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Dealing with Overdispersion in Multivariate Count
Data

Noemi Corsini, Cinzia Viroli

Department of Statistical Sciences, University of Bologna
via Belle Arti 41, 40126, Bologna, Italy

Abstract

The problem of overdispersion in multivariate count data is a challenging issue.

It covers a central role mainly due to the relevance of modern technology-based

data, such as Next Generation Sequencing and textual data from the web or

digital collections. A comprehensive analysis of the likelihood-based models for

extra-variation data is presented. Particular attention is paid to the models fea-

sible for high-dimensional data. A new approach together with its parametric-

estimation procedure is proposed. It can be viewed as a deeper version of the

Dirichlet-Multinomial distribution and it leads to important results allowing to

get a better approximation of the observed variability. A significative compari-

son of the proposed model and existing strategies is made through two different

simulation studies and an empirical data set, that confirm a better capability

to describe overdispersion.

Keywords: Extra-variation, Mixture models, Deep Learning, Maximum

Likelihood

1. Introduction

The overdispersion or extra-variation is a recurring phenomenon when deal-

ing with counts and categorical data. In particular, it often occurs that after

fitting a binomial, a multinomial or a Poisson model to the data, the sampling
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variation is greater than the estimated variation accounted by the model (see

for instance [1]). In other words, the data exhibit a larger variability than that

the model is able to explain [2]. Overdispersion has specific causes and conse-

quences. It may arise as result of the data collection and aggregation, such as

clumped sampling [3] or it may due to correlation between individual responses

or to additional experimental variability. Inferential consequences are imprecise

estimates and biased standard errors that make model selection, interpretability

and prediction unreliable.

We focus our analysis on multivariate count data, that are becoming more

recurrent thanks to recent technologies such as web scraping for textual data

[4] or Next Generation Sequencing data [5]. In both situations, we observe

multivariate count data often inflated by a large amount of zeros (words rarely

used or not-expressed genes) or correlated responses. As a consequence, extra-

variation is typically observed, and the phenomenon is particularly reinforced

by the limited number of replicates and high-dimensionality.

The multinomial distribution is the natural probabilistic model to describe

multivariate count data but, in presence of overdispersion, it typically leads to

nominal variances well below to the empirical variability. It is possible to cope

with overdispersion by several strategies.

Zero-inflated probabilistic models are one of the most common strategies to

deal with extra-variation due to zeros for univariate variables. Among these,

zero-inflated Poisson and zero-inflated Binomial distribution proved to be very

efficient for count data with excess of zeros (see, for instance, [6, 7]). However,

for multivariate count data, the zero-inflated multinomial distribution assumes

that there are specific zero-inflated categories and at least one non-inflated cat-

egory common to all observations that are known from the empirical context

[8]. This strong assumption does not make the approach applicable to general

situations with arbitrary sparsity or simply extra-variation not due to zeros.

Quasi-likelihood assumes that the variance depends on a dispersion parame-

ter, say ρ, representing overdispersion [9] and instead of defining a probabilistic

form for the distribution of the data it is sufficient to specify only the variance-
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mean relationship. A specific quasi-likelihood approach for multivariate count

data was investigated by [10]. In the recent years, some generalizations have

been proposed: [11] developed an alternative way of estimating ρ when data are

sparse, while [12] explained how to deal with clustered multinomial data and

unequal cluster size.

Despite the quasi-likelihood approach is robust and works well with severe

overdispersion, the problem can be also dealt with alternative and extended

family of distributions in a maximum-likelihood perspective. Among these, the

Dirichlet-Multinomial compound model [13] represents one of the most common

solutions, able to capture extra-variability by a simple prior on the multinomial

parameters.

The study and the comparison of the main probabilistic models of the sta-

tistical literature able to capture extra-variation in multivariate count data are

our focus. A new model that extends the Dirichlet-Multinomial in a deep fash-

ion is also presented together with its parametric-estimation procedure. More

precisely, the model resembles the deep learning architecture composed by an

additional hidden layer with several nodes [14]. A relevant aspect of this model

is that its variance tends to the computed variance when the number of nodes

goes to +∞, as empirically shown in the simulation study.

The paper is organized in the following way. In Section 2 we present the main

parametric models of the statistical literature accounting for extra-variation.

We will examine in depth the approaches that are adequate to deal with high-

dimensional data. The proposed strategy and its estimation procedure are in-

troduced in Section 3. A simulation study showing the empirical performance

of the different strategies is presented in Section 4, while an empirical applica-

tion to RNA sequencing data is developed in Section 5. Conclusions and final

remarks can be found in Section 6.
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2. Models for overdispersion

Let Y = (Y1, . . . , Yj , . . . , Yp) be a multivariate vector of counts, where p

denotes the total number of categories. In the Multinomial distribution

P (Y = y) =
m!

y1! . . . yp!

p∏
j=1

π
yj

j (1)

where π = (π1, . . . , πp)
T represents the success probability of each of the p

categories with 0 ≤ πj ≤ 1 and
∑p

j=1 πj = 1 and m =
∑p

j=1 yj is the size

indicating the total number of independent trials. The mean and the variance

of the distribution depend on π and m through

E[Y] = mπ (2)

V ar[Y] = m{diag(π)− ππT }. (3)

The multinomial distribution naturally describes the outcomes of m indepen-

dent trials into p categories, but in many practical situations the assumption of

independence of the trials is not respected resulting in the phenomenon of extra-

multinomial variation, as shown in [13]. Another aspect of this distribution is

that it models negative correlations between categories, as clear by taking the

marginals in (3) that are Covar[Yj , Yj′ ] = −mπjπj′ .

Alternative parametric extra-variation models have been proposed in the

literature; they may be distinguished by the reason behind the lack of indepen-

dence.

Dirichlet-Multinomial. The first parametric alternative to the multinomial dis-

tribution was derived by [13], under the assumption that the multinomial proba-

bility parameters π1, ..., πp are distributed according to a Dirichlet distribution.

Since it is the natural conjugate of the multinomial, the resulting compound

distribution has a closed form and it takes the name of Dirichlet-Multinomial

(DM). It is also known in the statistical literature as Multivariate Pólya distri-

bution, it being the multivariate version of the Beta-Binomial distribution.
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From the compound of the Dirichlet distribution with the Multinomial, the

random vector Y∼ DMp(θ,m) has probability function:

P (Y = y) =
Γ(θ0)Γ(m+ 1)

Γ(m+ θ0)

p∏
j=1

Γ(yj + θj)

Γ(θj)Γ(yj + 1)

where θ0 =
∑p

j=1 θj and Γ is the gamma function. By denoting with π =

( θ1θ0 , . . . ,
θp
θ0
) it is possible to show that the expectation is

E[Y] = mπ (4)

so that it has the same expression of the Multinomial expectation in (2). The

resulting variance is corrected by a term in order to account for the extra-

variation of the data

V ar[Y ] = m{1 + ρ2(m− 1)}{diag(π)− ππ′} (5)

where ρ is the overdispersion parameter defined through ρ2 = 1
1+θ0

, so that

0 < ρ < 1. The constant 1 + ρ2(m− 1) inflates the variance of the multinomial

distribution and this is what makes the DM a good distribution for modeling

overdispersion. Notice that when ρ = 0 the DM distribution coincides with the

multinomial one. Having the same kernel form of the multinomial distribution,

it is easy to check that the correlations among variables are negative.

A recent extension of the DM has been proposed by [15]; in this framework

the multivariate beta distribution [16] is proposed as prior, resulting in a very

flexible model. The model is estimated via an independent Metropolis-Hastings

algorithm that makes the fitting computationally demanding as the number of

replicates and categories increase.

Random-Clumped Multinomial. The Random-Clumped Multinomial (RCM) was

proposed by [17] as an alternative to the Dirichlet-Multinomial distribution with

the idea to describe the extra-multinomial variation introduced by correlation

or clumped multinomial sampling. Specifically, clumped sampling refers to a

sample where the values observed in correspondence of each statistical unit are

influenced by the value of others, i.e. the statistical units are not independent.
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In RCM the vector of counts Y originates by two parts: the first one takes

into account the possibility that in cluster sampling within the cluster there are

some identical responses due to individuals that greatly influence each other;

the second part considers the remaining independent responses. Formally:

Y = XN + (Z | N) (6)

where X is distributed as a multinomial with size 1 and p categories, say

Mp(π, 1), independently from N ∼ M2(ρ,m), which has a binomial distribu-

tion. In the second term, (Z | N) ∼ Mp(π,m − N) if N < m. The random

number of counts N is added to X meaning that the addend XN replicates

N times the response given by X, whereas (Z | N) considers the independent

responses.

It is possible to prove that the probability distribution of Y is a finite mixture

of multinomials [17] and more precisely:

P (Y = y) =

p∑
j=1

πjP (Wj = y) (7)

whereWj for j = 1, . . . , p−1 is distributed according to aMp((1−ρ)π+ρej ;m)

andWp ∼Mp((1−ρ)π;m), ej is the j-th column of the (p−1)×(p−1) identity

matrix and π = (π1, . . . , πp)
′ is a probability vector used both as weights for the

mixture and as parameters of the multinomials considered in the mixture itself.

The RCM distribution has the same mean and variance of the DM distribution,

therefore, theoretically speaking, it can describe the same amount of extra-

variation. Empirical differences are thus only ascribed to the estimation method.

The original model proposed by [17] accounts for a single clumping only; [18]

developed an extension which integrates multiple random clumping. Specifically

they show that the extended finite mixture distribution is a multinomial mixing

distribution with different mixing coefficients. This allows to introduce more

flexibility but at the cost of additional complexity.

The model can be estimated through the Fisher’s scoring method. [19] pro-

posed a two-stage procedure in computing the maximum likelihood estimates in
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which at first the algorithm uses theoretical limiting results until convergence

and then in the second step an extra iteration with the exact Fisher informa-

tion matrix is implemented. The resulting algorithm is less computationally

expensive with respect to a simple Fisher scoring algorithm, and, at the same

time, leads to a better accuracy. As alternative solution, [20] developed a very

fast estimation procedure based on an hybrid approach. At first an approxima-

tion of the Fisher scoring algorithm is considered; after an initial warm-up, the

classical Fisher’s scoring algorithm is applied. More recently, a minorization-

maximization algorithm for fitting the RCM has been proposed by [21].

Negative Multinomial. In the multinomial distribution it is well known that the

marginals are binomial variates exhibiting a negative correlation. The same

negative association between variables is inherited by the DM and the RCM

distributions. The Negative Multinomial (NM) distribution assumes instead

a positive correlation between variables. It is simply a generalization of the

Negative Binomial when multiple outcomes are considered [22]. In the NM,

Y has parameters (π, β) = (π1, . . . , πp+1, β),
∑p+1

j=1 πj = 1, β > 0 and the

probability mass function is defined as

P (Y = y) =

(
β +m− 1

m

)(
m

y

) p∏
j=1

π
yj

j π
β
p+1, (8)

where m is the size and πp+1 = 1−
∑p

j=1 πj is the probability of a failure. The

first two moments of this distribution are the following:

E[Y] = β
π

πp+1
, (9)

V ar[Y] =
β

π2
p+1

ππ′ +
β

πp+1
diag(π). (10)

The model can be fitted via maximum likelihood by an iteratively reweighted

Poisson regression (see [22] and [23] for further details).

Generalized Dirichlet Multinomial. The Generalized Dirichlet-Multinomial (GDM)

was proposed by [24] with the aim to have a general covariance matrix and cor-

relation structure among variables. The basic idea is to choose a more flexible
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mixing distribution as a prior for the multinomial given by a kind of general-

ized Dirichlet distribution. Following the notation of [22], the probability mass

function of the GDM is

P (Y = y) =
m!

y1! . . . yp!

p−1∏
j=1

Γ(αj + yj)

Γ(αj)

Γ(βj +
∑k

h=j yh)

Γ(βj)

Γ(αj + βj)

Γ(αj + βj +
∑k

h=j yh)
(11)

where (α,β) = (α1, . . . , αp−1, β1, . . . , βp−1) are the parameters of this distribu-

tion, with αj , βj > 0. When βj =
∑p

h=j+1 αh the GDM reduces to the DM

distribution.

The distribution has the following expectation and variance

E[Yj ] = m



α1

α1 + β1
j = 1

αj

αj + βj

j−1∏
h=1

βh
αh + βh

j = 2, ..., p− 1

p−1∏
j=1

βj
αj + βj

j = p

(12)

V ar[Yj ] = m
αj

αj + βj

j−1∏
h=1

βh
αh + βh

[
(m− 1)

j−1∏
h=1

βh + 1

αh + βh + 1

αj + 1

αj + βj + 1

−m
j−1∏
h=1

βh
αh + βh

αj

αj + βj
+ 1

]
(13)

Thanks to the generalized prior of the GDM distribution it is possible to get

both positive and negative pairwise correlations between the marginals. The

estimation of this model can be obtained via maximum likelihood with quasi-

Newton iterations (see [23] for major details).

In addition to these important contributions, other models and extensions

were introduced over time to deal with overdispersion. Interesting recent works

focused on Conway-Maxwell-Multinomial [25] and Multiplicative Multinomial

model [26]. Both strategies are very flexible and they allow for both overdis-

persion and underdispersion but they incur in a heavy computational burden,

making them infeasible for high-dimensional data, like the ones considered in

Section 5 .
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3. Deep Dirichlet-Multinomial

3.1. Model definition

In order to deal with overdispersion, in this section we propose a new model

that consists of a special kind of a mixture of Dirichlet-Multinomial distribu-

tions with restrictions on the parameters. This model, called Deep Dirichlet-

Multinomial (DDM), is derived from the mixture model developed by [27].

More precisely, letDM(θ,m) be the probability mass function of a Dirichlet-

Multinomial with parameters θ and size m, then the probability distribution of

the DDM model is defined as

P (Y = y) =

K∑
k=1

wkDM(β(1 +αk),m), (14)

where wk for k = 1, . . . ,K represents the generic element of the vector of weights

w = (w1, w2, . . . , wK−1) with wK = 1−
∑K−1

k=1 wk and 0 < wk < 1. A graphical

representation of the DDM structure is shown in Figure 1. As clear from the

depicted structure, a hidden layer of nodes is introduced to better capture the

overdispersion. The adjective ‘deep’ highlights the flexibility of the introduced

hidden mixture.

In the model, β and αk are vectors of length p with components satisfying

βj > 0 and −1 < αjk < 1 (j = 1, . . . , p); thus each αk can be interpreted as a

perturbation parameter. It being defined in (-1,1), its role is to adjust β and to

get a more flexible model that behaves better in case of overdispersion. Positive

values of αj lead to larger effects of θj = βj(1 + αj) and negative values of

αj lead to lower θj = βj(1 + αj), thus indicating which categories have more

zeros. Figure 2 shows the effect of the parameters αk on the estimated β on

simulated data (n=200 and p=10) for a DMM with K = 2. The solid line

represents the values of β in increasing order and the dashed lines depict the

perturbed parameters by the effect of α1 and α2. As clear from the graph, the

two perturbation parameters tend to increase and decrease the not-perturbed

β, respectively.
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Figure 1: Structure of the DDM model.

The expectation of the distribution is the weighted sum of the expected values

of each DM distributions:

E[Y ] =

K∑
k=1

wkmπk. (15)

In order to derive the variance of the model, we use the moment generating

function. Let θk = β(1 +αk), θ0k =
∑p

j=1 βj(1 + αjk) and πk = θk

θ0k
, then the

moment generating function of the mixture is

ϕY (t) =

K∑
k=1

wkϕxk
(t)

=

K∑
k=1

wk
Γ(m+ 1)Γ(θ0k)

Γ(m+ θ0k)
Dm(θk, (e

t1 , . . . , etp))

with Dm =
1

m

m∑
u=1

 p∑
j=1

θjke
tju

Dm−u

 , D0 = 1, (16)

where specifically ϕxk
(t) is the moment generating function of a DM(θk,m).

By using the previous moment generating function we can derive the second

moment and the variance of the DDM distribution. It is not difficult to prove
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Figure 2: Effect of the perturbation parameters α on β, with p = 10. The solid black line

represents the p values of the original βj in increasing order, the dashed lines represent the

perturbed parameters.

that the variance can be split into two components, the first one is a weighted

sum of within variances, the second term is a sort of between variance part.

Formally:

V ar[Y ] =

K∑
k=1

wkm{diag(πk)− πkπ
′
k}(1 + ρ2k(m− 1))

+

K∑
k=1

wkm
2πkπ

′
k −m2

(
K∑

k=1

wkπk

)(
K∑

k=1

wkπk

)′

, (17)

where ρ2k = 1/(1 + θk0). The between variance is an additional addendum that

can capture both over- and under-dispersion. By marginalizing the quantity

along two different categories, say j and j′, the covariance formula is straight-

11



forward:

Covar[Yj , Yj′ ] =

K∑
k=1

wkπjkπj′k(1− ρ2k)m(m− 1)

− m2

(
K∑

k=1

wkπjk

)(
K∑

k=1

wkπj′k

)
. (18)

The expression can take both positive and negative values denoting that the

distribution is able to cope with flexible correlation structures among variables.

This is a very important property in practice, since groups of variables could

be positively correlated to each other but negatively correlated with other vari-

ables. For instance, genes could be co-expressed together or, alternatively, words

used together in the same context, but synonymous are negatively correlated.

Here, this extreme flexibility is obtained at the price of many parameters to be

estimated, which largely increase with K.

Another important result that we will show empirically is that the variance

of this model tends to the empirical variance when the number of components of

the mixture K goes to +∞. This is strictly related to the property that mixture

models are universal approximator of densities [28, 29]. In other terms, given

any probability density distribution, there exists a mixture model (with possi-

bly many components) such that the distribution of the mixture approximates

the given distribution with arbitrary precision. Thus we expect that proposed

deep Dirichlet-Multinomial distribution will capture extra-variation provided

that K increases. Notice that the Random-Clumped Multinomial shares the

property to be a particular mixture model. However, it is restricted to have

fixed components equal to the number of categories p, thus making it attractive

as approximator when p increases. In subsection 4.3 the issue will be empirically

analyzed through two simulation studies.
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3.2. Model estimation

Given a set of observations (y1, . . . ,yn) under the assumption of IID random

variables, the log-likelihood of the model can be written as

ℓ(Θ) =

n∑
i=1

log

K∑
k=1

wkDM(β(1 +αk),m)

=

n∑
i=1

log

K∑
k=1

wk
Γ(θ0k)Γ(m+ 1)

Γ(θ0k +m)

p∏
j=1

Γ(yij + θjk)

Γ(θjk)Γ(yij + 1)
(19)

where Θ denotes the full set of parameters, and, as defined before, θk = β(1 +

αk) and θ0k =
∑p

j=1 θjk.

Parameters in (19) can be efficiently estimated through a generalized EM

algorithm [30] with a quasi-Newton optimization step for β and αk. The EM

algorithm maximizes the conditional expectation of the so-called complete den-

sity given the observable data and alternates between the expectation and the

maximization steps until convergence. Let z be the allocation variable of the

mixture model defined in (14) denoting the component membership of each

observation. By definition z follows a multinomial distribution

f(z|Θ) =

K∏
k=1

wzk
k ,

from which f(zk = 1|Θ) = wk. Evidently, the conditional density of each yi,

given the allocation variable, is the kth DM distribution.

Then the parameter function to be maximized is the conditional expectation

of the complete density f(y, z|Θ) given the observable data, using a fixed set

of parameters Θ′:

argmax
Θ

Ez|y;Θ′ [log f (y, z|Θ)] (20)

= argmax
Θ

Ez|y;Θ′ [log f (y|z;Θ) + log f (z|Θ)] .

By observing f(y|z,Θ) =
∏K

k=1DM(yi;β(1 + αk),m)zk it is easy to see that

formula (20) is equivalent to maximizing the following function with respect to
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Θ:

L (Θ) =

n∑
i=1

K∑
k=1

τik log [wkDM(yi;β(1 +αk),m)]

n∑
i=1

K∑
k=1

τik logwk +

n∑
i=1

K∑
k=1

τik logDM(yi;β(1 +αk),m) (21)

where τik is the posterior probability that yi belongs to the kth component of

the mixture:

τik =
wkDM(yi;β(1 +αk),m)∑K
h=1 whDM(yi;β(1 +αh),m)

. (22)

At each iteration, in the E-step we compute the posterior distributions τik as

function of the current set of parameters. In the M-step we separately maximize

the two terms in (21) under the parameter constraints.

The estimation of the mixture weights under the constraints that they are

positive and sum to one takes the closed-form formula:

ŵk =

∑n
i=1 τik
n

. (23)

Maximization of the positive vectors β and constraint vectors αk involves

the derivative of logP (yi|zi = k;Θ) that can be rewritten as

logP (yi|zi = k;Θ) ∝ log Γ

 p∑
j=1

θjk

− log Γ

 p∑
j=1

yij + θjk


−

p∑
j=1

log Γ (θjk) +

p∑
j=1

log Γ (yij + θjk) .

By remembering θjk = βj(1 + αjk), the gradient of the previous term with

respect to the vectors β and αk can be obtained as function of digamma defined

as ψ(x) = d
dx log Γ(x). Let 1 be a column vector of ones of length p. The score

with respect to β is

∂ logP (yi|zi = k;Θ)

∂β
= Sk(β) = ψ

(
θ⊤
k 1
)
(1 +α⊤

k )

−ψ

 p∑
j=1

yij + θjk

 (1 +α⊤
k )− (ψ(θ1k)(1 + α1k), . . . , ψ(θpk)(1 + αpk))

+ (ψ(θ1k + yi1)(1 + α1k), . . . , ψ(θpk + yip)(1 + αpk)) .
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Similarly, the score with respect to αk is

∂ logP (yi|zi = k;Θ)

∂αk
= Sk(αk) = ψ

(
θ⊤
k 1
)
β⊤
k

−ψ

 p∑
j=1

yij + θjk

β⊤ − (ψ(θ1k)β1, . . . , ψ(θpk)βp)

+ (ψ(θ1k + yi1)β1, . . . , ψ(θpk + yip)βp) .

Given these scores it is evident that no solution exists in closed form. However

at each iteration of the EM algorithm, estimates can be obtained according to

quasi-Newton strategies. The scheme of the algorithm is the following:

1. Initialization: Set h = 0. For each component k = 1, . . . ,K, choose values

for the vectors α
(h)
k and β(h) and fix equispaced probabilities for w

(h)
k .

2. Estimation step: Repeat the following until ℓ(Θ) stops changing:

(a) Compute the posteriors using (22);

(b) For k = 1, . . . ,K compute new values for αk using the scores Sk(αk)

by constrained quasi-Newton.

(c) Compute new values for β using the weighted sum of scores
∑K

k=1 wkSk(β)

by constrained quasi-Newton.

(d) For k = 1, . . . ,K compute new values for wk using (23).

(e) h = h+ 1.

The algorithm has been implemented in R code and is available via Github1.

4. Empirical results

Table 1 contains a synthetic summary of the main characteristics of the

presented distributions for multivariate count data.

1https://github.com/NoeCors/EM_Mixtures_DM/tree/main
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Multinomial (MN) Dirichlet-Multinomial (DM)

Parameters m, π = (π1, . . . , πp−1)′ m, ρ, θ = (θ1, . . . , θp)′∑p
j=1 πj = 1 θ0 =

∑p
j=1 θj , θ

2 = 1
1+θ0

, π = θ
θ0

♯ parameters p p+ 1

Expectation mπ mπ

Variance m{diag(π)− ππT } m{1 + ρ2(m− 1)}{diag(π)− ππ′}

Covariance Negatively correlated Negatively correlated

Random-Clumped Mult. (RCM) Negative Multinomial

Parameters m, ρ,π = (π1, . . . , πp−1)′ m, β,π = (π1, . . . , πp)′

0 < ρ < 1 and
∑p

j=1 πj = 1 β > 0 and πp+1 = 1−
∑p

j=1 πj

♯ parameters p+ 1 p+ 2

Expectation mπ β π
πp+1

Variance m{1 + ρ2(m− 1)}{diag(π)− ππ′} β

π2
p+1

ππ′ + β
πp+1

diag(π)

Covariance Negatively correlated Positively correlated

Generalized DM (DGM) Deep DM (DDM)

Parameters m, α = (α1, . . . , αp−1) m, (w1, . . . , wK−1), wK = 1−
∑K−1

k=1

β = (β1, . . . , βp−1) β = (β1, . . . , βp), αk = (α1, . . . , αp)

αj > 0, βj > 0 wk > 0, βj > 0, −1 < αj < 1

♯ parameters 2p− 1 p(K + 1) +K

Expectation see equation (12)
∑K

k=1 wkmπk

Variance see equation (13) see equation (17)

Covariance General correlation General correlation

Table 1: Models for multivariate count data

In this section we investigate the capability of the proposed model together

with the existing illustrated strategies to capture overdispersion through two

simulation studies.

4.1. Performance comparison

We consider two empirical studies differing in the way the overdispersion is

introduced.

More specifically, an increasing percentage of zeros is introduced into the

data in order to gradually check the capability of the different probabilistic

models to deal with overdispersion. Data are first randomly generated by a

multinomial distribution. Then, in the first scenario, the zeros are added in
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a completely random way into the dataset. In the second scenario, we added

the zeros by gradually replacing the smallest counts, starting from cells with

frequency one, ending up to larger counts.

We make a comprehensive comparison of the likelihood-based models dis-

cussed up until now and summarized in Table 1. To this aim, we generated 100

datasets with 10 levels of increasing overdispersion. The ten levels correspond

to an increasing proportion of zeros, through jumps of 10%, starting from the

case of lack of extra-variation with a percentage of added zeros equal to zero

to the case of maximum overdispersion of the data with a percentage of added

zeros equal to 90%.

The models are fitted on each dataset of the two empirical studies considering

datasets with different combinations of samples n and categories p randomly

generated from a multinomial distribution with parameters m = 100 and π ∼

Unif [0, 1] then normalized. Here we present the results for n = 200 rows and

p = 10 columns. With respect to the DDM distribution, we report four cases

each one differentiated by the number of mixture components K = 2, K = 3,

K = 4 and K = 20.

In Table 2 the analytical results of the comparison of the different methods

are shown. In particular, the table displays the average Euclidean distances

between the estimated variances of each model and the empirical ones, the

average BIC [31] and average AIC [32] across the replicated datasets and the

different settings of added zeros. The last column shows the average of the

computational times (in seconds) to get estimates on the datasets. In general,

flexibility comes at the price of a greater computational burden. The DDM

model with 20 mixture components is the most demanding estimation method

from the computational time perspective, but times remain generally feasible.

According to these results, it is clear that the proposed Deep Dirichlet-

Multinomial is the model able to better describe the variability of the data, it

having the smallest euclidean distance. However, this is achieved at the price of

a large number of parameters. In fact, the two information criteria considered

in this simulation are both largely penalized by the number of parameters to be

17



First simulation Second simulation

Euclidean
BIC AIC

Euclidean
BIC AIC

Running

Distance Distance Times

MN 6.24 8008 7978 7.09 7088 7058 0.001

DM 2.71 5683 5650 6.44 3768 3735 0.005

RCM 3.10 6902 6869 4.52 12151 12118 5.400

NM 5.22 9301 9265 6.13 8251 8215 0.005

GDM 2.58 6075 6015 5.48 4176 4117 0.026

DDM 2 2.49 21430 21328 5.89 16189 160887 1.057

DDM 3 2.26 21436 21297 5.42 16203 16064 2.001

DDM 4 2.14 21437 21263 4.95 16206 16031 2.791

DDM 20 1.69 22032 21277 3.16 16763 16008 23.280

Table 2: Average euclidean distances between the empirical and the estimated variances, BIC,

and AIC in the two simulations

estimated. For instance a model withK = 3 components involves 83 parameters

with respect to the 20 parameters of a simple multinomial distribution. As a

consequence, the DDM is never suggested by the two information criteria.

The results of the comparison are shown also from a graphical point of view

in Figure 3 that represents the evolution and the trajectory of the empirical

true variance - solid black line - with respect to the estimated variances of the

different models when the number of zeros in the dataset increases. In both

scenarios it is evident the Deep Dirichlet-Multinomial distribution gets a very

good approximation that improves as K increases.

In the first simulation study, where the zeros are increasingly inserted in the

data in a random way, the empirical variance has a marked parabolic profile.

This is due to the fact that the empirical variance increases with the addition

of zeros in the data until we get a situation in which half of the data are zeros

in the sixth scenario. Here, it is reached the maximum overdispersion and

heterogeneity. Then from the seventh scenario, the extra-variation of the data

starts to decrease towards the original level because, as the zeros keep increasing,

the dataset will tend to be more homogeneous. This reasonable behavior is
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Figure 3: Results of the two simulations. The continuous dark line represents the true empir-

ical variance.

reproduced by the DM, the RCM, the GDM and the DDM but it is the latter

that is the closest to the real variance when a consistent overdispersion is present.

A parabolic shape is present also in the second simulation, in which the

trajectory of the curves is somehow different due to the different method used

in order to add the zeros into the dataset. This, however, does not change the

fact that the DDM is a very good model able to describe the empirical variance

trajectory under the different scenarios and the approxitation improves as K

increases. This aspect will be further discussed in the next section.

4.2. DDM Asymptotic behavior

Exploiting the same data generating process defined for the two simulations

above, we analyze the dynamic behavior of the Deep Dirichlet-Multinomial vari-

ance as function of K, for the intermediate scenario with a 50% percentage of

added zeros.
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For each value of K = 1, . . . , 50 the DDM model together with its variance-

covariance matrix are estimated with 10 replications each. The summarized

results are displayed in Figure 4. The dashed black line represents the sample

variance mean across 10 random datasets, while the solid red one describes the

evolution of the fitted DDM variance when K increases to +∞. It is straight-

forward to see how the proposed model is able to account for the extra-variation

of the data. In particular, the empirical analysis suggests that the estimated

variance tends to the computed variance when the number of elements K of the

mixture goes to +∞.

4.3. Choosing K in DDM distribution

In this section we aim to verify whether the optimal number of mixture com-

ponents of the DDM distribution can be reasonably suggested by the asymptotic

criteria AIC and BIC and by the data-driven slope heuristic criterion [33, 34]

in which the likelihood is penalized according to the result of the fit of the

likelihoods on the complexities of the models.

We considered the two simulation studies with an intermediate proportion of

First simulation

0 5 10 15 20 25 30 35 40 45 50
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1
0

1
5

2
0

Second simulation

0 10 20 30 40 50

5
1
0

1
5

2
0

2
5

Figure 4: Estimated variability (solid line) vs empirical variability (dashed line) for an in-

creasing number of components.
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Figure 5: AIC, BIC and slope heuristic (multiplied by -1) for each k in the first simulation

zeros. The DDM model was estimated 10 times for each value K = 1, . . . , 15 of

mixture components. Figure 5 and 6 show the AIC, the BIC and the heuristic

slopes (multiplied by -1) for each of the two methods of adding the zeros in the

dataset.

As expectable in both studies, the BIC is more penalized by the number of

parameters with respect to the AIC, which favors many components. According

to the BIC, the suggested values of K are 3 and 2 in the two studies; the

AIC instead suggests 15 and 12 components in the first and second settings,

respectively. The slope heuristic values are consistent with the BIC curve across

the different values of K, therefore K = 2 or 3 is suggested.

5. An empirical illustration to RNA Sequencing data

In this section an empirical analysis is illustrated on RNA sequencing dataset.

Data taken by [35] consist of p = 714 microRNAs about cervical cancer that

quantify the expression of microRNAs in tumor and non-tumor human cervical

tissue samples (see [36] for more details). In this analysis the tumor and non-

tumor samples are considered altogether for a total of 58 tissue samples. This

leads to an additional source of variability coming from the heterogeneity of the

two classes.
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Figure 6: AIC, BIC and slope heuristic (multiplied by -1) for each k in the second simulation

Model Euclidean Distance

MN 619.562

DM 507.510

RCM 451.199

DDM 2 409.702

DDM 3 409.703

DDM 4 409.704

DDM 20 409.704

Table 3: Euclidean distances between the empirical and the estimated variances of each model.

The Multinomial model (MN), the Dirichlet-Multinomial model (DM), the

Random-Clumped model (RCM) and the Deep Dirichlet-Multinomial model

(DDM) with different K are estimated on these data and compared in terms

of the capability to describe the overall empirical variability. The Negative

Multinomial and the Generalized DM cannot be estimated on these data due

to their high-dimensionality. Table 3 shows the Euclidean distance between the

empirical variances and the estimated variances from each model.

These results confirm the superiority of the DDM model in estimating the

computed variances with overdispersion.
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6. Final remarks

In this work, we have conducted a comprehensive analysis of the likelihood-

based models able to deal with data that present extra-multinomial variation.

In addition, a new approach, the Deep Dirichlet-Multinomial distribution, that

resembles the deep learning architecture composed by an additional hidden layer

with several nodes is proposed. The proposed DMM distribution is characterized

by some interesting and desirable properties, although it is not always considered

to be the best choice by BIC and AIC due to the large amount of parameters

that need to be estimated, compared to the other models analyzed.

First of all, the analytical formula of its variance can be split in two com-

ponents that ideally represent the within and between variability. This allows

to capture both under- and over-dispersion and to have a more flexible correla-

tion structure among variables. Moreover, we showed computationally that the

variance of the DDM model tends to the empirical variance when the number of

mixture components increases, and this is of course a desirable property that a

good distribution should have. The choice of estimating the DDM distribution

using an EM algorithm leads to good results in all the simulations considered,

even if the price of its large flexibility is in its higher computational times.
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