coefficients. Hörmander’s theorem was
microlocalized by Bolley, Camus and Nourrigat, and in the case of poly-
nomials in the operators Xj it was Helffer and Nourrigat [1] who obtained
sharp microhypoelliptic results with optimal gain. On the side of the study
of subelliptic operators, one has to mention the contributions of Egorov,
Hörmander, Fefferman and Phong, but the list of important contributions
is still long and I have mentioned only a few of them (and I apologize
about that).

To make the measurament of hypoellipticity more precise, it is now
convenient to introduce the following definition.

Definition 1.2. Let P be an operator of order m. One says that P is
hypoelliptic with a loss of r ≥ 0 derivatives at x0 ∈ Ω if for any given
u ∈ D′(Ω) and any given s ∈ R

Pu ∈ Hs
loc(x0) =⇒ u ∈ Hs+m−r

loc (x0).

For the definition of Hs
loc(x0) see [3] (it means that u = u1 + u2 with

u1 ∈ Hs
loc and u2 ∈ C∞ near x0). Note that when r = 0 (i.e. we have no

loss of derivatives) the operator is elliptic near x0.

There are operators that are hypoelliptic and yet lose many deriva-
tives, and this was already known to E. Stein, who considered the Kohn-
Laplacian 2b on the Heisenberg group Hn on (0, q) forms with q = 0 or
q = n and showed that although in such a case 2b cannot by hypoelliptic,
2b+ c is indeed hypoelliptic with a loss of 2 derivatives whatever the com-
plex number c ̸= 0. A theory (based on Boutet De Monvel’s concept of
localized operator and subsequent work by Boutet De Monvel, Helffer and
Grigis, and by Helffer) to understand this phenomenon for transversally
elliptic operators was developed by C. Parenti and myself in [6]. At about
the same time, Kohn [4], motivated by Y. T. Siu’s program [10] to use
multipliers for the ∂̄-Neumann problem to obtain an explicit construction
of critical varieties that control the D’Angelo type, extended Hörman-
der’s hypoellipticity result to complex operators Z1(x,D), . . . , ZN (x,D)
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(i.e. first-order partial differential operators with smooth complex coeffi-
cients and no zeroth-order terms) that span, along with their commutators
of length 2, the complexified tangent space at every point. But he also
showed that as soon as one needs commutators of greater length there are
operators that span along with higher commutators, but whose related
sum-of-squares operator cannot satisfy any subelliptic estimates and yet
remains hypoelliptic (with a loss of many derivatives).

2 Kohn’s theorems

Let Z1(x,D), . . . , ZN (x,D) be first-order partial differential operators
with smooth complex coefficients and no zeroth-order terms on Ω. Hence
the iZj may be regarded as vector fields on Ω with complex coefficients.
Let P =

∑N
j=1 Z

∗
jZj .

Theorem 2.1 ([4], Thm. A). Suppose that

SpanC{iZj , [iZj , iZk]; 1 ≤ j, k ≤ N}(x) = CTxΩ, ∀x ∈ Ω. (K)

Then the subelliptic estimate (SE1/2) holds.

Note that no commutator of the kind [Zj , Z̄k] is considered.
However, as soon as more commutators are required the result is no

longer true.

Theorem 2.2 ([4], Thm. B). For any given k ∈ Z+ there are first-order
complex operators Z1, Z2k (with no zeroth-order term) defined near 0 ∈ R3

such that the complex vector fields iZ1 and iZ2k and their commutators of
order k + 1 (i.e. length k + 2) span CT0Ω and when k ≥ 1 the subelliptic
estimate no longer holds. Moreover, the sum-of-squares operator Pk is
hypoelliptic with a loss of k + 1 derivatives.

Kohn constructs the example as follows. Let

L̄ =
∂

∂z̄1
− iz1

∂

∂x3
, z1 = x1 + ix2,
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be (a version of) the Lewy operator. Put then

iZ1 = L̄, iZ2k = z̄k1L,

Pk = Z∗
1Z1 + Z∗

2kZ2k = −(LL̄+ L̄|z1|2kL).

After Kohn’s paper appeared, M. Christ came out with a simplified
version of Pk and Parenti and myself with a general class of simplified
examples [7]. The latter class can be described as follows. Let x ∈ Rn, y ∈
R. Let n, k ≥ 1 be integers. Let µ1, . . . , µn > 0 be rationally independent,
and let γ ∈ R. Consider the polynomial

Q(x) =
∑
|α|=k

cαx
2α, x ∈ Rn,

∑
|α|=k

cα > 0.

Let Zj = Dxj − iµjxjDy, 1 ≤ j ≤ n, and

P =

n∑
j=1

Z∗
jZj +

n∑
j=1

Zj(Q(x)Z∗
j ) + (γ +

n∑
j=1

µj)Dy.

Then P is hypoelliptic with a loss of exactly 1 derivative iff

γ ̸∈ S := {±(

n∑
j=1

hjµj +

n∑
j=1

µj); h1, . . . , hn ∈ Z+},

and when γ ∈ S then P is hypoelliptic with a loss of exactly k+1 deriva-
tives.

An important issue in the hypoellipticity of operators of the kind sums-
of-squares of homogeneous first-order differential operators is the stability
of hypoellipticity by perturbations of order 1. The problem is very delicate,
due to the degeneracy of the operators considered (one may look at the
references [16] and [17] in [8] in the C∞ setting, and to some recent work
of P. Cordaro and his collaborators in the Cω setting).

I will consider here only Theorem 2.1, and give an alternative approach
which goes through Melin’s inequality (see [5], and [3] for the strong form
used here). This allows one also to deal with the above kind of perturba-
tions and with further generalizations such as, for instance, a weakening
of Kohn’s condition (K), see Theorem 5.3 below.
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3 Melin’s inequality (in the strong form)

Suppose P = P ∗ is an mth-order properly supported classical pseu-
dodifferential operator on Ω. Let pm be its principal symbol, which is a
function (positively homogeneous of degree m) defined on T ∗Ω \ 0. Let
Σ = p−1

m (0) ⊂ T ∗Ω \ 0 be the characteristic set of P , which in general is
not a manifold. On the subset Σ2 ⊂ Σ on which pm vanishes at least to
second order one has another invariant, which is the subprincipal symbol

psm−1(x, ξ) = pm−1(x, ξ) +
i

2

n∑
j=1

∂xj∂ξjpm(x, ξ).

Notice that when P is formally self-adjoint then psm−1 is real.
Moreover, at ρ ∈ Σ2 one also has that dpm(ρ) = 0 whence the Hessian

of pm is invariant and one may define the fundamental matrix F (ρ) (aka
Hamilton map) of pm at ρ as

σ(w,F (ρ)w′) =
1

2
⟨Hess(pm)(ρ)w,w′⟩, w, w′ ∈ TρT

∗Ω.

Here σ =
∑n

j=1 dξj ∧ dxj is the canonical symplectic form of T ∗Ω. Note
that F (ρ) is the linearization of the Hamilton vector field

Hpm(ρ) =

n∑
j=1

(∂pm
∂ξj

(ρ)
∂

∂xj
− ∂pm

∂xj
(ρ)

∂

∂ξj

)
at ρ. Note also that F is skew-symmetric with respect to σ.

When pm ≥ 0 on T ∗Ω \ 0 one has that Σ2 = Σ and that F (ρ), ρ ∈ Σ,
has the following spectral structure:

• KerF (ρ) ⊂ Ker(F (ρ)2) = Ker(F (ρ)3), 0 is the only generalized
eigenvalue while all the others (when F ̸= 0) are semisimple and
of the form ±iµj so that, with repetitions of the latter according to
multiplicities, for some r one has

Spec(F (ρ)) = {0} ∪ {±iµj ; µj > 0, 1 ≤ j ≤ r}

where the ±iµj are all semisimple;



On Kohn’s sums of squares 9

• One has

TρT
∗Ω = Ker(F (ρ)2)⊕ Range(F (ρ)2);

• The positive trace of F (ρ) is defined to be (it is a symplectic invari-
ant)

Tr+ F (ρ) =
∑
µ>0

iµ∈Spec(F (ρ))

µ.

It turns out that Tr+ F is positively homogeneous of degree m− 1.

Theorem 3.1 (Melin’s strong inequality). Let P = P ∗ be a properly
supported mth-order classical pseudodifferential operator on Ω such that
pm ≥ 0 and

pm(ρ) = 0 =⇒ psm−1(ρ) + Tr+F (ρ) > 0. (3.1)

Then for all compact K ⊂ Ω there are cK , CK > 0 such that

(Pu, u) ≥ cK ||u||2(m−1)/2 − CK ||u||2(m−2)/2, ∀u ∈ C∞
c (K). (3.2)

Note that no smoothness assumption is required of the characteristic
set Σ.

4 The result

When m = 2 inequality (3.2) is exactly (SE1/2). So, the question is: Is
there a link between Kohn’s Theorem 2.1 and Melin’s Theorem 3.1? The
point is to understand the symplectic content of Kohn’s spanning condition
(K).

There is a very important issue one has to point out relative to opera-
tors that are written as sums of squares of first-order differential operators
without zeroth-order terms. In the case case of real coefficients (i.e. the
case of Hörmander’s Theorem 1.1 with generation of length 2), the subprin-
cipal part vanishes on the characteristic manifold

⋂N
j=1X

−1
j (0), whereas
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in the case of complex coefficients (i.e. the case of Kohn’s Theorem 2.1),
the subprincipal term on the characteristic manifold

Σ =
N⋂
j=1

Z−1
j (0)

in general does not vanish identically and hence may spoil the subelliptic
estimate.

I will systematically write Zj = Zj(x, ξ) for the symbol of Zj(x,D). Re-
call also that for (scalar and properly supported) pseudodifferential opera-
tors a(x,D) and b(x,D), the symbol of the commutator [a(x,D), b(x,D)]

starts with −i{a, b}(x, ξ), where the Poisson bracket {·, ·} is given by

{a, b} =
n∑

j=1

( ∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

)
= Hab.

One has that

p2(x, ξ) =
N∑
j=1

|Zj(x, ξ)|2, ps1
∣∣
Σ
= − i

2

N∑
j=1

{Z̄j , Zj}
∣∣
Σ
,

and for ρ ∈ Σ and w ∈ TρT
∗Ω

F (ρ)w =

N∑
j=1

(
σ(w,H2j−1(ρ))H2j−1(ρ) + σ(w,H2j(ρ))H2j(ρ)

)
,

where I write HZj = H2j−1 + iH2j , 1 ≤ j ≤ N , and σ, recall, is the
canonical symplectic form on T ∗Ω.

Hence, a main problem is how to control ps1 on Σ since condition (K),
seemingly, does not provide information on {Z̄j , Zk}.

In the first place one has the following crucial observation.

Proposition 4.1. Let x ∈ Ω be such that π−1(x)∩Σ ̸= ∅, where π : T ∗Ω\
0 −→ Ω denotes the canonical projection. Kohn’s condition (K) at x ∈ Ω

yields the existence of j, k with 1 ≤ j < k ≤ N and 0 ̸= ξ ∈ T ∗
xΩ such that

{Zj , Zk}(x, ξ) ̸= 0.
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Hence, the main point is to see whether Melin’s condition (3.1) holds.
This requires a study of Spec(F (ρ)) when ρ ∈ Σ. Therefore we must
study the eigenvalue equation F (ρ)w = iµw, µ > 0, with 0 ̸= w ∈
CRange(F (ρ)2). One has the following, to me remarkable, result (see [8]).

Theorem 4.2. Let P =
∑N

j=1 Z
∗
jZj. The sum-of-squares form of P yields

always

Tr+F (ρ) ≥
(
ps1(ρ)

2 + max
1≤j<k≤N

|{Zj , Zk}(ρ)|2
)1/2

=: κ(ρ), ∀ρ ∈ Σ.

(4.1)
In particular, when (K) holds, one has then

Tr+F (ρ) > |ps1(ρ)|, ∀ρ ∈ Σ.

Note that κ : Σ −→ [0,+∞) is continuous and positively homogeneous
of degree 1. Consider the functions on Σ

−ps1 ± κ : Σ −→ R.

Then −ps1±κ are continuous and positively homogeneous of degree 1, and
one has −ps1 − κ ≤ 0 ≤ −ps1 + κ on Σ.

We have the following result, which generalizes Kohn’s Theorem 2.1.

Theorem 4.3. Suppose condition (K) for P . Then the strong Melin in-
equality holds and one has the subelliptic estimate (SE1/2). Moreover, if Q
is a first-order properly supported classical pseudodifferential operator on
Ω, the operator P +Q keeps satisfying (SE1/2) provided the real part q1 of
the principal symbol of Q fulfills

−ps1(ρ)− κ(ρ) < q1(ρ) < −ps1(ρ) + κ(ρ), ∀ρ ∈ Σ.

In particular, in case Q is a partial differential operator, when

|q1(ρ)| < min{ps1(ρ) + κ(ρ),−ps1(ρ) + κ(ρ)} = κ(ρ)− |ps1(ρ)|, ∀ρ ∈ Σ.

Note that no smoothness assumption on Σ is required.
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5 Further generalizations

By Theorem 4.2 there is no obstruction to making the above result
pseudodifferential. Let P1, . . . , PN be properly supported, classical mth-
order pseudodifferential operators with complex symbols on Ω ⊂ Rn. Let
P =

∑N
j=1 P

∗
j Pj , and let pj be the principal symbol of Pj .

Definition 5.1. I say that the system (P1, . . . , PN ) satisfies condition
(KΣ) if ∑

1≤j<k≤N

|{pj , pk}(ρ)| > 0, ∀ρ = (x, ξ) ∈ Σ, with |ξ| = 1,

where

Σ =

N⋂
j=1

p−1
j (0)

is the characteristic set of P .

Note that this time the function κ in (4.1) is positively homogeneous
of degree 2m− 1.

One has the following result.

Theorem 5.2. If the system (P1, . . . , PN ) satisfies condition (KΣ), then
the sum-of-squares operator P , of order 2m, fulfills the following subelliptic
estimate (SEm− 1

2
): For any given compact K ⊂ Ω there is CK > 0 such

that
||u||2m−1/2 ≤ CK

(
Re(Pu, u) + ||u||2m−1

)
, ∀u ∈ C∞

c (K).

Moreover, if Q is a (2m− 1)st-order properly supported classical pseudod-
ifferential operator on Ω, the operator P + Q keeps satisfying the above
subelliptic estimate provided the real part q2m−1 of the principal symbol of
Q fulfills

q2m−1(ρ) ∈
(
−ps2m−1(ρ)− κ(ρ),−ps2m−1(ρ) + κ(ρ)

)
, ∀ρ ∈ Σ.

In particular, in case Q is a partial differential operator, when

|q2m−1(ρ)| < κ(ρ)− |ps2m−1(ρ)|, ∀ρ ∈ Σ.
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Note that no smoothness assumption on Σ is required.
As a further consequence of this approach (namely of Theorem 4.2 and

Theorem 5.2) we have the following result, which shows an extent to which
Kohn’s condition (K) can be weakened.

Theorem 5.3. Let Z1, . . . , ZN be first-order partial differential operator
with smooth complex coefficients on Ω ⊂ Rn (and no zeroth-order term).
For each x ∈ Ω let

Vx := SpanC{Zj , [Zj , Zk]; 1 ≤ j, k ≤ N}(x)

(where we think of the Zj and [Zj , Zk] as vector fields with complex coeffi-
cients). Suppose that

Vx + Vx = CTxΩ, ∀x ∈ Ω. (5.1)

Then P =
∑N

j=1 Z
∗
jZj satisfies (SE1/2). Moreover, the perturbation result

of Theorem 4.3 holds and, in particular, the theorem is true also for the
operator

∑N
j=1(Zj + αj)

∗(Zj + αj), with α1, . . . , αN ∈ C∞(Ω;C).

Remark 5.4. Note that only the points x ∈ Ω for which π−1(x) ∩ Σ ̸= ∅
matter for the subelliptic estimate.

Proof. The proof consists in showing that condition (KΣ) is fulfilled. For
x ∈ Ω such that π−1(x) ∩ Σ ̸= ∅ consider the system{

Zj(x, ξ) = 0, 1 ≤ j ≤ N,

{Zj , Zk}(x, ξ) = 0, 1 ≤ j < k ≤ N,
(5.2)

for the unknown ξ ∈ T ∗
xΩ, ξ ̸= 0. Since ξ is real, system (5.2) is fulfilled

by some ξ0 iff the complex conjugate system (5.2) is fulfilled by the same
ξ0. Therefore on the one hand one must have (x, ξ0) ∈ Σ ⊂ T ∗Ω \ 0 and
on the other

ξ0 ∈ V ⊥
x ∩ Vx

⊥
= (Vx + Vx)

⊥ = {0}.

Therefore, when Σ ̸= ∅ then for all x ∈ Ω for which π−1(x) ∩ Σ ̸= ∅ we
have that if (5.1) holds then

(x, ξ) ∈ Σ =⇒ {Zj , Zk}(x, ξ) ̸= 0
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for some j, k with 1 ≤ j < k ≤ N and for some ξ ̸= 0, whence condition
(KΣ) is satisfied.

I end the paper by giving a concrete example of Theorem 5.3.
For x ∈ Ω ⊂ R3 with 0 ∈ Ω, let

Z1(x, ξ) = ξ1 + ix1ξ2, Z2(x, ξ) = x1(ξ2 + iξ3).

Then
{Z1, Z2}(x, ξ) = ξ2 + iξ3.

In this case

Σ = {(x, ξ); ξ1 = x1ξ2 = x1ξ3 = 0, (ξ2, ξ3) ̸= (0, 0)}.

Kohn’s condition (K) does not hold, but condition (5.1) does. In fact, for
any given x ∈ Ω

Vx = SpanC{

 1

ix1

0

 ,

 0

x1

ix1

 ,

 0

1

i

},
so that dimC Vx = 2 for all x ∈ Ω and Kohn’s condition (K) does not hold.
However,

Vx + Vx = SpanC{

 1

0

0

 ,

 0

1

i

 ,

 0

1

−i

} = C3 = CTxΩ.

Equivalently, one may also directly see that condition (KΣ) holds. In
fact, consider

Σ1 = {(x, ξ); {Z1, Z2}(x, ξ) = 0, ξ ̸= 0} = {(x, ξ); ξ2 = ξ3 = 0, ξ1 ̸= 0}.

Then
Σ ∩ Σ1 = ∅

which proves the claim.
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