
02 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

WoT on The Extreme Edge (WoTTEE): Enabling W3C Web of Things for Micro-controllers / Sciullo, Luca;
Castiglione, Cristian; Trotta, Angelo; Di Felice, Marco. - ELETTRONICO. - (2022), pp. 1-6. (Intervento
presentato al convegno 2022 IEEE 8th World Forum on Internet of Things (WF-IoT) tenutosi a Yokohama,
Japan nel 26 October 2022 - 11 November 2022) [10.1109/wf-iot54382.2022.10152179].

Published Version:

WoT on The Extreme Edge (WoTTEE): Enabling W3C Web of Things for Micro-controllers

Published:
DOI: http://doi.org/10.1109/wf-iot54382.2022.10152179

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/964287 since: 2024-02-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/wf-iot54382.2022.10152179
https://hdl.handle.net/11585/964287

WoT on The Extreme Edge (WoTTEE): Enabling
W3C Web of Things for Micro-controllers

Luca Sciullo∗, Cristian Castiglione∗, Angelo Trotta∗, Marco Di Felice∗†,
∗ Department of Computer Science and Engineering, University of Bologna, Italy

† Advanced Research Center on Electronic Systems “Ercole De Castro”, University of Bologna, Italy
Emails: {luca.sciullo, angelo.trotta5, marco.difelice3}@unibo.it, cristian.castiglione@studio.unibo.it

Abstract—Edge computing has emerged as a viable approach
to minimize the latency of time-critical Internet of Things (IoT)
applications. The new frontier of research is to offload tasks di-
rectly on micro-controllers, i.e. on the same device generating the
sensory data. However, this approach requires to cope with to the
limited computational capabilities of the devices and consequently
to adapt existing techniques and tools to the extreme edge. In this
paper, we contribute to this research direction by investigating
how to enable W3C Web of Things (WoT) capabilities on
micro-controllers, for increased performance and interoperability
purposes. Given the excessive complexity of the original proposal,
we propose a revised architecture of the Web Thing (WT) that can
fit the limited resources of constrained devices while maintaining
the compatibility with the WoT standard. Then, we present
the WoTTEE framework, a software suite that supports and
facilitates the deployment, installation and monitoring of edge-
oriented WTs. Finally, we validate the operations of WoTTEE in a
small testbed and demonstrate the capability to support adaptive
IoT systems where micro-controllers are able to dynamically
switch among different IoT network protocols thanks to the
Thing Description (TD) mechanism of the W3C WoT.

Index Terms—Internet of Things, W3C Web of Things, em-
bedded systems, performance evaluation

I. INTRODUCTION

Several novel use-cases of the Internet of Things (IoT)
require to acquire and process the sensory data with strict
latency constraints [1]. For instance, autonomous robots used
in Industry 4.0 scenarios must sense the current environment,
detect the presence of possible obstacles and, in real-time,
compute an obstacle-free path towards the goal. Edge comput-
ing has emerged as a viable approach to reduce the latency in
IoT scenarios by offloading the data management tasks nearby
the data sources rather than executing them on the cloud
[2]. The new frontier of edge computing is how to execute
the tasks directly on the micro-controllers, i.e. on the same
IoT devices producing the sensory data [3]; for this reason
they are also referred as the extreme edge. While minimizing
the data acquisition latency, this approach must cope with
the limited computational and storage capabilities of the IoT
devices. Hence, additional research efforts are required to
adapt existing algorithms, techniques and tools to be executed
at the extreme edge layer. In this paper, we contribute to this
research direction by investigating how to enable W3C Web of
Things (WoT) capabilities on micro-controllers, for increased
interoperability and performance purposes.
The Web of Things (WoT) [4] denotes a wide range of

approaches aimed at mitigating the device fragmentation issue
in the IoT domain by exploiting the unifying power of Web
technologies. Among others, the WoT standard promoted by
the W3C [5] is becoming the reference solution to enable
interoperability across IoT platforms and application domains.
Using their words, “the W3C WoT architecture is designed
to describe what exists rather than to prescribe what to
implement” [5]. To this aim, any IoT device of the WoT
ecosystem is provided with a WoT Thing Description (TD),
i.e. a collection of meta-data describing how to interact with
it in terms of properties, actions and events (also called the
affordances), the protocols in use, the way to encode/decode
data, and the security mechanisms. Despite its recent appear-
ance, several studies have shown the potential of the W3C
WoT standard on different IoT markets, from automotive to
industry 4.0 [6] [7]. The standard includes the definition of a
run-time environment (also called Servient) and an application
programming interface (API) to work with the W3C Web
Things (WT), i.e. enabling software clients to publish a new
WT (WT expose) or to access the affordances of an exposed
WT (WT consume) [8]. The current W3C WoT architecture
is independent from its implementation and includes many
patterns in order to integrate any IoT device into a new
WoT ecosystem. Since the run-time functionalities are too
demanding for most of the constrained micro-controllers, the
W3C WoT architecture envisages the usage of gateways that
expose the TD on behalf of the edge device and manage the
communication with it. A drawback of this solution is the
need for additional software adapters, making the transition
of a pre-existing IoT scenario to the WoT paradigm not that
immediate. In addition, the usage of the intermediate gateway
may affect the system performance, increasing the end-to-end
latency.

In this paper, we describe the design, implementation and
validation of edge-based solutions for W3C WoT deployments.
Our solution enables the main WoT functionalities, such as
WT expose and consume operations, directly on the micro-
controllers, hence removing the need of any intermediate layer
and fitting the requirements of time-critical IoT scenarios. This
constitutes a significant advance with respect to the existing
WoT Servient implementations [9] [10], which do not support
extreme edge devices. As a result, our tool aims at increasing
the adoption of the new W3C standard by taking into account

the vertiginous growth of the IoT sensors market size1. More
in detail, we provide three main contributions in this paper:

• We propose an edge-oriented architecture of the WT in
order to reduce the computational resources required by
the Servient. The revised architecture is able to support a
significant subset of the main operations of a WT and
to guarantee WoT-compliant interactions with the WT
while taking into account the characteristics of the edge
environment in its internal implementation.

• We present WoTTEE, a software framework facilitating
the deployment and installation of a WT on a micro-
controller. Through a user-friendly graphical interface,
the user can insert the behaviour of the WT and select
the network protocols in use; the tool is in charge of
generating the firmware code that exposes the WT in
a network environment, in a guided and semi-automatic
way.

• We validate WoTTEE in a small testbed composed of
two IoT micro-controllers (ESP32), one exposing a WT
related to an ultrasonic sensor, the other working as data
collector and consuming the other WT. In addition, we
demonstrate the possibility to select the network protocol
of the WTs at run-time in order to meet the latency
requirements of the IoT application.

In [11], we presented a preliminary study on how to build
a WoT Servient for micro-controllers. The new framework
includes support for multiple protocol bindings, novel WoT
functionalities (e.g. WoT consume) and a completely revised
interface and internal implementation.
The rest of this paper is structured as follows: in Section II
we provide a brief review of the W3C WoT standard and its
components. Section III introduces the WoTTEE architecture,
while its implementation is described in Section IV. Section V
introduces the testbed and the performance evaluation. Con-
clusions and future works are discussed in Section VI.

II. RELATED WORK

The W3C Web of Things (WoT) provides a set of stan-
dardized technology building blocks that help to tackle the
fragmentation issue in the IoT landscape by following the
well-known Web paradigm [5]. Figure 1 shows the abstract
architecture of a W3C WoT scenario. Several integration
patterns such as Thing-to-Thing, Thing-to-Gateway, Thing-
to-Cloud, Gateway-to-Cloud are available in order to inter-
connect IoT devices. The core component of the W3C WoT
architecture is the Web Things (WT), which represents “an
abstraction of a physical or a virtual entity whose metadata
and interfaces are described by a WoT Thing Description”
[5]. The WT architecture is modular and includes five main
layers: (i) the behaviour, (ii) the interaction affordances, (iii)
the data schemas, (iv) the security configuration, and (v) the
protocol bindings. The first layer defines the behaviour of a

1According to BCC research (https://www.bccresearch.com/), the global
market for IoT sensors should grow with a compound annual growth rate
(CAGR) of 27.4% for the period of 2021-2026.

Fig. 1. The W3C WoT abstract architecture proposed in [5].

WT and the handlers for the interaction affordances. The latter
specify how clients should interact with the WT based on the
Property-Action-Event (PAE) paradigm: a Property represents
an internal state variable of the WT, each command that can
be invoked on the WT is mapped to an action, while each no-
tification fired by the WT is an event. The third layer contains
the Information Model, i.e., the payload structure exchanged
between the WT and the client. The fourth layer describes the
access control mechanism to the Thing’s affordances. Finally,
the protocol bindings layer describes the mapping between
the interaction affordances and the IoT network protocol in
use (e.g. CoAP). The Thing Description (TD) is a collection
of metadata describing the capabilities of a WT with respect
to the layers aforementioned, excluding the behaviour. By
default, the TD is serialized by using the JSON-LD2 language.
In addition, the WoT building blocks are implemented by a
software stack called Servient. The latter plays the crucial role
of turning a TD into a software agents. As the word suggests,
the Servient can act both as server and client. In the first case,
the Servient is responsible to expose the WT, hence enabling
the possibility for a client to interact with its properties, actions
and events. In the second case, a Servient allows to consume
an exposed WT i.e., a WT that has been instantiated by
someone else and that is ready to be used. Node-wot [9] is the
most popular Server implementation and is maintained by the
W3C working group. The framework is based on Typescript
and NodeJS hence it cannot be executed on micro-controllers
with constrained hardware resources. There exists also other
Servient implementations. For instance, we cite the WotPy [10]
tool, an experimental implementation of a W3C WoT Runtime
in Python and the Java-based implementation provided by the
Smart Networks for Urban Participation (SANE) project [12].
However, none of them supports extreme edge devices.

III. SOFTWARE ARCHITECTURE

The general architecture of a WT previously described in
Section II may require excessive computational resources for

2https://json-ld.org

Interaction
Layer

Behavior Behavior
Logic

Protocol
Templates

Interaction
Templates

Edge Thing

(a) (b)

TD
Template

Board
Templates

Fig. 2. The edge-oriented architecture of a Web Thing implemented within the WoTTEEE framework.

memory-constrained and single-thread IoT devices. For this
reason, our first research contribution was to revise the internal
architecture of the WT in order to make its design edge-
oriented. The proposed architecture is described in Section
III-A; it differs from the reference solution for the internal
building blocks and the deployment process however it allows
to expose and consume W3C compliant WTs. Then, in Section
III-B, we detail the architecture of the WOTTEE framework
that helps users in deploying, installing and monitoring the
WT on the micro-controller.

A. Edge-oriented WT Architecture

The original WT architecture considers a strict separation
of functionalities into five independent building blocks: from
the implementation perspective, they translate into differ-
ent software modules that interact each others. To reduce
such complexity, the proposed edge-oriented WT architecture
shown in Figure 2 follows a flattened design, in which the
five original layers have been reduced to two only. More in
detail, the Behaviour layer has been preserved with the original
functionality. Vice versa, the other four layers of the original
WT architecture have been grouped into a single Interaction
layer that deals with the networking capabilities of the board,
including security, data schemas, and affordances representa-
tion. At the same time, in order to guarantee compatibility
in terms of functionalities supported by the WT, we reduced
the number of software-generated behaviors that have been
coded and turned into static functionalities. For example, each
affordance has been coded into a separate endpoint/function
for each different IoT protocol. This is a major difference
with respect to the original W3C standard, where there is
a single service capable of handling different protocols for
the same affordance. While this approach increases the size
of the source code, it drastically reduces the complexity of
the internal messaging process and hence the computational
resources in use. The overall firmware generation is made via
source templates, i.e. software modules that are available in
the WOTTEE platform (see details later) and that are merged
with the user’s code in order to create the final sketch running
on the IoT device. The user’s code is referred as Behaviour
logic and includes the business logic of the IoT application

and the implementation of the affordances, e.g. the body of
the actions. We considered different kinds of source templates:

• Board templates contain the instructions required by the
sketch for being instantiated on a specific board (e.g.
include directives at the beginning of the sketch);

• Protocol templates contain the implementation of a spe-
cific network protocol (HTTP, CoAP, etc);

• Interaction templates help building the functions for
the affordances and mainly consist of the skeleton for
producing getters and setters operations for the properties
and actions of the WT;

• TD template provides the skeleton of the TD that will be
exposed by the edge device.

B. WOTTEE Framework Architecture
The WOTTEE framework is the stand-alone software that

supports the user in developing an edge-oriented WT, installing
it on a micro-controller and monitoring its data in real-time.
The architecture has been designed according to a micro-
service pattern. As shown in Figure 3, the framework is based
on two layers, i.e., the Edge layer and the Application layer;
in addition, we distinguish between Front-end and Back-end
functionalities. The Application layer includes all the services
that can be deployed also in the cloud since they not require
a direct communication with the physical device: they are the
Graphical User Interface (GUI), the Dashboard, the Core and
the storage services, namely the Database (DB) and the Object
Storage (OS). The GUI allows the user to create a new project,
modify an existing sketch through editor or HTML form, and
select the commands to run, such as start the compilation
process. Through the Dashboard service, the user can retrieve
the data stored in the Database and display them through plots.
The DB and the OS services are in charge of storing all the data
produced and consumed by the application: in the first case,
the DB stores the information required by the GUI, like the
user data, the sketches metadata, and the board settings, while
in the second case the OS service stores the sketches, hence the
source code, produced by the user. The Servient Builder (SB)
service is in charge of generating the sketches for the boards,
according to the protocol bindings and the settings chosen by
the user through the GUI and that are stored in the DB. The

ED
G

E
LA

YE
R

Graphical
User Interface

Core

Database

Object
Storage

Servient
Builder

Microcontroller
engine

A
PP

LI
C

AT
IO

N
 L

AY
ER

FRONT-END BACK-END

EXTREME EDGE

Dashboard

Fig. 3. The WoTTEE framework architecture with the edge/cloud layers and the back-end/front-end components.

Core service enables the communication between the back-
end services and the front-end ones, translating each request
coming from the user into proper commands for the other
services. Finally, at the Edge layer, the Microcontroller Engine
(ME) manages the communication between the physical device
and the rest of the framework: it is in charge of compiling and
uploading the final sketch on the target board.

IV. IMPLEMENTATION

In the following we detail the technologies that have been
used to implement the software architecture presented in the
previous Section. The GUI service is a Web application written
in Typescript and using the high-level Angular3 framework.
All settings are encoded in JSON format and handled through
the JSON editor open-source library, that automatically gen-
erates an HTML form starting from a JSON Schema and can
be easily integrated with the most popular CSS frameworks
(like Bootstrap, Spectre, Tailwind). The generated source code
can be manually modified through a dedicated editor in the
GUI, implemented with the Monaco Editor4 library; the latter
includes also the syntax highlighting and syntax checking
for several programming languages, including the C one.
Figures 4(a) and 4(b) show two screenshots of the GUI,
one related to code editing the other related to the TD-PAE
definition (more specifically, the definition of properties) with
the selection of the active protocol bindings. The Dashboard
is a Grafana5 instance, while the Core and the SB services
are Typescript programs that runs over the NodeJS engine and
written using the NestJS framework6: they expose a REST API
for interacting with the GUI and the Core respectively. While
the Core is mainly a proxy for the requests coming from/to
other services, the SB service implements a specific procedure
for generating the sketches or part of them. This is achieved
by combining the settings and the resources -retrieved by the

3https://angular.io/
4https://microsoft.github.io/monaco-editor/
5https://grafana.com/
6https://nestjs.com/

storage services- contained within the requests from the core
with source templates, that are stored in the service as plain
text files. For the storage of the sketches source code in the
OS, we use MinIO7, an open source version of the Amazon
S3 object storage, while all the other data handled by the
framework are stored in the DB service through a MongoDB8

instance. Finally, the ME service is written in Python and
implements a REST API through the usage of the Flask9

framework. The main task of this module is to compile and
upload the sketches on the selected board, and for this reason
we rely on the Pyduinocli10 library for the interaction with the
physical devices and the download of the necessary additional
board libraries required by the sketch. Each microservice has
been containerized using Docker, forming a stack that can be
easily orchestrated through Docker Swarm or Kubernates. The
deployment of the stack can be obtained in two ways: locally
-with all the services deployed on the same machine to which
the micro-controller is attached to-, or hybrid-locally -with
all the services deployed in the cloud but the ME hosted on
the same machine where physical device is available. In this
case, the host machine needs to be added to the swarm, or
alternatively, the ME can be deployed as a standalone service.

V. PERFORMANCE EVALUATION

In this Section we investigate the performance of the
WOTTEE framework and in particular its ability to support
multi-protocol data acquisition in WoT-enabled edge devices.
The scenario for the experiments is depicted in Figure 5. Our
system is composed of two IoT devices and a workstation.
The extreme edge devices are constituted by ESP32 boards11;
the first device (on the left in Figure 5) is equipped with an
ultrasonic distance sensor and is used as a sensor node, while

7https://min.io/
8https://www.mongodb.com
9https://flask.palletsprojects.com/en/2.1.x/
10https://github.com/Renaud11232/pyduinocli
11https://www.espressif.com/en/products/socs/esp32

(a) (b)

Fig. 4. Two screenshots of the WoTTEE GUI: the Figure on the left shows the code generation process, with the user-defined code and the
code imported from the source templates. The Figure on the right shows the process of TD construction, and more specifically, the definition
of the WT properties with the active protocol bindings.

the second device is used as a proxy data collector and it
is responsible for the data transmission to a server (on the
right in Figure 5). The experimental setup models a generic
Wireless Sensor Network (WSN) scenario, with extreme edge
devices sensing the environment and a network cluster-head
(CH) collecting the measurements and transmitting them to a
central database.

Fig. 5. The experimental scenario considered in our tests.

The local workstation shown in Figure 5 is used to host the
full WoTTEE framework with all the modules described in
Section III. Hence, it contains the database with the sensing
measurements and gives access to the dashboard through
which the user can visualize the collected time-series.
In the first experiment, we measure the overhead introduced
by the WoT standard to the device’s activities. We consider
the Round-Trip Time (RTT), computed as the time interval,
measured in milliseconds, from when the CH sends a data re-
quest to when it receives a response from the sensor node. We
considered two alternative deployments: (i) a WoT deployment
using the WoTTEE framework and (ii) a legacy deployment in
which we develop the firmware without the WoT paradigm. In
both cases we tested four different network protocols: HTTP,
CoAP, Web Sockets (WS), and MQTT. Figure 5 details the
WoT-enabled use-case: when the CH needs to retrieve the
sensor data from the distance sensor, it needs to consume first
the TD (shown in orange in Figure 5). As a result, the CH
is aware of the communication protocols supported by the
other device. Vice versa, in the legacy deployment, there is no
initial setup and the CH queries the sensor device directly. The
result of the comparison is depicted in Figure 6(a), measuring

the RTT index for the four communication protocols. It is
easy to notice that the overhead introduced by the WoTTEE
framework is negligible, while the choice of the IoT protocol
has a considerable impact on the latency. Based on this result,
we demonstrate the ability of a WoT-enabled device to support
multiple protocols thanks to the TD and to dynamically switch
to the preferred communication method decided by the CH.
For pure testing purposes, we used a round-robin policy
to switch among all the available IoT network protocols.
However, it is worth mentioning that any policy addressing
specific Quality of Service (QoS) requirements can be loaded
into the CH behavior. Figure 6(b) shows the outcome of the
dynamic experiment; each protocol is used for 30 seconds.
From the Figure, we can notice that the switch time from two
consecutive protocols is in the order of 2 seconds. Finally,
Figure 7 shows the Dashboard that allows the user to check
and analyze the correct operations of the deployed WSN. More
specifically, the figure shows the sensor values over time when
using a round-robin policy over the available communication
protocols.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented WoTTEE, a software framework
enabling the execution of W3C Web Things (WT) on micro-
controllers. The tool assists the user in the WT creation
and code generation processes thanks to the usage of source
templates. Consequently, it supports the main operations of
the legacy W3C WoT standard while taking into account the
constrained resources at the extreme edge. We validate the
operations of WoTTEE in a small IoT testbed. On the one
side, the experimental results demonstrate that our framework
does not introduce any performance bottleneck compared to a
legacy, non WoT-based implementation. On the other side, it
demonstrates the advantage of an edge-oriented WT solution,
such as the possibility to switch at run-time the IoT acquisition
protocol thanks to the protocol-agnostic nature of the TD. We
believe that the success of the W3C WoT initiative depends
on its wide-spread adoption from the industry and research
community, and, to this aim, the presence of a wide Software
ECO-system (SECO) of supporting tools is of paramount

(a) (b)

Fig. 6. The boxplot of the RTT for the WoTTEE-legacy comparison is shown in Figure 6(a). The average RTT when switching among the
four IoT protocols supported by WoTTEE is shown in Figure 6(b).

Fig. 7. A screenshot of the Dashboard module with the sensor data transmitted by using different IoT network protocols over time.

importance. Our research contribution goes in this direction
by facilitating the integration to the WoT scenario of micro-
controllers, whose market is one of the driving factors of the
IoT growth. There are several future research activities related
to WoTTEE. First of all, we plan to expand the list of source
templates, considering additional IoT boards (at present, we
support ESP32 and Arduino boards). Second, we plan to
extend the evaluation by considering the heterogeneous IoT
condition monitoring scenarios developed by the Arrowhead
Tools project.

ACKNOWLEDGEMENTS

This work has been funded by by the EU ECSEL Joint
Undertaking under grant agreement No 826452 (Arrowhead
Tools), within the EU Horizon 2020 research and innovation
programme.

REFERENCES

[1] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[2] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys Tutorials, vol. 22, no. 4,
pp. 2462–2488, 2020.

[3] A. Ghibellini, L. Bononi, and M. Di Felice, “Intelligence at the iot edge:
Activity recognition with low-power microcontrollers and convolutional
neural networks,” in 2022 IEEE 19th Annual Consumer Communications
& Networking Conference (CCNC), 2022, pp. 707–710.

[4] L. Sciullo, L. Gigli, F. Montori, A. Trotta, and M. D. Felice, “A survey
on the web of things,” IEEE Access, vol. 10, pp. 47 570–47 596, 2022.

[5] W3C Working Group. (2021) WoT Reference Architecture (W3C
Recommendation 9 April 2020). [Online]. Available: http://www.w3.
org/TR/wot-architecture/

[6] B. Klotz, S. K. Datta, D. Wilms, R. Troncy, and C. Bonnet, “A car as
a semantic web thing: Motivation and demonstration,” in 2018 Global
Internet of Things Summit (GIoTS), 2018, pp. 1–6.

[7] L. Sciullo, S. Bhattacharjee, and M. Kovatsch, “Bringing deterministic
industrial networking to the w3c web of things with tsn and opc ua,”
in Proceedings of the 10th International Conference on the Internet of
Things, ser. IoT ’20. New York, NY, USA: Association for Computing
Machinery, 2020.

[8] Z. Kis, D. Peintner, C. Aguzzi, J. Hund, and K. Nimura, “Web
of things (wot) scripting api,” W3C Recommendation, Nov. 2020,
https://www.w3.org/TR/wot-scripting-api/.

[9] W3C Working Group. (2019) Eclipse Thingweb node-wot. Source
repository. [Online]. Available: https://github.com/eclipse/thingweb.
node-wot

[10] A. G. Mangas and F. J. S. Alonso, “Wotpy: A framework for web of
things applications,” Computer Communications, vol. 147, pp. 235–251,
2019.

[11] L. Sciullo, I. D. R. Zyrianoff, A. Trotta, and M. D. Felice, “Wot micro
servient: Bringing the w3c web of things to resource constrained edge
devices,” in 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), 2021, pp. 161–168.

[12] “Smart Networks for Urban Participation (SANE),” 2021. [Online].
Available: https://sane.city/

