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1. Computational details

As mentioned in the main text, the number of available microstates, here understood as 

combinations of individual protonation states, for a macromolecule featuring x titratable 

sites is larger or equal to 2x. In the case of ASR, the size of this protonation state space 

is equal to 29 (aspartic acid, D) * 25 (glutamic acid, E) * 34 (histidine, H) * 23 (cysteine, C) 

* 211 (tyrosine, Y) * 26 (lysine, K) * 22 (N- and C-terminal), i.e., larger than 1012! We can 

exclude C, K, Y, R and the terminal residue titrations, since we are mainly interested in 

pH range 3 to 7. Nevertheless, this reduced space still contains 1327104 microstates, a 

computationally intractable number with the present resources. Based on our previous 

study regarding the pH-dependent visible light absorption spectrum of ASR1, we have 

decided to consider three different pH windows (3.0-4.5, 4.5-6.0, 6.0-7.5), each of them 

featuring a reduced set of titrated sites. The same list is used for both retinal 

conformations, all-trans (AT) or 13-cis (13C). The list of the titratable amino acids in ASR, 

and their protonation state in each window, i.e., protonated (P), deprotonated (D), titrated 

(T), is reported below; K, R, Y and C residues are always protonated in our simulations.

Table S1. Protonation state of the HIS, ASP and GLU residues in the protein during the CpHMD in different pH windows. 
"T" stands for titrated, "P" for protonated and "D" for deprotonated.

Residue pH=3.0 pH=5.0 pH=7.0
D57 T T D

D75 D D D

D98 T T D

D120 T D D

D125 P T D
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D166 D D D

D198 D D D

D217 P T T

D226 P T D

E4 P T D

E36 P P T

E62 T T D

E123 P T D

E160 P T D

H8 P T D

H21 P P T

H69 P T D

H219 P T T

The full details for the system setup from crystal structure to production can be found in 

the SuppInfo of our previous work1. We got the initial structures (both isomers) from the 

PDB entry 1XIO. We selected the first monomer in the PDB entry and reconstructed 

missing loops through homology modeling. After an initial minimization, gradual heating 

NVE and equilibration in the NPT ensemble, we performed 20 ns long (or 30 in the case 

of the 4.5-6.0 pH window to improve convergence) CpHMD in implicit solvent and pH-

REMD using Amber16; the distance between replicas is 0.5 pH units. The system was 

modeled with the ff14SB Amber forcefield for the protein, TIP3P for water and custom 

retinal parameters from Hayashi et al.2 We calculated pK1/2 values and used them as proxy 

for pKa values by fitting the deprotonated fractions using a Hill equation. 
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One thousand snapshots, each consisting of a geometry and a distribution of charges 

representing the corresponding protonation microstate, were selected per isomer and per 

pH value (3, 5 and 7), as detailed in the main text. In summary, we built each ensemble 

of 1000 structures to reproduce the corresponding ASR visible absorption spectrum 

already obtained in our previous work1 using a much larger number of structures (20,000) 

and PM7 to treat the electronic structure of retinal.

Using these 1000 structures per pH value as initial conditions, we performed excited state 

semi-classical MD simulations using COBRAMM 2.0.3 Initial distributions of C13=C14 

dihedral angles are given below for all cases. 

Figure S1. Histograms of the C12-C13=C14-C15 dihedral distribution among the 1000 initial conditions per set.

2.5 ps long trajectories have been propagated on hybrid quantum mechanical/molecular 

mechanical (QM/MM) potential energy surfaces at the semi-empirical OM3+MRCI level of 

theory4-6 for retinal and Amber forcefield for the rest of the system. The validity of such a 
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level of theory has been assessed by computing the ASR maximum absorption 

wavelengths at pH=3, 5 and 7.

The trajectory initial velocities are set to 0.0, hence creating one thousand ballistic 

trajectories for each retinal isomer and pH value. Retinal’s Franck-Condon region is 

usually characterized by a steep S1 potential energy surface.7 Hence, the sampling of 

1000 retinal structures performed by extracting snapshots from CpHMD trajectories is 

probably large enough to obtain a representative set of initial structures for non-adiabatic 

MD, the absence of initial velocities being compensated by the initial relaxation of the 

system driven by the different slopes of the Amber and OM3-MRCI/Amber potential 

energy surfaces. Of course, we could have used CpHMD velocities associated to each 

snapshot. However, to avoid large numerical instabilities, these velocities should have 

been transformed to adapt to the QM/MM potential energy surface (instead of the Amber 

one). This Amber to OM3-MRCI/Amber projection additional step would require getting 

access to the local topology of both the Amber and the QM/MM potential energy surfaces, 

i.e., it would be computationally expensive.

The resulting “wavepacket” is then deposited in the first singlet excited state, S1, while the 

population transfer between electronic states (S0, S1 and S2) is modeled with the Tully 

Surface Hopping technique8,9 with decoherence correction.10,11 To reduce the energy 

leaking towards the retinal environment, only the chromophore and its closest amino acids 

are free to move during the MD, while the rest of opsin and the membrane are kept fixed. 

Even if some trajectories are propagated up to 3.6 ps, we have considered populations in 

electronic states S0, S1 and S2 up to 2 ps for analysis purpose. However, the trajectories 

were stopped 50 fs after hopping to S0 to save computational resources.
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2. Benchmark calculations

Prior to production runs, we performed a series of benchmark calculations to evaluate the 

performance of the routines used. The MNDO-program responsible for the QM-part is not 

parallelized, thus a gain in performance through parallel computation may only be 

expected for the MM-part. Figure S2 (left panel) shows benchmark computations for two 

platforms with different numbers of CPUs and with a modified force evaluation routine 

(VELO, see Fig. S2). Computations were performed for three gradients and three 

derivative couplings, defining the maximum of necessary gradient calculations when all 

three roots (S0, S1 and S2) are included. The total computation time for one full QM/MM 

MD step then is ca. 480 – 500 seconds on the tested systems, where the QM step alone 

takes ca. 40% (190-200 s). As apparent from this figure, the speedup in total computation 

is only marginal beyond 2 CPUs for the system with a distributed file system: From 2 to 4 

CPUs the time changes from 335 s to only 312 s. The setup with 2.6 GHz and local SSDs 

seems to profit from higher clock frequency and fast disk access when using up to 4 CPUs, 

but then the scaling drops. As a major reason for the rather slow performance, we 

identified a printing routine in Amber which provides the forces for the MM part (dumpfrc).
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To reduce the MM timings, we propagated the MM part for one small timestep and 

evaluated the forces through finite differences in velocities between the two timesteps 

(stated as “VELO” in the graph, see this reference for more details3). This significantly 

sped up single-core computations, nearly reaching dual core performance, with the 

obtained forces at the same accuracy as by direct printout via dumpfrc. The final 

production runs were performed using the aforementioned setup with finite-difference 

computation of forces from velocities. 

Figure S2 (right panel) shows timings for a typical trajectory on a system with a distributed 

file system. The total computation time for a full QM/MM step (single-core) varies between 

ca. 250 and 350 seconds, depending on the number of necessary gradient computations 

within the QM part (only one gradient or max. 2 gradients and one coupling computation 

in this trajectory). 

For this setup, energy evaluation at the OM3/MRCI level typically takes ca. 5 s, 

computation of an excited state gradient ca. 30 s, evaluation of nonadiabatic coupling 

matrix elements ca. 48 s. A typical MM step (including at least three separate 

computations for high layer, charged and uncharged protein models) is produced in ca. 

175 s. Another ca. 40 s are spent for file operations and computations within COBRAMM.

3. Analysis of each ensemble of trajectories

For each pH value and retinal isomer, 1000 trajectories have been produced. Some of 

them failed for various numerical reasons, like electronic structure calculation not 

Figure S2. Left: Benchmark computations on Intel Xeon based systems with different clock frequencies and storage 
systems (local SSDs vs. distributed file system). Right: Full step QM/MM timings for a typical short running trajectory. 
Based on the state energy difference the computation switches between calculation of only one gradient and two 
gradients plus one coupling. Steps < 250 fs correspond to correction steps where either QM orbital mapping failed or 
energy conservation was violated – the time step is reduced in such steps and the computation is then repeated.
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converged or total energy conservation not fulfilled during the MD simulation.  Analysis of 

these trajectories did not yield any obvious geometric or electronic pattern for failure, we 

suspect that these arise due to the nature of the approximations in the OM3 and 

OM3/MRCI approaches. The percentage of valid trajectories in each ensemble is ~80%. 

The statistical relevance of our calculations is illustrated by the low uncertainties 

associated to the photochemical properties we are interested in.

Each ensemble of 1000 trajectories is split into numerically failed ones and valid ones. 

The latter trajectories are further decomposed, distinguishing the ones which don’t decay 

to the ground state in 2 ps, the ones in which retinal successfully isomerizes, the ones in 

which retinal isomerization is aborted and the only one for which the retinal conformation 

remains undetermined (i.e., not AT or 13C) after 2 ps. We also split each ensemble of 

valid trajectories (denoted as a full set below) into several subsets, as indicated in the 

main text. 

 Reactive: trajectories in which the isomerization around the C13=C14 bond is 

complete.

 Nonreactive: trajectories in which the isomerization around the C13=C14 bond is 

aborted.

 Alternative: trajectories in which the isomerization starts around bonds other than 

the C13=C14 one, and then gets aborted.

 Direct pathway: trajectories in which the initial population in S1 directly transfers to 

the grounds state S0.
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 Indirect pathway: trajectories in which the initial population in S1 first transfers to S2 

before turning back to S1 and eventually transfers to the grounds state S0.

Table S2. Statistical analysis of the ensembles relative to the AT  13C isomerization.

AT isomer pH=3 pH=5 pH=7

failed trajectories 184 168 170

valid trajectories 816 (768 hopped) 832 (764 hopped) 830 (787 hopped)

reactive 354 (43.4%) 326 (39.2%) 468 (56.4%)

unreactive 397 (48.7%) 438 (52.6%) 319 (38.4%)

undetermined 1 (0.1%) 0 0

no decay in 2000 fs 64 (7.8%) 68 (8.2%) 43 (5.2%)

Table S3. Statistical analysis of the ensembles relative to the 13C  AT isomerization.

13C isomer pH=3 pH=5 pH=7

failed trajectories 139 182 205

valid trajectories 861 (810 hopped) 818 (768 hopped) 795 (740 hopped)

unreactive 529 (61.4%) 481 (58.8%) 451 (56.7%)

reactive 281 (32.6%) 287 (35.1%) 289 (36.4%)

undetermined 0 0 0

no decay in 2000 fs 51 (6.0%) 50 (6.1%) 55 (6.9%)
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4. BLA and dihedral torsions in the 13C sets

Figure S3. Time evolution of BLA (left) and torsion dihedral angle (right) during the 13C→AT
retinal isomerization. S1 (pink) and S0 (green) parts of a trajectory are separated by a hop
point (black circle). The BLA instantaneous average values are also plotted in blue. Please
note that, since the trajectories are stopped shortly after reaching S0, their last BLA value
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is frozen for the reminder of the averaging to avoid noise and discontinuities. Isomerization quantum yields and 
hop times.

5. Isomerization quantum yields and hop times

The following tables report the isomerization quantum yield (IQY), calculated as the ratio 

between the number of trajectories in which the retinal isomerization is complete and the 

number of valid trajectories. The corresponding uncertainty is . These 𝐼𝑄𝑌(1 ― 𝐼𝑄𝑌) 𝑛

tables also contain the average hop time for each set or subset (reported uncertainties 

are calculated as standard error of the mean), as well the corresponding number of 

trajectories which have hopped to the ground state.

Table S4. IQY, hop times and ensemble size for the set and subsets at pH=3 for the AT isomer.

pH3-AT IQY (AT→13C) Hop time (fs) Set size

Full 0.43±0.02 379±14 816

Most pop. microstate 0.43±0.02 381±20 447

Most pop. charge state 0.42±0.02 379±19 478

Reactive 1 238±13 354

Nonreactive 0 286±26 177

Alternative 0 681±29 220

Indirect 0.46±0.05 410±38 115

Direct 0.43±0.02 373±15 637
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Table S5. IQY, hop times and ensemble size for the set and subsets at pH=5 for the AT isomer.

Table S6. IQY, hop times and ensemble size for the set and subsets at pH=7 for the AT isomer.

pH7-AT IQY (AT→13C) Hop time (fs) Set size

Full 0.56±0.02 364±16 830

Most pop. microstate 0.55±0.02 395±23 488

Most pop. charge state 0.56±0.02 380±21 561

Reactive 1 271±18 468

Nonreactive 0 259±27 154

pH5-AT IQY (AT→13C) Hop time (fs) Set size

Full 0.39±0.02 480±18 832

Most pop. microstate 0.36±0.10 490±103 22

Most pop. charge state 0.41±0.02 461±31 253

Reactive 1 296±21 326

Nonreactive 0 293±30 117

Alternative 0 735±30 321

Indirect 0.46±0.04 512±48 124

Direct 0.38±0.02 474±19 640
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Alternative 0 754±42 165

Indirect 0.63±0.04 332±32 172

Direct 0.54±0.02 373±19 615

 
Table S7. IQY, hop times and ensemble size for the set and subsets at pH=3 for the 13C isomer. The most populated 
microstate and the most populated total charge state perfectly overlap in this case.

pH3-13C IQY (13C→AT) Hop time (fs) Set size

Full 0.33±0.02 340±13 861

Most pop. microstate 0.35±0.02 328±13 641

Most pop. charge state 0.35±0.02 328±13 641

Reactive 1 159±9 279

Nonreactive 0 181±18 157

Alternative 0 541±23 374

Indirect 0.39±0.04 329±34 140

Direct 0.31±0.02 342±14 670

 
Table S8. IQY, hop times and ensemble size for the set and subsets at pH=5 for the 13C isomer.

pH5-13C IQY (13C→AT) Hop time (fs) Set size

Full 0.35±0.02 345±13 818
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Most pop. microstate 0.40±0.11 329±97 20

Most pop. charge state 0.39±0.03 331±24 221

Reactive 1 155±9 287

Nonreactive 0 163±11 115

Alternative 0 550±22 366

Indirect 0.43±0.04 393±38 136

Direct 0.34±0.02 335±14 632

 
Table S9. IQY, hop times and ensemble size for the set and subsets at pH=7 for the 13C isomer.

pH7-13C IQY (13C→AT) Hop time (fs) Set size

Full 0.36±0.02 348±15 795

Most pop. microstate 0.32±0.02 341±21 414

Most pop. charge state 0.33±0.02 342±19 493

Reactive 1 164±9 289

Nonreactive 0 158±5 118

Alternative 0 575±28 333

Indirect 0.50±0.04 318±37 126

Direct 0.33±0.02 354±17 614
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6. Fitting S1 decay time evolution

For each pH value, each isomer and each set (or subset) of trajectories, we have found a 

successful kinetic model that accurately fits the S0 and S1 population evolution with a small 

root mean square deviation between the model S1 S0 decay curve and the one coming →

out of the MD simulations. As already explained in the main text, the possible S2 

population during the early stages of the decay process led us to model the S1 decay 

using a time window in which only S0 and S1 are populated. Accordingly,  is defined 𝑡𝑠𝑡𝑎𝑟𝑡

as the lower bound of this window and is always set as the last time step for which the 

ground state population is zero. The chosen model distinguishes two types of S1 

populations, one characterized by a fast kinetic rate (dubbed PS1(fast) for the population 

and kfast for the rate) and a slower one (PS1(slow) and kslow). We consider that both decay to 

the S0 state with its own rate, but no interconversion between fast and slow S1 populations 

is allowed. When we considered interconversion between both at fixed initial populations, 

we obtained an overall error superior to the model described hereafter. The kinetic 

equations are thus given by:

𝑑𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡)

𝑑𝑡 = ― 𝑘𝑓𝑎𝑠𝑡𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡)

𝑑𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡)

𝑑𝑡 = ― 𝑘𝑠𝑙𝑜𝑤𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡)

𝑑𝑃𝑚𝑜𝑑𝑒𝑙
𝑆0 (𝑡)

𝑑𝑡 = 𝑘𝑓𝑎𝑠𝑡𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡) + 𝑘𝑠𝑙𝑜𝑤𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑠𝑙𝑜𝑤)(𝑡)

This system of differential equations is solved numerically using the python module 

scipy.integrate.odeint, from which we get the model populations at any discrete time t, 

namely, ,  and . The model populations depend on an initial 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆0 (𝑡) 𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑓𝑎𝑠𝑡)(𝑡) 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡)
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condition (populations at the ) and an initial guess of the kinetic rates. Instead of fitting 𝑡𝑠𝑡𝑎𝑟𝑡

these parameters at once, we have decided to take advantage of particular trajectory 

subsets: (i) the alternative subset of aborted isomerizations and (ii) the subset of 

successful and failed isomerizations around the C13=C14 bond. The former subset is 

associated to the slow decay while the latter subset corresponds to the fast component of 

the decay. It turns out that these two subsets feature a mono-exponential decay behavior 

that allow to obtain initial estimates for  and . In a second step, keeping these 𝑘𝑓𝑎𝑠𝑡 𝑘𝑠𝑙𝑜𝑤

 and  fixed, initial populations  and  for the full population decay 𝑘𝑓𝑎𝑠𝑡 𝑘𝑠𝑙𝑜𝑤 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡) 𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑠𝑙𝑜𝑤)

are obtained using the bi-exponential model. These parameters are then optimized by 

minimizing the root mean square difference (RMSD) population of S0 and S1 between the 

model and the non-adiabatic dynamics, namely,  and  with an error 
∂𝑅𝑀𝐷𝑆

∂𝑘 = 0
∂𝑅𝑀𝑆𝐷

∂𝑃(𝑡 = 0) = 0

function definition given by

𝑅𝑀𝑆𝐷({𝑘,𝑃(𝑡 = 0)}) =
1

𝑡1 ― 𝑡0

𝑡1

∑
𝑡 = 𝑡0

[(𝛥𝑃𝑆0(𝑡))2 + (𝛥𝑃𝑆1(𝑡))2]

where  and  . 𝛥𝑃𝑆0(𝑡) = 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆0 (𝑡) ― 𝑃𝑁𝐴𝑀𝐷

𝑆0 (𝑡) 𝛥𝑃𝑆1(𝑡) = 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡) + 𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑠𝑙𝑜𝑤) ― 𝑃𝑁𝐴𝑀𝐷
𝑆1 (𝑡)

The minimization is done in a double self-consistency, namely, first the kinetic rates are 

minimized at fixed initial populations (using python module scipy.optimize.fmin) and then 

the 0th time population are optimized at fixed kinetic rates (using python module 

scipy.optimize.minimize). In the latter minimization, a constraint is imposed during 

optimization, namely, all populations must be positive or 0 and sum up to 1. Finally, a last 

step is performed using the python scipy.curve_fit module using as model the following 

equation:
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𝑃𝑆1(𝑡) = 𝑎1𝑒
―𝑡 𝜏𝑓𝑎𝑠𝑡 + 𝑎2𝑒

―𝑡 𝜏𝑠𝑙𝑜𝑤

Initial parameters for the time constants  and  are simply the inverse of the decay 𝜏𝑓𝑎𝑠𝑡 𝜏𝑠𝑙𝑜𝑤

rates obtained in the previous step. The ratio between  and  is set equal to the one 𝑎1 𝑎2

between  and . Errors ( , ,  and ) are 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) 𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) 𝛥𝜏𝑓𝑎𝑠𝑡 𝛥𝜏𝑠𝑙𝑜𝑤 𝛥𝑎1 𝛥𝑎2

calculated as the square root of diagonal elements in the covariance matrix. Since 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)

, their errors derive from the  and  ones:(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) + 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 1 𝑎1 𝑎2

𝛥𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = (𝛥𝑎1

𝑎1
+

𝛥𝑎2

𝑎2 )(1 +
𝑎1 𝑎2

1 + 𝑎1 𝑎2
)𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

𝛥𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = (𝛥𝑎1

𝑎1
+

𝛥𝑎2

𝑎2 )( 𝑎1 𝑎2

1 + 𝑎1 𝑎2
)𝑃𝑚𝑜𝑑𝑒𝑙

𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

This workflow is illustrated below in the case of the pH3-AT model (plots have been 

generated with python matplotlib).

Step 1: guess of the rate 𝑘𝑓𝑎𝑠𝑡

The second exponential (in pink) does 

not contribute to the model -> initial value 

for   fs𝜏𝑓𝑎𝑠𝑡 150
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Step 1’: guess of the rate 𝑘𝑠𝑙𝑜𝑤

The second exponential (in pink) does 

not contribute to the model -> initial value 

for   fs𝜏𝑠𝑙𝑜𝑤 721

Step 2: guess of the rates 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)

 and (𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

The two exponential model with fixed 

decay rates gives 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

 and = 0.51 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.49

Step 3: parameter iterative optimization

Improved parameters are now:  = 175 𝜏𝑓𝑎𝑠𝑡

fs,  = 1474 fs, 𝜏𝑠𝑙𝑜𝑤 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

 and = 0.71 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.29
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Step 4: final curve fitting for S1 decay

Final parameters are:  fs, 𝜏𝑓𝑎𝑠𝑡 = 143 ± 1

 fs, 𝜏𝑠𝑙𝑜𝑤 = 1368 ± 14 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

 and = 0.79 ± 0.02 𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡)

 for a global RMSD=0.0138= 0.21 ± 0.00

(Grey curves show individual contributions 

to the model, grey vertical lines define the 

time window used for the fitting).

Below are reported the pictures of the final fitting step. NAMD-based S1 populations are 

plot in blue line, while the red ones are coming out of the fitted models. Optimal parameters 

are also indicated, as reported in the main text.

AT retinal 13C retinal

pH=3

tstart = 64 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 143 ± 1

tstart = 60 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 129 ± 1

 fs𝜏𝑠𝑙𝑜𝑤 = 1369 ± 15
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 fs𝜏𝑠𝑙𝑜𝑤 = 1368 ± 14

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.79 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.21 ± 0.00

RMSD = 0.0138

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.84 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.16 ± 0.00

RMSD = 0.0131

pH=5

tstart = 81 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 146 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1318 ± 6

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.72 ± 0.01

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.28 ± 0.00

RMSD = 0.0090

tstart = 61 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 126 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1096 ± 8

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.79 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.21 ± 0.00

RMSD = 0.0113

pH=7

tstart = 71 fs tstart = 49 fs
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 fs𝜏𝑓𝑎𝑠𝑡 = 91 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1276 ± 11

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.86 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.14 ± 0.00

RMSD = 0.0143

 fs𝜏𝑓𝑎𝑠𝑡 = 139 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1677 ± 22

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.83 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.17 ± 0.00

RMSD = 0.0142

Since the importance of the second excited state S2 cannot be understated, we also 

performed the same fitting-based analysis of the direct (all trajectories never hop to S2) 

and indirect subsets (all trajectories hop to S2). As evidenced in the main text, Table 2, 

the latter subset is 3.6 to 5.5 times smaller than the former one, hence the lower number 

of data points. Nevertheless, we achieved a model of similar quality as the ones for the 

full set or direct subset. Note that we assumed the same mechanistic scheme for both 

subsets than for the full ensemble of trajectories and used the corresponding optimized 

parameters as input guess.

Direct 

subset

AT retinal 13C retinal

pH=3

tstart = 64 fs tstart = 60 fs
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 fs𝜏𝑓𝑎𝑠𝑡 = 146 ± 1

 fs𝜏𝑠𝑙𝑜𝑤 = 1461 ± 14

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.80 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.20 ± 0.00

RMSD = 0.0129

 fs𝜏𝑓𝑎𝑠𝑡 = 130 ± 1

 fs𝜏𝑠𝑙𝑜𝑤 = 1201 ± 12

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.83 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.17 ± 0.00

RMSD = 0.0123

pH=5

tstart = 81 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 148 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1257 ± 6

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.73 ± 0.01

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.27 ± 0.00

RMSD = 0.0086

tstart = 61 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 130 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1099 ± 8

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.80 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.20 ± 0.00

RMSD = 0.0105

pH=7
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tstart = 71 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 93 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1196 ± 9

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.85 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.15 ± 0.00

RMSD = 0.0130

tstart = 49 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 148 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1560 ± 19

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.82 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.18 ± 0.00

RMSD = 0.0126

Indirect 

subset

AT retinal 13C retinal

pH=3

tstart = 108 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 87 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 913 ± 5

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.83 ± 0.03

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.17 ± 0.00

RMSD = 0.0131

tstart = 83 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 100 ± 1

 fs𝜏𝑠𝑙𝑜𝑤 = 2238 ± 22

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.89 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.11 ± 0.00

RMSD = 0.0111
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pH=5

tstart = 107 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 107 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1498 ± 7

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.74 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.26 ± 0.00

RMSD = 0.0115

tstart = 86 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 83 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1021 ± 5

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.79 ± 0.02

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.21 ± 0.00

RMSD = 0.0134

pH=7

tstart = 86 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 73 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 1546 ± 15

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.91 ± 0.03

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.09 ± 0.00

tstart = 90 fs

 fs𝜏𝑓𝑎𝑠𝑡 = 73 ± 0

 fs𝜏𝑠𝑙𝑜𝑤 = 2130 ± 21

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑓𝑎𝑠𝑡)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.91 ± 0.03

𝑃𝑚𝑜𝑑𝑒𝑙
𝑆1(𝑠𝑙𝑜𝑤)(𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡) = 0.09 ± 0.00
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RMSD = 0.0160 RMSD = 0.0137

7. Residue-based analysis

In this section, we report the average hop times, the isomerization quantum yields as well 

as the decay times when each ensemble of trajectories (pH value, retinal isomer) is split 

into 2 subsets, each of them corresponding to a given protonation state of a single amino 

acid. In the following tables, D means the residue is deprotonated while P means it is 

protonated. In the case of histidine, we don’t distinguish the protonation sites on nitrogen 

δ and ε. Decay time constants are fitted using as guess the best parameters obtained for 

the full set, however with a different lower bound of the time window, always choosing the 

time at which the ground state population starts rising. Beware that some subsets can 

contain only a small number of trajectories (see the * in the second column below). In that 

case, the reported properties are not reliable. As expected, when the number of 

trajectories in each subset is much lower than the one in the other subset, the properties 

calculated for the latter subset are close to the ones calculated for the full ensemble. 

Results obtained for D57, D98, D120, D217 are discussed in the main text.

Table S10. Dataset analysis for the AT isomer at pH=3.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 816 379 +/- 14 0.43 +/- 0.02 64 0.71 0.29 175 1474

D57 D 174 409 +/- 30 0.42 +/- 0.04 95 0.54 0.46 107 922

D57 P 642 371 +/- 16 0.44 +/- 0.02 64 0.74 0.26 174 1669
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E62 D 19* 354 +/- 114 0.47 +/- 0.12 108 0.63 0.28 66 2558

E62 P 797 380 +/- 14 0.43 +/- 0.02 64 0.70 0.30 173 1397

D98 D 154 375 +/- 30 0.46 +/- 0.04 82 0.68 0.32 152 1173

D98 P 662 380 +/- 16 0.43 +/- 0.02 64 0.71 0.29 171 1515

D120 D 738 385 +/- 15 0.43 +/- 0.02 64 0.69 0.31 169 1420

D120 P 78 323 +/- 35 0.44 +/- 0.06 95 0.79 0.16 185 2517

Table S21. Dataset analysis for the AT isomer at pH=5.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 832 480 +/- 18 0.39 +/- 0.02 81 0.60 0.40 172 1371

D57 D 601 441 +/- 20 0.42 +/- 0.02 81 0.63 0.37 154 1189

D57 P 231 588 +/- 39 0.31 +/- 0.03 96 0.51 0.49 223 1676

E62 D 432 444 +/- 23 0.41 +/- 0.02 81 0.63 0.37 165 1332

E62 P 400 518 +/- 28 0.38 +/- 0.02 81 0.56 0.44 178 1378

D98 D 740 499 +/- 20 0.38 +/- 0.02 81 0.58 0.42 176 1358

D98 P 92 327 +/- 35 0.51 +/- 0.05 81 0.76 0.24 139 1329

D217 D 99 450 +/- 55 0.42 +/- 0.05 96 0.64 0.36 118 1826

D217 P 733 484 +/- 19 0.39 +/- 0.02 81 0.59 0.41 176 1304

H219 D 134 483 +/- 45 0.43 +/- 0.04 96 0.54 0.46 129 1031

H219 P 698 479 +/- 20 0.38 +/- 0.02 81 0.60 0.40 173 1417
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Table S32. Dataset analysis for the AT isomer at pH=7.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 830 364 +/- 17 0.56 +/- 0.02 71 0.72 0.28 110 1341

H21 D 122 325 +/- 43 0.62 +/- 0.04 78 0.74 0.26 83 1523

H21 P 708 371 +/- 18 0.56 +/- 0.02 71 0.72 0.28 114 1321

E36 D 86 335 +/- 42 0.57 +/- 0.05 71 0.66 0.34 92 747

E36 P 744 368 +/- 18 0.56 +/- 0.02 78 0.72 0.28 101 1379

D217 D 773 337 +/- 18 0.56 +/- 0.02 71 0.71 0.29 107 1281

D217 P 57* 276 +/- 39 0.58 +/- 0.07 101 0.79 0.21 91 1877

H219 D 664 378 +/- 20 0.55 +/- 0.02 71 0.72 0.28 114 1432

H219 P 166 307 +/- 29 0.61 +/- 0.04 78 0.73 0.27 89 991

Table S43. Dataset analysis for the 13C isomer at pH=3.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 861 340 +/- 14 0.33 +/- 0.02 60 0.76 0.24 153 1441

D57 D 99 371 +/- 42 0.27 +/- 0.05 84 0.69 0.31 120 1365

D57 P 762 336 +/- 14 0.33 +/- 0.02 60 0.77 0.23 154 1496

E62 D 8* 244 +/- 83 0.75 +/- 0.15 87 0.61 0.29 65 423
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E62 P 853 341 +/- 14 0.32 +/- 0.02 60 0.77 0.23 156 1526

D98 D 2* - - - - - - -

D98 P 859 338 +/- 13 0.33 +/- 0.02 60 0.76 0.24 153 1420

D120 D 149 398 +/- 34 0.23 +/- 0.04 89 0.74 0.26 174 1752

D120 P 712 328 +/- 15 0.35 +/- 0.02 60 0.76 0.24 139 1342

Table S54. Dataset analysis for the 13C isomer at pH=5.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 818 345 +/- 14 0.35 +/- 0.02 61 0.70 0.30 142 1122

D57 D 551 361 +/- 17 0.33 +/- 0.02 61 0.68 0.32 151 1071

D57 P 267 310 +/- 22 0.41 +/- 0.03 64 0.72 0.28 119 1231

E62 D 553 329 +/- 16 0.35 +/- 0.02 61 0.74 0.26 148 1209

E62 P 265 377 +/- 27 0.35 +/- 0.03 61 0.62 0.38 130 1026

D98 D 108 432 +/- 46 0.18 +/- 0.04 98 0.68 0.31 191 2331

D98 P 710 332 +/- 14 0.37 +/- 0.02 61 0.69 0.31 130 981

D217 D 188 384 +/- 32 0.30 +/- 0.03 61 0.66 0.34 151 1430

D217 P 630 333 +/- 15 0.37 +/- 0.02 61 0.70 0.30 138 1019

H219 D 107 365 +/- 38 0.25 +/- 0.04 61 0.65 0.35 142 844

H219 P 711 341 +/- 15 0.37 +/- 0.02 61 0.70 0.30 142 1186
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Table S65. Dataset analysis for the 13C isomer at pH=7.

Nr. traj Av. hop 

time (fs)

IQY tstart (fs) Pfast Pslow (fs)𝜏𝑓𝑎𝑠𝑡 (fs)𝜏𝑠𝑙𝑜𝑤

Full 795 348 +/- 16 0.36 +/- 0.02 49 0.77 0.23 167 1817

H21 D 122 401 +/- 51 0.47 +/- 0.05 49 0.68 0.32 125 1977

H21 P 673 339 +/- 16 0.35 +/- 0.02 59 0.77 0.23 156 1644

E36 D 104 328 +/- 36 0.47 +/- 0.05 68 0.68 0.32 108 1027

E36 P 691 351 +/- 17 0.35 +/- 0.02 49 0.78 0.22 170 2038

D217 D 676 345 +/- 17 0.36 +/- 0.02 49 0.76 0.24 160 1804

D217 P 119 366 +/- 41 0.40 +/- 0.05 59 0.80 0.20 185 1942

H219 D 649 356 +/- 18 0.37 +/- 0.02 49 0.75 0.25 154 1920

H219 P 146 314 +/- 24 0.36 +/- 0.02 59 0.84 0.16 200 1204
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