
07 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Dal Lago U., Gavazzo F., Tanaka R. (2020). Effectful applicative similarity for call-by-name lambda
calculi. THEORETICAL COMPUTER SCIENCE, 813, 234-247 [10.1016/j.tcs.2019.12.025].

Published Version:

Effectful applicative similarity for call-by-name lambda calculi

Published:
DOI: http://doi.org/10.1016/j.tcs.2019.12.025

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/798439 since: 2021-02-11

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.tcs.2019.12.025
https://hdl.handle.net/11585/798439

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Dal Lago, U., Gavazzo, F., & Tanaka, R. (2020). Effectful applicative similarity for call-
by-name lambda calculi. Theoretical Computer Science, 813, 234-247

The final published version is available online at
https://dx.doi.org/10.1016/j.tcs.2019.12.025

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.tcs.2019.12.025

Effectful applicative similarity
for call-by-name lambda calculi

Ugo Dal Lagoa,b, Francesco Gavazzoa,b, Ryo Tanakac

aUniversità di Bologna
bINRIA Sophia Antipolis
cThe University of Tokyo

Abstract

We introduce a notion of applicative similarity in which not terms butmonadic
values arising from the evaluation of effectful terms, can be compared. We
prove this notion to be fully abstract whenever terms are evaluated in call-
by-name order. This is the first full-abstraction result for such a generic,
coinductive methodology for program equivalence.

Keywords: Call-by-name λ-calculus, applicative similarity, Howe’s
method, Algebraic effects

1. Introduction

Program equivalence and refinement are crucial notions in the theory of
programming languages, and their study is at the heart of programming lan-
guage semantics. When higher-order functions are available, programs have a
non-trivial interactive behaviour, and giving a satisfactory and at the same
time handy definition of program equivalence becomes complicated. The
problem has been approached, in many different ways, e.g. by denotational
semantics or by contextual equivalence. These two approaches have their
drawbacks, the first one relying on the existence of a denotational model, the
latter quantifying over all contexts, thus making the task of proving programs
equivalent quite hard. Handier methodologies for proving programs equiv-
alent have been introduced along the years based on logical relations and
applicative bisimilarity. Logical relations were originally devised for typed,
normalising languages, but later generalised to more expressive formalisms,
e.g., through step-indexing (Appel and McAllester, 2001) and biorthogonal-
ity (Benton et al., 2009). Starting from Abramsky’s pioneering work on

Preprint submitted to SI-ICTCS2017 November 6, 2020

applicative bisimilarity (Abramsky, 1990), coinduction has also been proved
to be a useful methodology for program equivalence, and has been applied
to a variety of calculi and language features (Lassen, 1998; Dal Lago et al.,
2014; Ong, 1993).

The just described scenario also holds when the underlying calculus is
not pure, but effectful. There have been many attempts to study effect-
ful λ-calculi (Plotkin and Power, 2001; Moggi, 1989) by way of denota-
tional semantics (de’Liguoro and Piperno, 1995; Jones, 1990), logical rela-
tions (Bizjak and Birkedal, 2015), and applicative bisimilarity (Lassen, 1998;
Dal Lago et al., 2014; Crubillé and Dal Lago, 2014). But while the deno-
tational and logical relation semantics of effectful calculi have been studied
in the abstract (Goubault-Larrecq et al., 2008; Johann et al., 2010), the
same cannot be said about applicative bisimilarity and related coinductive
techniques. There is a growing body of literature on applicative bisimilarity
for calculi with, e.g., nondeterministic (Lassen, 1998), and probabilistic ef-
fects (Dal Lago et al., 2014), but each notion of an effect has been studied
independently, often getting different results. Distinct proofs of congruence
for applicative bisimilarity, even if done through a common methodology,
namely the so-called Howe’s method (Howe, 1996), do not at all have the
same difficulty in each of the cases cited above.

The observations above naturally lead to some questions. Is there any
way to factor out the common part of the congruence proof for applicative
bisimilarity in effectful calculi? Where do the limits on the correctness of
applicative bisimilarity lie, in presence of effects?

This paper is part of a longstanding research effort directed to giving
answers to the questions above. The first two authors, together with Paul
Blain Levy, have recently introduced a general notion of applicative bisimilar-
ity for lambda-calculi based on monads and relators (Dal Lago et al., 2017).
This provides, under mild conditions, a sound methodology for checking con-
textual equivalence of programs. The central idea is to take simulations as
relations on terms and to use a relator to lift a (candidate) simulation to a
relation on the monadic images of values. There is however little hope to
prove a generic full-abstraction result in such a setting, although for certain
notions of an effect, full abstraction is already known to hold (Abramsky,
1990; Crubillé and Dal Lago, 2014).

In this paper, we study a different notion of simulation, which puts in
relation not terms but their semantics. This way, interaction between terms
and the environment can be modeled by an ordinary, deterministic, transition

2

system and, with minimal side conditions, similarity can be proved to be
not only a sound, but also to coincide with the contextual preorder. This,
however, only holds when terms are call-by-name evaluated.

The paper is organised as follows. We first informally introduce the main
ideas behind the present work by means of an extended example. We will
then enter the technical developments of the work by first introducing a
computational call-by-name λ-calculus ΛΣ enriched with arbitrary algebraic
effects à la Plotkin and Power (Plotkin and Power, 2001). The latter are
defined by means of a signature of effect-triggering operation symbols which
are interpreted as algebraic operations with respect to a monad.

In Section 4 we define an abstract notion of observation on top of which
we define contextual and CIU approximation, as well as applicative simi-
larity. Our first main result (Theorem 2), namely the equivalence between
applicative similarity and CIU approximation, is proved in Section 5. Sec-
tion 6, instead, is dedicated to our second main result (Corollary 1), namely
full abstraction of applicative similarity (and thus CIU approximation) for
contextual approximation. This result relies on a suitable CIU theorem (The-
orem 3) whose proof is based on a variation of the so-called Howe’s method
(Howe, 1996).

1.1. Lifting Transition Systems
In this section we introduce the main ideas behind our approach by means

of an example, namely a call-by-name nondeterministic λ-calculus (Ong,
1993; Lassen, 1998), which we call Λt. The syntax of Λt extends the syntax of
the ordinary λ-calculus (Barendregt, 1984) with a binary nondeterministic
choice operator t, the intended semantics of an expression e t f being to
nondeterministically evaluate either to e or to f . We denote the collection
of expressions and values (i.e. expressions of the form λx.e) by Λ and V ,
respectively, and let letters e, f, . . . and v, w, . . . range over elements of Λ and
V , respectively. As usual, a program is a closed expression, i.e. an expression
without free variables. We denote by Λ0 the collection of all programs.

As we are in a nondeterministic setting we assume we can observe whether
a program may converge1, meaning that the observable (operational) be-
haviour of a program e is whether there exists a value v such that e evaluates
to v. For instance, the program (λx.x) t Ω, where Ω is the purely divergent

1Although other choices, such as must or may and must convergence, are possible.

3

expression (λx.xx)(λx.xx), may converge to λx.x. We write e ⇓ v if e may
converge to the value v, and e⇓ if there exists a value v such that e ⇓ v.

The notion of contextual approximation captures the idea of observational
refinement in any possible environment. In our setting, as we have already
remarked, observations are modelled by the predicate ⇓, whereas the role
of the environment is played by contexts2. Accordingly, we say that a pro-
gram e contextually approximates a program f , written e �ctx f , if for any
context C, C[e]⇓ implies C[f]⇓. We refer to the relation �ctx as contextual
approximation.

Although intuitively appealing, the relation �ctx comes with a major
drawback, namely its universal quantification over all possible contexts. Prov-
ing that a program e contextually approximates a program f requires to test
the behaviour of e and f in any possible environment. For this reason, sev-
eral proof techniques for �ctx have been proposed in the last decades. Such
techniques often come in the form of a relation R between programs such
that R ⊆ �ctx, meaning that eR f implies e �ctx f . We say that R is sound
for �ctx if R ⊆ �ctx, and that it is fully abstract for �ctx if R = �ctx.

Starting with the seminal work by Abramsky (Abramsky, 1990), applica-
tive similarity has been proved to be a powerful proof technique for contex-
tual approximation, both for the pure λ-calculus (Abramsky, 1990) and for
its nondeterministic and probabilistic extensions (Ong, 1993; Lassen, 1998;
Dal Lago et al., 2014). The notion of applicative similarity for Λt is rooted
in the observation that the operational semantics of Λt defines a (labelled)
transition system T = 〈Λ0,L,→〉 over programs. Accordingly, the set of
states3 is defined as the collection of programs, whereas the set of labels
(or actions) L is defined as Λ0 ∪ {τ}, where τ is a special symbol denoting
evaluation. Finally, the transition relation → is defined as follows:

1. e τ−→ v if e ⇓ v.

2. λx.f e−→ f [e/x], for any e ∈ Λ0.

2Intuitively, a context is an expression with a hole [−]. We write C[e] for the expression
obtained by filling in the hole in C with e.

3From a formal perspective, we should work with a bi-labelled transition system distin-
guishing between programs and values. However, since the goal of this section is to give
an informal exposition of the main ideas behind this work, such a level of mathematical
accuracy is unnecessary.

4

Notice that due to the presence of nondeterminism, the above transition
system is clearly nondeterministic. In general, a term e may converge to
more than one value.

The notion of an applicative simulation is defined as ordinary simulation
on T. Spelling out the definition, it is not hard to see that a relation R ⊆
Λ0 ×Λ0 is an applicative simulation if and only if eR f implies that for any
value λx.g such that e ⇓ λx.g, there exists a value λx.h such that f ⇓ λx.h
and for any term k we have g[k/x]R h[k/x]. Applicative similarity �app is
then coinductively defined as the largest applicative simulation. Notice that
applicative similarity has better mathematical properties than �ctx. In fact,
�app does not universally quantify over all contexts, but only on programs
passed as arguments to lambda abstractions. Furthermore, �app comes with
an associated coinduction proof principle: in order to prove that a program f
is applicatively similar to a program e, it is sufficient to exhibit an applicative
simulation R relating e and f .

Remarkably, applicative similarity is included in contextual approxima-
tion, meaning that �app is a sound proof technique for �ctx. However, it
is not hard to realise that full abstraction fails. In fact, we can easily con-
vince ourselves that the program e = λx.(f t g) contextually approximates
h = λx.f t λx.g, although e 6�app h.

An informal argument supporting e �ctx h is the following (a formal
proof will be given later in full generality). As Λt is a call-by-name calculus,
a context C can only test a program k in function position. That is, during
the evaluation of a program C[k], k can only be evaluated in function position,
i.e. in a situation of the form kc, where c may ‘contain’ other occurrences of
k. Similarly, the result of the evaluation of kc can only be tested in function
position. Iterating this observation, we see that testing a program k in a
context C is equivalent to testing k against a finite sequence of inputs. This
is the content of the so-called CIU Theorem (Mason and Talcott, 1991):

Theorem 1 (CIU, Λt-version). For all programs e, f , e �ctx f holds if and
only if for any finite sequence of programs k1, . . . , kn, ek1 · · · kn ⇓ implies
fk1 · · · kn ⇓.

Notice that the CIU Theorem states that �ctx is a form of trace refine-
ment. Using Theorem 1 we can easily show e �ctx h. This comes with no
surprise: contextual approximation being a form of trace refinement, it is not
sensitive to ‘branching behaviours’, and thus by no means can tell e and h
apart.

5

This is not the case for applicatively similarity which, instead, is sensitive
to forms of branching. From an applicative simulation perspective, the differ-
ence between the expressions e and h as defined above is clear: e postpones
the nondeterministic choice to the moment it receives an input, whereas h
first makes the choice, and then waits to receive an input. Accordingly, it
is sufficient to instantiate f as xΩ(λx.x) and g as x(λx.x)Ω to observe that
e 6�app h. For suppose λx.(f t g) � λx.f t λx.g. In particular, there is a
simulation R relating the two programs. By the very definition of applicative
simulation, since λx.(f t g) evaluates to itself and λx.f t λx.g evaluates to
either λx.f or λx.g, we must have λx.(f t g)Rλx.f or λx.(f t g)Rλx.g. In
the first case, sinceR is a simulation, we must have (f [k/x]tg[k/x])Rf [k/x],
for any program k. This, however, cannot be the case, as taking k = λxy.x,
we see that f [k/x] t g[k/x] may converge to λx.x, whereas f [k/x] diverges.
A similar argument shows that λx.(f t g)R λx.g cannot hold as well (take
k = λxy.y).

The reader might have recognised that e and h are nothing more than
the encoding in Λt of the labelled transition systems below, which are the
standard example in concurrency theory showing that bisimilarity is strictly
finer than trace equivalence.

•
a
��
•

b

zz
b

$$• •

•
a

zz
a

$$•
b ��

•
b��

• •

Summing up, we have observed that in a nondeterministic setting, ap-
plicative similarity is sensitive to branching, whereas contextual approxima-
tion is not. This is because, in full generality, contextual approximation is a
form of trace approximation, and thus intrinsically deterministic. This last
observation suggests an easy way to make applicative similarity fully abstract
for contextual approximation, namely to determinise the transition system
T, and thus the very notion of applicative similarity. Such a construction is
well-known, and dates back at least to the powerset construction in automata
theory (Rabin and Scott, 1959). Roughly speaking, the idea, which we are
going to analyse in a more detailed fashion, is to make T deterministic by
lifting the transition relation to sets of programs.

6

1.2. An Abstract View on Applicative Similarity
As we have already observed, T is a nondeterministic transition system.

In fact, the transition relation τ−→⊆ Λ0 × V0 can be equivalently described
as the evaluation function ev : Λ0 → PV0 mapping a program e to the set
{v ∈ V0 | e ⇓ v} (notice that ev(e) might be empty, finite, or infinite).
Similarly, transitions of the form e−→ determine a function ap : V0 → ΛΛ0

0

defined by ap(λx.f, e) = f [e/x]. As a consequence, we can equivalently
describe T as the pair4 (ev : Λ0 → PV0, ap : V0 → ΛΛ0

0).
Applicative similarity can be then defined relying on a suitable notion of

relation lifting, following the abstract approach of (Dal Lago et al., 2017). A
relation lifting is a map associating to any relation R ⊆ X × Y a relation
ΓR ⊆ P(X)× P(Y). Fixed such a map Γ, an applicative simulation can be
defined as a relation R ⊆ Λ0 × Λ0 such that eR f implies ev(e) ΓR ev(f),
and λx.f R λx.g implies ap(λx.f, k)R ap(λx.g, k), for any program k. As a
consequence, in order to recover the previous notion of applicative simulation
for Λt, it is sufficient to instantiate Γ as follows:

V ΓR W ⇐⇒ ∀v ∈ V. ∃w ∈ W. v R w.

In this paper we consider a different approach to applicative similarity,
which we could summarise in the slogan ‘lift the transition system, not the
relation’. In fact, instead of lifting relations between programs to relations
between sets of programs, we can lift the whole transition system T to a
transition system T∗ such that (i) states of T∗ are sets of programs, and (ii)
the transition relation (and thus the associated notion of simulation) of T∗
is deterministic. We can build T∗ by lifting the functions ev and ap to:

ev∗ : P(Λ0)→ P(V0) ap∗ : P(V0)→ P(V0)Λ0 .

The latter functions are defined in the obvious way, relying on the (strong)
monad (MacLane, 1971) structure of P . Furthermore, as we are interested in
observing whether a program may convergence, we equip T∗ with an obser-
vation function ob : P(V0)→ {⊥,>}, where {⊥,>} denotes the two-element
Boolean algebra, defined by ob(V) = > if and only if V 6= ∅. Notice that we
have ob(ev(e)) = > if and only if e ⇓.

4Using the terminology of (Abramsky, 1990) we refer to transition systems of this form
as nondeterministic applicative transition systems.

7

Finally, we define a notion of applicative simulation between elements in
P(Λ0) as a relation R ⊆ P(Λ0)× P(Λ0) such that:

1. E R F implies ob(ev∗(E)) ≤ ob(ev∗(F));

2. V RW and V,W ∈ P(V0) imply ap∗(V, e)Rap∗(W, e), for any program
e.

As usual, applicative similarity (�app)∗ is defined as the largest applicative
simulation.

We immediately see that although coinductively defined, this new notion
of applicative similarity is a trace-like refinement. For instance, it is straight-
forward to see that5 λx.(f t g) (�app)∗ λx.f t λx.g. Additionally, contrary
to �app, (�app)∗ is not only sound, but also fully abstract for �ctx, as we will
prove in full generality in Section 6.

At this point it is natural to ask whether the above construction can be
given for other effectful languages, such as calculi with primitives for proba-
bilistic nondeterminism or input/output. In fact, the reader may have noticed
that the central ingredients used to build T∗ (at least from a mathematical
perspective) were the (strong) monad structure of the powerset functor P
and a suitable observation function ob. The rest of this paper answers the
above question in the affirmative by generalising the above construction to
a call-by-name λ-calculus enriched with algebraic effects à la Plotkin and
Power (Plotkin and Power, 2001), this way providing a sound and complete
characterisation of contextual approximation for a large class of effectful call-
by-name calculi.

2. Mathematical Preliminaries

We assume the reader to be familiar with basic domain theory and cate-
gory theory. In particular, we give for granted the notions of an ω-complete
partial order (ω-cpo, hereafter) and of a pointed ω-cpo (ω-cppo, hereafter),
as well as the notions of a monotone, continuous, and strict function. We
also assume the reader to be familiar with the basic vocabulary of category
theory, viz. the notions of a category, functor, and monad. Since we will
work with the category Set of sets and functions only, we simply refer to

5Formally, we should write {λx.(f t g)} (�app)∗ {λx.f t λx.g}.

8

functors and monads in place of functors and monads on Set, respectively.
The reader can consult (Abramsky and Jung, 1994; Davey and Priestley,
1990; MacLane, 1971) for further details.

Following (Plotkin and Power, 2001, 2003), we consider (algebraic) oper-
ations as sources of side effects. Syntactically, such operations are described
by means of a signature of operation symbols, i.e. a pair Σ = (F , α) con-
sisting of a set F of operation symbols and a map α : F → N, assigning
to each operation symbol a (finite) arity. Semantically, operation symbols
are interpreted as algebraic operations on a monad/Kleisli triple (MacLane,
1971; Moggi, 1989)6.

Definition 1. A monad is a triple T = 〈T, η, >>=〉 where T is a map — called
the carrier of T — associating to each set X a set TX, η — called the unit
of T — is a family of functions ηX : X → TX, and >>= — called the bind
of T — is an operation mapping each function f : X → TY to the function
>>=f : TX → TY subject to the following identities:

(>>=f) ◦ η = f >>= η = id >>=(>>=g ◦ f) = >>=g ◦ >>=f,

for f and g functions with appropriate domain and codomain.

As it is customary, we write t >>= f in place of >>=f(t), for f : X → TY
and t ∈ TX. Moreover, when clear from the context we will omit subscripts,
thus e.g. writing η(x) in place of ηX(x).

Definition 2. Let Σ be a signature and T = 〈T, η, >>=〉 be a monad. We say
that Σ is interpreted on T if associated to any n-ary operation symbol σ in
Σ is a set-indexed family of functions σX : (TX)n → TX. We say that Σ is
algebraic for T if the following identity holds, for any n-ary operation symbol
σ ∈ Σ, map f : X → TY , and all elements t1, . . . , tn ∈ TX:

σX(t1, . . . , tn) >>= f = σY (t1 >>= f, . . . , tn >>= f).

Notice that algebraicity of Σ for T is essentially requiring each TX to
carry a Σ-algebra structure such that >>=f is a Σ-algebra homomorphism, for
any set X and function f : X → TY .

6We use the expression monad and Kleisli triple interchangeably.

9

Example 1. The following are examples of monads and algebraic operations
on them. Due to space constraints, we are forced to omit many interesting
examples, such as the exception and global state monad, for which we refer
to (Dal Lago et al., 2017; Plotkin and Power, 2003).

1. The maybe monadM has carrierX⊥ = {just x | x ∈ X}∪{⊥}, whereas
unit and bind are thus defined:

η(x) = just x (just x) >>= f = f(x) ⊥ >>= f = ⊥.

The maybe monad is used to model partial computations: the symbol
⊥ denotes divergence, whereas just x denotes the result of a computa-
tion giving result x. Since the possibility of divergence is an intrinsic
feature of any (Turing complete) programming language, no operation
is required to produce it.

2. The output monad O has carrier O(X) = A∞×X⊥, where A is a given
alphabet and A∞ denotes the set of finite and infinite strings over A.
Unit and bind of O are thus defined:

η(x) = (ε, just x) (u,⊥) >>= f = (u,⊥) (u, just x) >>= f = (uw, a),

where (w, a) = f(x), ε denotes the empty string, and uw denotes the
concatenation of u and w (as usual, if u is infinite we define uw as
u). The output monad models partial computations with output. An
element (u, a) represents the result of a computation printing the string
u during its processing. Due to the possibility of divergence, the string u
may be infinite (and in such a case we expect a to be ⊥). We consider a
signature containing a unary A-indexed operation symbol printc, where
c ∈ A, whose intended semantics is to print the character c and then
continue with its argument. Formally, we interpret printc((u, x)) as
(cu, x).

3. The non-empty powerset monad P has carrier Pne(X) = {U ⊆ X |
U 6= ∅}, whereas unit and bind are thus defined:

η(x) = {x} U >>= f =
⋃
x∈U

f(x).

The non-empty powerset monad is used to model total nondetermin-
istic computations. A set U ⊆ X denotes the possible results of a

10

computation, meaning that if x ∈ U then x is one of the possible, non-
deterministic outcomes of the computation. Nondeterministic partial
computations are modelled by post-composing P with M. It is a rou-
tine exercise to verify that the latter is indeed a monad. We consider
a signature containing a binary operation symbol t for pure nondeter-
ministic choice. We obtain the desired behaviour by interpreting t as
set-theoretic union.

4. The distribution monad D has carrier D = {µ ∈ [0, 1]X |
∑

x µ(x) = 1},
where the map µ is assumed to have countable support7. Unit and bind
of D are thus defined:

η(x)(x′) =

{
1 if x = x′

0 otherwise
(µ >>= f)(y) =

∑
x∈X

µ(x) · f(x)(y).

Since the unit of D is given by the so-called Dirac distribution, we will
denote it by δ. The distribution monad is used to model total prob-
abilistic computations, with the intended meaning that a distribution
µ gives the probability of convergence to values. Probabilistic partial
computations are modelled by post-composing D with M. It is a rou-
tine exercise to verify that the latter is indeed a monad, and actually
isomorphic to the subdistribution monad. We can consider a signature
containing a binary operation symbol or for fair probabilistic choice.
We obtain the desired behaviour by interpreting or as the operation ⊕
defined by (µ⊕ ν)(x) , 1

2
µ(x) + 1

2
ν(x).

Since we will define the evaluation of a program e as the limit of its finite
evaluations, we require monads to come with a suitable domain-theoretic
structure.

Definition 3. Given a monad T = 〈T, η, >>=〉 and a signature Σ interpreted
on T, we say that T is Σ-continuous if for any set X, the set TX carries an
ω-cppo structure (with order vX) such that >>= is strict in its first argument
(i.e. ⊥ >>= f = ⊥), and:

1. For any k-ary operation symbol σ in Σ

σX(
⊔
n<ω

t1n, . . . ,
⊔
n<ω

tkn) =
⊔
n<ω

σX(t1n, . . . , t
k
n).

7Recall that the support of µ ∈ [0, 1]X is the set supp(µ) = {x ∈ X | µ(x) 6= 0}. We
write

∑
x µ(x) in place of

∑
x∈supp(µ) µ(x).

11

2. For any ω-chain (tn)n<ω in TX and any ω-chain (fn)n<ω in X → TY
(notice that the latter inherits a ω-cppo structure from TY pointwise)

(
⊔
n<ω

tn) >>= (
⊔
n<ω

fn) =
⊔
n<ω

(tn >>= fn).

Example 2. All monads in Example 1 are Σ-continuous. In particular, X⊥
is an ω-cppo with respect to the flat order x v y ⇐⇒ x = ⊥ or x = y. To
see that PM is Σ-continuous consider the ordering U v V ⇐⇒ just−1(U) ⊆
just−1(V). Notice that we have {⊥} v V for any set V . Finally, for DM
define the order µ v ν ⇐⇒ ∀x. µ(just x) ≤ ν(just x). Notice that
we have η(⊥) v µ, for any µ ∈ D(X⊥). Checking continuity of >>= and of
operations is a routine exercise. Ordering the output monad O requires a
bit more attention, due to non-monotonicity of string concatenation with
respect to the prefix order ⊆ on A∞ (see (Dal Lago et al., 2017)). We define
(u, a) v (w, b) if and only if a = ⊥ and u ⊆ w, or a = just x, b = just y,
u = w, and x = y.

We can now introduce the effectful calculus ΛΣ.

3. Syntax and Operational Semantics

In this section we introduce the computational language ΛΣ, and give it
call-by-name monadic operational semantics. In the rest of this section let
T = 〈T, η, >>=〉 be a fixed Σ-continuous monad and Σ be a fixed algebraic
signature on it.

Definition 4. The collections Λ◦ and V◦ of expressions and values of ΛΣ are
defined by the following grammar(s), where σ ranges over n-ary operation
symbols in Σ (and x ranges over a fixed set of variables).

v ::= x | λx.e e ::= v | ee | σ(e, . . . , e).

We adopt standard conventions as in (Barendregt, 1984). In particular,
we denote by FV (e) the collection of free variables of an expression e and
identify expressions up to renaming of bound variables. We say that an
expression e is closed (resp. open) if FV (e) = ∅ (resp. FV (e) 6= ∅) and refer
to closed expressions as programs. We denote8 by Λ(x̄) the set of expressions

8 Oftentimes we will write s̄ to denote a finite sequence s1, . . . , sn of symbols si.

12

with free variables from x̄ and write Λ in place of Λ(∅) (similar conventions
apply to the set of values). Finally, we write f [e/x] for the capture-free
substitution of the expression e for all free occurrences of the variable x in
the expression f .

Call-by-name evaluation contexts are expressions with a single hole [−]
defined by the grammar E ::= [−] | Ee. We say that E is closed if it has
no free variables. We write E[e] for the expression obtained by substituting
the expression e for the hole [−] in E. Redexes are programs of the form
(λx.f)e or σ(e1, . . . , en), the former producing a computation step, the lat-
ter producing the effect described by the operation σ. We notice that any
program is either a value or a program of the form E[r], for a redex r.

Operational semantics is defined by means of an evaluation function J−K :
Λ → TV mapping each program e ∈ Λ to a monadic value JeK ∈ TV . For
instance, a probabilistic program is evaluated to a subdistribution of values
(modelled via DM).

Definition 5. Define the N-indexed family of maps J−Kn : Λ → TV as
follows:

JeK0 = ⊥
JvKn+1 = η(v)

JE[(λx.f)e]Kn+1 = JE[f [e/x]]Kn
JE[σ(e1, . . . , ek)Kn+1 = σV(JE[e1]Kn, . . . , JE[ek]Kn)

The sequence (JeKn)n<ω forms an ω-chain in TV, so that we can define JeK
as

⊔
n<ωJeKn.

Example 3. Let T be DM, and let e = Y (λx.I ⊕ x), where I is the identity
combinator and Y is Curry’s fixed point combinator. Writing a distribution
as a formal sum9, for any n ≥ 1 we have JeKn =

∑n
i=1

1
2n
·I+(1−

∑n
i=1

1
2n

) ·⊥,
and thus JeK = supnJeKn = 1 · I + 0 · ⊥.

Before defining behavioural equivalences and refinements for ΛΣ, it is
useful to spell out some properties of the evaluation map J−K.

9 Any discrete distribution µ ∈ D(X) can be written as an expression of the form∑
i<ω pi · xi, where µ(x) =

∑
xi=x

pi.

13

Lemma 1. The following identities hold.

JvK = η(v)

JE[(λx.e)f]K = JE[e[f/x]]K
JE[σ(e1, . . . , ek)K = σV(JE[e1]K, . . . , JE[ek]K).

Proof. Simply observe that since σV and >>= are continuous then so is J−K.

Lemma 2. For any program e and evaluation context E, we have:

JE[e]Kn v JeKn >>= (v 7→ JE[v]Kn) JE[e]K = JeK >>= (v 7→ JE[v]K).

Proof sketch. The first inclusion can be easily proved by induction on n.
For the second identity one shows by induction on n that for any n ≥ 0
JeKn >>= (v 7→ JE[v]K) v JE[e]K holds. As a consequence, JeK >>= (v 7→
JE[v]K) v JE[e]K. Since from the first inclusion (and Lemma 1) follows
JE[e]K v JeK >>= (v 7→ JE[v]K) we conclude JE[e]K = JeK >>= (v 7→ JE[v]K).

4. Program Refinement

In this section we define a general notion of observation on top of which
we define several notions of program refinement, the latter being defined as
relations between programs. In order to qualify as a notion of a program
refinement, a relation R needs to satisfy some minimal desiderata. Clearly,
R must be a preorder. Furthermore, if eR f , then the observable behaviour
of f , which is given through our general notion of observation, must refine the
observable behaviour of e. This property is known as preadequacy. Finally,
R must respect the way programs are (syntactically) constructed, a property
known as compatibility. Notice that relying on compatibility one can show
the refinement C[e] R C[f] compositionally, by proving e R f . Summing
up, we require program refinement relations to be preadequate precongruence
relations.

Compatibility, however, requires to extend the notion of a program re-
finement to arbitrary expressions of the language. Indeed, dealing with a
λ-abstraction λx.e compositionally, requires to work with the open expres-
sion e. As a consequence, we work with relations on arbitrary expressions —
which we call open relations — rather than on programs only — which we
refer to as closed relations (see (Pitts, 2011; Gordon, 1994; Lassen, 1998)).

14

Definition 6. An open relation is a set R of triples (x̄, e, f), where e, f ∈
Λ(x̄), which is closed under weakening, meaning that (x̄, e, f) ∈ R implies
(x̄ ∪ {x}, e, f) ∈ R.

We use the infix notation and write x̄ ` eRf in place of (x̄, e, f) ∈ R and
abbreviate ∅ ` eR f as eR f . As a convention, when referring to relations
we tacitly mean open relations. There is a canonical way to extend a closed
relation to an open one.

Definition 7. The open extension of a closed relation R is the open relation
R◦ defined as follows:

x̄ ` eR◦ f ⇐⇒ ∀k̄ ∈ Λ. e[k̄/x̄]R f [k̄/x̄].

The notion of reflexivity, symmetry, and transitivity straightforwardly
extends to open relations (see e.g. (Pitts, 2011)).

Definition 8. Let R be an open relation. We say that R is:

1. Compatible if it satisfies the clauses in Figure 1.

2. Substitutive if:

x̄ ∪ {x} ` eR f ∧ x̄ ` g R h =⇒ x̄ ` e[g/x]R f [h/x].

3. Closed under substitution if:

x̄ ∪ {x} ` eR f ∧ k ∈ Λ(x̄) =⇒ x̄ ` e[k/x]R f [k/x].

Notice that the open extension of a closed relation is always closed under
substitution. IfR is a compatible preorder, we say thatR is a precongruence.

Having defined the notion of a precongruence relation, we now move to
preadequacy. As already remarked, the latter builds on a suitable notion of
observation. Intuitively, an observation is a function that takes an element
in TV representing the result of an effectful computation, and returns what
we can observe of such a computation. Following standard practice, we
assume that the observable part of a computation consists of the side effects
happened during such a computation. As a consequence, the observable part
of a computation is uniquely determined by the semantics of the (algebraic)
operations involved.

15

C-var
x̄ ` xR x

x̄ ∪ {x} ` eR f
C-abs

x̄ ` λx.eR λx.f

x̄ ` eR f x̄ ` g R h
C-app

x̄ ` eg R fh

x̄ ` e1 R f1 . . . x̄ ` en R fn C-op
x̄ ` σ(e1, . . . , en)R σ(f1, . . . , fn)

Figure 1: Compatibility clauses.

Definition 9. Let 1 = {∗} be the one element set and !X : X → 1 be the
unique function mapping each element in X to ∗. Define the observation
function ob : TV → T1 as T (!V). The map ob trivially extends to programs
as ob(e) = ob(JeK).

Proposition 1. For all monadic values ϕ1, . . . , ϕn, ω-chain (ϕn)n<ω in TV,
and value v, we have:

ob(⊥) = ⊥T (1)

ob(ηV(v)) = η1(∗)
ob(σV(ϕ1, . . . , ϕn)) = σ1(ob(ϕ1), . . . , ob(ϕn))

ob(
⊔
n<ω

ϕn) =
⊔
n<ω

ob(ϕn).

Proof. We first observe that by the very definition of monad we have ob =
>>=(η1◦ !). As a consequence, we can rely on strictness and continuity of >>=
to prove the first and last identities above. The second identity follows by
Definition 1, whereas the third one is a direct consequence of algebraicity of
operation symbols.

We can now define an abstract notion of preadequacy.

Definition 10. An open relation R is preadequate (with respect to ob) if
∅ ` eR f implies ob(e) v ob(f).

Having at our disposal the notion of a precongruence preadequate re-
lation, we can introduce a canonical precongruence preadequate program
refinement, namely Morris’ contextual approximation (Morris, 1969).

16

Definition 11. Recall that contexts are syntax trees defined by the grammar:

C ::= [−] | eC | Ce | λx.C.

As usual, we write C[e] for the result of replacing the hole [−] in C with the
expression e. Given an expression e, we say that a context C closes e, if C[e]
is a program. We denote the collection of such contexts as Cl(e). The open
relation �ctx, called contextual approximation, is thus defined:

x̄ ` e �ctx f ⇐⇒ ∀C ∈ Cl(e) ∩ Cl(f). ob(C[e]) v ob(C[f]).

Remark 1. Notice that in Definition 11 contexts are defined as syntax trees
(i.e. expressions not considered modulo renaming of bound variables), and
not as expressions. That means that when substituting an expression e for
the hole [−] in a context C, we cannot consider ordinary capture-avoiding
substitution. For instance, for C = λx.[−] we require C[x] to be λx.x (i.e. to
capture the free variable x), whereas our definition of substitution gives λy.x.
In order to be formally precise, we should then give an explicit definition
of C[e], as it is done in (Pitts, 2011). Another, elegant, possibility is to
characterise �ctx as the largest compatible preadequate relation. In fact,
under mild conditions on (algebraic) operations, it is easy to prove that
the union of all compatible preadequate relations is itself preadequate and
compatible, and thus the largest such relation (see (Dal Lago et al., 2017)).

Example 4. 1. For the maybe monad we have ob : V⊥ → 1⊥ satisfying
ob(just v) = just ∗ (and thus ob(v) = just ∗) and ob(⊥) = ⊥. Therefore,
ob(e) = just ∗ if and only e converges (notation e ⇓). As a consequence,
e �ctx f if and only if ∀C. C[e] ⇓ =⇒ C[f] ⇓.

2. For the partial nondeterministic monad PM we have

Pne(1⊥) = {{⊥}, {just ∗}, {⊥, just ∗}}

so that ob(⊥) = {⊥}, ob({just v}) = {just ∗} (and thus ob(v) = {just ∗})
and ob(etf) = ob(e)∪ob(f). We thus have ob(e) 6= {⊥} if and only if emay
converge, and ⊥ 6∈ ob(e) if and only if e must converge. As a consequence,
according to the order defined in Example 2, we have ob(e) v ob(f) if and
only e ⇓ =⇒ f ⇓.

3. For the partial distribution monad DM of Example 1 we first observe
that D(1⊥) ∼= [0, 1]. It is then easy to see that we obtain ob(⊥) = 0,
ob(δ(just v)) = 1 (and thus ob(v) = 1) and ob(e or f) = ob(e) ⊕ ob(f).

17

We see that ob(e) gives the probability of convergence of e, meaning that
e �ctx f holds if and only if for any context C, the probability of converge
of C[f] is an upper bound of the probability of convergence of C[e].

As stated in Remark 1, contextual approximation enjoys several nice prop-
erties, notably it is the largest preadequate compatible relation. For instance,
since the composition C1[C2[−]] of two contexts C1, C2 is itself a context, �ctx
is obviously compatible. Furthermore, since v is a preorder, then so is �ctx.

Before introducing applicative similarity, we define CIU approximation
(Mason and Talcott, 1991), i.e. the restriction of contextual approximation
to evaluation contexts.

Definition 12. The closed relation �ciu, called CIU approximation is thus
defined:

e �ciu f ⇐⇒ ∀E. ob(E[e]) v ob(E[f]),

where E ranges over closed evaluation contexts. As usual, we can extend �ciu
to arbitrary expressions by taking its open extension.

It is immediate to see that since any evaluation context is of the form
[−]e1 · · · en, for some programs e1, . . . , en, the relation �ciu is a trace-like
refinement which tests the applicative behaviour of programs against finite
traces of the form e1, . . . , en.

5. Applicative Similarity

In this section we define effectful applicative similarity and prove its equiv-
alence with �ciu. As already discussed in the introduction, at the very heart
of our notion of effectful applicative similarity is the shift from the ordinary
transition system of programs to the lifted transition system of ‘monadic
programs’. In order to qualify such a lifted system as an applicative system,
according to the terminology of (Abramsky, 1990), we first need to lift the
notion of an application from ordinary programs to monadic programs.

Definition 13. Let e be a program and ϕ ∈ TV be a monadic value. Define
monadic application ϕ · e ∈ TV as ϕ >>= (v 7→ JveK).

We immediately notice that JefK = JeK · f . Moreover, straightforward
calculations give the following identities:

⊥ · e = ⊥, η(λx.f) · e = Jf [e/x]K, σV(ϕ1, . . . , ϕn) · e = σV(ϕ1 · e, . . . , ϕn · e).

We can now define effectful applicative similarity.

18

Definition 14. A relation R ⊆ TV × TV is an effectful applicative simula-
tion (hereafter applicative simulation) if ϕR ψ implies:

1. ob(ϕ) v ob(ψ).

2. ∀e ∈ Λ. ϕ · eR ψ · e.

Applicative similarity �app is defined as the largest applicative simulation.
We extend applicative similarity to programs as e �app f ⇐⇒ JeK �app JfK.

Notice that applicative similarity is well-defined since the defining clauses
of applicative simulation in Definition 14 induce a monotone operator Φ on
the complete lattice 2T (V)×T (V) of binary relations on monadic values. As a
consequence, we can define applicative similarity as the greatest fixed point
of Φ. Applicative similarity being defined coinductively, it comes with an
associated coinduction principle:

ϕR ψ ∧ (R applicative simulation) =⇒ ϕ �app ψ.

Remark 2. Definition 14 gives the notion of an applicative simulation di-
rectly on monadic values, without explicitly defining the lifted transition
system of monadic values (the transition system T∗ of the introduction).
However, it is easy to see that we can lift the transition system of programs
(ev : Λ→ TV , ap : V → ΛΛ), where ev(e) = JeK and ap(λx.f, e) = f [e/x], to
the system (ev∗ : TΛ→ TV , ap∗ : TV → (TΛ)Λ), where10:

ev∗(ξ) , ξ >>= ev ap∗(ϕ, e) = ϕ >>= ap(_, e).

Proposition 2. Applicative similarity is reflexive and transitive.

Proof. The proof is by coinduction. We immediately notice that {(ϕ, ϕ) | ϕ ∈
TV} is an applicative simulation. Furthermore, we observe that if R and S
are applicative simulations, then so is R;S. In fact, ϕR ψ and ψ S ξ imply
ob(ϕ) v ob(ξ), since v is transitive. Additionally, R and S being applicative
simulations, we have ϕ · eR ψ · e and ψ · e S ξ · e, and thus ϕ · e (R;S) ξ · e,
for any e ∈ Λ.

10From a categorical perspective, our definition of lifting relies on the fact that any
monad on the category Set is strong. That means that for every monad T = 〈T, η, >>=〉 on
Set we can regard >>= as lifting any function f : X × Y → TZ to >>=f : X × TY → TZ.

19

We now prove the first of our main results, namely that �app is a trace-like
refinement, which actually coincides with �ciu. Such a result gives a coinduc-
tive characterisation of �ciu, which allows one to prove program refinement
relying on both the induction and coinduction proof principle.

Theorem 2. �app = �ciu and (�app)◦ = (�ciu)◦.

Proof. To see that �app ⊆ �ciu notice that, by the very definition of applica-
tive simulation, e �app f implies ∀k ∈ Λ. ek �app fk. As a consequence, for
any evaluation context E = [−]k̄ we have e �app f implies E[e] �app E[f],
and thus ob(E[e]) v ob(E[f]). Conversely, we prove �ciu ⊆ �app by coinduc-
tion, showing that R , {(JeK · k̄, JfK · k̄) | e �ciu f, k̄ ∈ Λ} is an applicative
simulation. Clearly R is closed under the lifting of application. Furthermore,
we see that ob(JeK · k̄) v ob(JfK · k̄), since JeK · k̄ = Jek̄K, JfK · k̄ = Jfk̄K, and
e �ciu f . Since �app = �ciu we obviously have (�app)◦ = (�ciu)◦.

Example 5. Recall that according to standard applicative similarity a pro-
gram of the form (λx.f)t (λx.f) does not simulate λx.f t g. We now prove
that this is not the case for �app as defined in Definition 14. Actually, we
can even strengthen such a result showing that for any operation symbol
such that η(∗) v σ1(η(∗), . . . , η(∗)) (lambda) abstraction distributes over σ,
i.e. λx.σ(e1, . . . , en) �app σ(λx.e1, . . . , λx.en). To see that it is sufficient to
observe that the relation

R = {(η(λx.σ(e1, . . . , en)), η(σ(λx.e1, . . . , λx.en)))} ∪ {(ϕ, ϕ) | ϕ ∈ TV}

is an applicative simulation. The clause on ob follows by hypothesis on σ,
whereas for the clause on monadic application we simply notice that

Jλx.σ(e1, . . . , en)K · k = σV(Je1[k/x]K, . . . , Jen[k/x]K) = Jσ(λx.e1, . . . , λx.en)K · k.

Finally, a similar argument shows that if σ1(η(∗), . . . , η(∗)) v η(∗), then
σ(λx.e1, . . . , λx.en) �app λx.σ(e1, . . . , en). Such a condition holds both for
the powerset and the distribution monads with the operations in Example 1,
but fails for the output monad with the print operation.

Up to this point we have introduced three notions of behavioural refine-
ment: contextual approximation �ctx, CIU approximation �ciu, and applica-
tive similarity �app. The former has been shown to be a precongruence, i.e. a
compatible preorder, whereas the latter two to coincide and to be preorders.
In the next section we show that (the open extensions of) �ciu and �app are
precongruences too, and that �ctx, (�ciu)◦, and (�app)◦ coincide.

20

6. A CIU Theorem

In this section we prove a CIU theorem (Theorem 3) stating that (the
open extension of) �ciu coincides with �ctx. In virtue of Theorem 2 we
will also obtain the equivalence between (the open extension of) �app and
�ctx, meaning that the former is fully abstract with respect to the latter.
Our proof of Theorem 3 follows (Pitts, 2011) and it is based on a variation
of Howe’s technique (Howe, 1996), the standard relational construction to
prove compatibility of applicative similarity. For readability, in the rest of
this section we write � in place of �ciu.

The main idea behind Howe’s technique is to extend � to an open relation
�H that is compatible and substitutive by construction. As a consequence,
in order to prove that �◦ is compatible, it is sufficient to prove �◦ = �H .
Proving the inclusion �◦ ⊆ �H is rather straightforward, whereas the other
inclusion requires more effort.

Definition 15. Given an open relation R, the Howe extension RH of R is
inductively defined by the rules in Figure 2. The Howe extension of a closed
relation R is defined as (R◦)H .

x̄ ` xR e
H-var

x̄ ` xRH e

x̄ ∪ {x} ` eRH g x̄ ` λx.g R f x 6∈ x̄
H-abs

x̄ ` λx.eRH f

x̄ ` eRH k x̄ ` g RH h x̄ ` khR f
H-app

x̄ ` eg RH f

x̄ ` ei RH fi x̄ ` σ(f1, . . . , fn)R g
H-op

x̄ ` σ(e1, . . . , en)RH g

Figure 2: Howe extension.

When unambiguous, we will write RH in place of (R◦)H for a closed rela-
tion R. The following result states some useful properties of Howe extension.
The proof is standard and can be found in e.g. (Dal Lago et al., 2014).

21

Lemma 3. Let R be a preorder closed under substitution. Then RH is a
compatible, reflexive, and substitutive open relation such that RH ;R ⊆ RH

and R ⊆ RH .

Since � is a preorder, and thus �◦ is a preorder closed under substitution,
by Lemma 3 (�)H is a compatible and substitutive open relation containing
�. Before proving Theorem 3, we need to extend Howe’s construction to
evaluation contexts.

Definition 16. Given an open relation R, the Howe extension RH
E of R to

(closed) evaluation contexts is defined in Figure 3.

E-nil
[−]RH

E [−]
∅ ` eRH f E RH

E F
E-app

EeRH
E Ff

Figure 3: Howe extension: evaluation contexts.

Lemma 4. Let R be a reflexive open relation. Then:

E RH
E F x̄ ` eRH f

x̄ ` E[e]RH F [f]

Proof. A straightforward induction on the derivation of E RH
E F .

Lemma 5. If E[e] �H f , then there exist an evaluation context F and a
term g such that E �HE F , e �H g, and F [g] � f .

Proof. We proceed by induction on E. If E = [−], then we take F = [−]
and g = f . The thesis follows since � is reflexive. If E is of the form Gk,
then G[e]k �H f must be the conclusion of an instance of rule H-app. As
a consequence, we have G[e] �H c, k �H h, and ch � f . By induction
hypothesis, from G[e] �H c we obtain an evaluation context H and a term
g such that G �HE H, e �H g, and H[g] � c. From the latter we infer
H[g]h � ch, and thus H[g]h � f , since ch � f and � is transitive. From
k �H h and G �HE H we infer Gk �HE Hh. We are done by taking F ≡ Hh.

The main technical part of the Howe’s method is the so-called Key Lemma.

22

Lemma 6 (Key Lemma). For all (closed) evaluation contexts E,F and pro-
grams e, f , if E �HE F and e �H f , then ob(E[e]) v ob(F [f]).

Proof. Since ob is continuous and JE[e]K =
⊔
n<ωJE[e]Kn to prove the thesis

it is sufficient to prove:

∀n < ω. ob(JE[e]Kn) v ob(JF [f]K).

We proceed by induction on n. The case for n = 0 is trivial. Let n > 0 and
suppose the thesis holds for any m < n. We proceed by case analysis on e.

Case 1. Suppose e is a value λx.k. Since e �H f , the latter must be the
conclusion of an inference of the form

{x} ` k �H h λx.h � f
H-abs

λx.k �H f

We now proceed by case analysis on E. If E ≡ [−], then F ≡ [−] too,
since E �HE F . By Proposition 1 we have:

ob(JeKn) = ob(η(λx.k)) = η1(∗) = ob(η(λx.h)) v ob(JfK),

since λx.h � f . If E is of the form [−]gḡ, then F must be of the form
[−]cc̄ with g �H c and ḡ �H c̄. Moreover, we have:

JE[e]Kn = J(λx.k)gḡKn = Jk[g/x]ḡKn−1.

From {x} ` k �H h and g �H c we infer, by substitutivity, k[g/x] �H
h[c/x]. The latter, together with ḡ �H c̄, gives k[g/x]ḡ �H h[c/x]c̄.
We can now apply the induction hypothesis obtaining

ob(Jk[g/x]ḡKn−1) v ob(Jh[c/x]c̄K) = ob(J(λx.h)cc̄K).

We can now conclude the thesis since λx.h � f implies (λx.h)cc̄ � fcc̄.

Case 2. Suppose e is of the formG[(λx.k)g]. By Lemma 5, fromG[(λx.k)g] �H
f we obtain the existence of an evaluation context H and a term h
such that G �HE H, (λx.k)g �H h, and H[h] � f . In particular,
(λx.k)g �H h must be the conclusion of an inference of the form:

23

{x} ` k �H c λx.c � d
H-abs

λx.k �H d g �H b db � h
H-app

(λx.k)g �H h

As a consequence, by substitutivity we obtain k[g/x] �H c[b/x]. Since
E �HE F and G �HE H imply E[G[−]] �HE F [H[−]] we can apply the
induction hypothesis, obtaining:

ob(JE[G[(λx.k)g]]Kn) = ob(JE[G[k[g/x]]]Kn−1)

v ob(JF [H[c[b/x]]]K)
= ob(JF [H[(λx.c)b]]K)
v ob(JF [H[db]]K)
v ob(JF [H[h]]K)
v ob(JF [f]K).

In the last inequality we have have used the following implications:

λx.c � d =⇒ (λx.c)b � db =⇒ F [H[(λx.c)b]] � F [H[db]]

and similarity for db � h and H[h] � f .

Case 3. Suppose e is of the form G[σ(c1, . . . , ck)]. We proceed exactly as
in case 2. From G[σ(c1, . . . , ck)] �H f by Lemma 5 we obtain an
evaluation context H and a term d such that H[d] � f , G �HE H, and
σ(c1, . . . , ck) �H d. The latter must be the conclusion of an inference
of the form:

ci �H bi σ(b1, . . . , bk) � d
H-op

σ(c1, . . . , ck) �H d

As in previous case we observe that E �HE F and G �HE H imply
E[G[−]] �HE F [H[−]]. Reasoning as above we can now apply the in-
duction hypothesis, obtaining:

ob(JE[G[σ(c1, . . . , ck)]]Kn) = σ1(ob(JE[G[c1]]Kn−1), . . . , ob(JE[G[ck]]Kn−1))

v σ1(ob(JF [H[b1]]K), . . . , ob(JF [H[bk]]K))
= ob(JF [H[σ(b1, . . . , bk)]]K)
v ob(JF [H[d]]K)
v ob(JF [f]K).

24

Theorem 3 (CIU). �◦ = �ctx.

Proof. To prove compatibility of � it is sufficient to show that �H restricted
to programs coincide with �. The latter amounts to show that ∅ ` e �H f
implies ob(E[e]) v ob(E[f]), for any evaluation context E. This directly
follows from Key Lemma, since E �HE E always holds. Since �◦ is obviously
preadequate, we see that �◦ ⊆ �ctx. Since �ctx ⊆ �◦ trivially holds, we
conclude �◦ = �ctx.

Corollary 1 (Full abstraction). (�ciu)◦ = �ctx = (�app)◦.

We conclude this section observing that applicative similarity, contextual
approximation, and CIU approximation being trace-like refinement, we can
straightforwardly extend Corollary 1 to their symmetric counterparts.

Corollary 2. Define applicative bisimilarity 'app, contextual equivalence
'ctx, and CIU equivalence 'ciu as �app ∩ (�app)−1, �ctx ∩ (�ctx)−1, and
�ciu ∩ (�ciu)−1, respectively, where R−1 denotes the converse of R. Then,
('ciu)◦ = 'ctx = ('app)◦.

7. Call-by-name, Call-by-value, and Call-by-need

Corollaries 1 and 2 give coinductive characterisations of contextual ap-
proximation and equivalence, respectively. Such characterisations are proved
through a CIU theorem, which takes advantage of the shape of call-by-name
evaluation contexts. It is then natural to ask whether our results can be
extended to encompass call-by-value calculi, the latter being more natural in
presence of effects.

An effectful notion of applicative bisimilarity for a call-by-value λ-calculus
with algebraic effects has been given in (Dal Lago et al., 2017), where an ab-
stract soundness theorem for it is proved. Such a notion, however, is not
fully abstract, as already observed in (Lassen, 1998) in the context of nonde-
terministic calculi. It is straightforward to see that the notion of applicative
(bi)similarity proposed in the present paper can be easily given for a call-by-
value calculus. Unfortunately, the resulting notion would not only invalidate
Corollary 1 and Corollary 2, but would also be unsound, as witnessed by
the probabilistic programs λx.(x or Ω) and (λx.x) or (λx.Ω), and the context
(λx.x(x(λy.y)))[−].

25

Another issue that we have not addressed in this work is whether our
techniques can be extended to call-by-need calculi. Concerning program
equivalence and refinement, call-by-name and call-by-need calculi are equiv-
alent in absence of computational effects (different from nontermination).
Such an equivalence breaks in presence of effects such as pure and proba-
bilistic nondeterminism, global states, and input-output. For instance, the
program (λx.x or x)((λy.y) or Ω) converges with probability 0.5 if evaluated
according to a call-by-need strategy, and with probability 0.25 if evaluated
according to a call-by-name strategy.

Although our techniques seem to scale to specific effectful call-by-need
languages (such as languages with primitives for raising exceptions), the
study of coinductive techniques for call-by-need languages with algebraic
languages is nontrivial, and we leave it for future work.

8. Conclusion and Future Work

We have shown how a notion of applicative similarity on call-by-name
effectful lambda-calculi can be defined and proved fully-abstract. This is
very much in line with logical relations as introduced in (Johann et al., 2010),
but simpler and applicable to untyped λ-calculi. The underlying transition
system has monadic values as states, and is essentially deterministic. This is
indeed the reason the framework is only applicable to call-by-name (and not
to call-by-value) calculi, in contrast with (Dal Lago et al., 2017).

As a future work, the authors would like to investigate other transi-
tion system-based techniques to obtain sound (and complete) notions of
(bi)simulations for effectful calculi. A notable result in such a direction is
(Gianantonio et al., 2009).

Abramsky, S., 1990. The lazy lambda calculus. In: Turner, D. (Ed.), Research
Topics in Functional Programming. Addison Wesley, pp. 65–117.

Abramsky, S., Jung, A., 1994. Domain theory. In: Handbook of Logic in
Computer Science. Clarendon Press, pp. 1–168.

Appel, A. W., McAllester, D. A., 2001. An indexed model of recursive types
for foundational proof-carrying code. ACM Trans. Program. Lang. Syst.
23 (5), 657–683.

Barendregt, H. P., 1984. The lambda calculus: its syntax and semantics.
Studies in logic and the foundations of mathematics. North-Holland.

26

Benton, N., Kennedy, A., Beringer, L., Hofmann, M., 2009. Relational se-
mantics for effect-based program transformations: higher-order store. In:
Proc. of PPDP 2009. pp. 301–312.

Bizjak, A., Birkedal, L., 2015. Step-indexed logical relations for probability.
In: Proc. of FOSSACS 2015. pp. 279–294.

Crubillé, R., Dal Lago, U., 2014. On probabilistic applicative bisimulation
and call-by-value λ-calculi. In: Proc. of ESOP 2014. Vol. 8410 of LNCS.
Springer, pp. 209–228.

Dal Lago, U., Gavazzo, F., Levy, P., 2017. Effectful applicative bisimilarity:
Monads, relators, and Howe’s method (long version), available at https:
//arxiv.org/abs/1704.04647.

Dal Lago, U., Sangiorgi, D., Alberti, M., 2014. On coinductive equivalences
for higher-order probabilistic functional programs. In: Proc. of POPL 2014.
pp. 297–308.

Davey, B. A., Priestley, H. A., 1990. Introduction to lattices and order. Cam-
bridge University Press.

de’Liguoro, U., Piperno, A., 1995. Non deterministic extensions of untyped
lambda-calculus. Inf. Comput. 122 (2), 149–177.

Gianantonio, P. D., Honsell, F., Lenisa, M., 2009. Rpo, second-order con-
texts, and lambda-calculus. Logical Methods in Computer Science 5 (3).

Gordon, A. D., September 1994. A tutorial on co-induction and functional
programming. In: Workshops in Computing. Springer London, pp. 78–95.
URL https://www.microsoft.com/en-us/research/publication/
a-tutorial-on-co-induction-and-functional-programming/

Goubault-Larrecq, J., Lasota, S., Nowak, D., 2008. Logical relations for
monadic types. Mathematical Structures in Computer Science 18 (6),
1169–1217.

Howe, D. J., 1996. Proving congruence of bisimulation in functional program-
ming languages. Inf. Comput. 124 (2), 103–112.

27

https://arxiv.org/abs/1704.04647
https://arxiv.org/abs/1704.04647
https://www.microsoft.com/en-us/research/publication/a-tutorial-on-co-induction-and-functional-programming/
https://www.microsoft.com/en-us/research/publication/a-tutorial-on-co-induction-and-functional-programming/

Johann, P., Simpson, A., Voigtländer, J., 2010. A generic operational
metatheory for algebraic effects. In: Proc. of LICS 2010. IEEE Computer
Society, pp. 209–218.

Jones, C., 1990. Probabilistic non-determinism. Ph.D. thesis, University of
Edinburgh, UK.

Lassen, S. B., May 1998. Relational reasoning about functions and nondeter-
minism. Ph.D. thesis, Dept. of Computer Science, University of Aarhus.

MacLane, S., 1971. Categories for the Working Mathematician. Springer-
Verlag.

Mason, I. A., Talcott, C. L., 1991. Equivalence in functional languages with
effects. J. Funct. Program. 1 (3), 287–327.

Moggi, E., 1989. Computational lambda-calculus and monads. In: Proc. of
(LICS 1989. IEEE Computer Society, pp. 14–23.

Morris, J., 1969. Lambda calculus models of programming languages. Ph.D.
thesis, MIT.

Ong, C. L., 1993. Non-determinism in a functional setting. In: Proc. of LICS
1993. IEEE Computer Society, pp. 275–286.

Pitts, A. M., Nov. 2011. Howe’s method for higher-order languages. In: San-
giorgi, D., Rutten, J. (Eds.), Advanced Topics in Bisimulation and Coin-
duction. Vol. 52 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Ch. 5, pp. 197–232.

Plotkin, G. D., Power, J., 2001. Adequacy for algebraic effects. In: Proc. of
FOSSACS 2001. pp. 1–24.

Plotkin, G. D., Power, J., 2003. Algebraic operations and generic effects.
Applied Categorical Structures 11 (1), 69–94.

Rabin, M. O., Scott, D., 1959. Finite automata and their decision problems.
IBM J. Res. Dev. 3 (2), 114–125.

28

