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Abstract
The problem of estimating return levels of river discharge, relevant in flood fre-
quency analysis, is tackled by relying on the extreme value theory. The Generalized 
Extreme Value (GEV) distribution is assumed to model annual maxima values of 
river discharge registered at multiple gauging stations belonging to the same river 
basin. The specific features of the data from the Upper Danube basin drive the defi-
nition of the proposed statistical model. Firstly, Bayesian P-splines are considered to 
account for the non-linear effects of station-specific covariates on the GEV param-
eters. Secondly, the problem of functional and variable selection is addressed by 
imposing a grouped horseshoe prior to the coefficients to encourage the shrinkage of 
non-relevant components to zero. A cross-validation study is organized to compare 
the proposed modeling solution to other models, showing its potential to reduce the 
uncertainty of the ungauged predictions without affecting their calibration.

Keywords  Bayesian P-splines · Generalized extreme value distribution · Horseshoe 
prior · Return levels · Stan

1  Introduction

An effective prediction of flood phenomena is crucial for protecting and managing 
territories. A rigorous hydrological approach to the problem can be profitably sup-
ported by flood frequency analysis, which is a data-based framework aimed at pro-
viding reliable estimates of expected return periods of a flood event characterized 
by a certain magnitude. When data from multiple gauging stations placed in a target 
catchment or area are included in the analysis, a regional flood frequency analysis is 
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carried out (Hosking and Wallis 1997). The main advantage of this approach is the 
possibility to borrow strength from available stations to obtain calibrated and reli-
able estimates also for ungauged locations. This task represents one of the primary 
challenges within the field of hydrology, and the use of statistical tools can be a 
crucial asset in the integration of diverse information sources (Blöschl et al. 2013). 
In the framework of regional flood frequency analysis, a pioneering approach is the 
flood index by Dalrymple (1960). Such a method is characterized by a multi-step 
procedure, where the main stages can be summarised in (i) classifying stations in 
homogeneous regions; (ii) choosing a suitable frequency distribution for the loca-
tions included in a region; (iii) estimating the distribution parameters, commonly 
relying on the L-moments algorithm. For an overview of this approach, see Hosking 
and Wallis (1997).

An alternative strategy enabling the estimation of return levels, even for ungauged 
locations, relies on modeling the sequence of yearly maxima of river discharge 
(m3/s) through a suitable distribution. This can be done by assuming that the distri-
bution parameters are dependent on covariates and other station-related factors. In 
flood frequency analysis, different distributions are suggested such as the Pearson 
III, the Log-Normal, or the Generalized Extreme Value (GEV) distributions (Mil-
lington et al. 2011). In this paper, the choice falls on the GEV distribution, which 
represents a cornerstone of extreme value theory as it is the limiting distribution of 
a sequence of scaled maxima (Coles 2001) and it is particularly general, embedding 
the Frechet, Gumbel, and Weibull distributions as special cases. The GEV distribu-
tion has already been exploited in regional flood frequency analysis, often adopting 
a Bayesian inferential approach. For example, Thorarinsdottir et al. (2018) use it to 
study floods in Norway, including in the analysis of some features of the stations 
and the related sub-catchments. A similar modeling strategy is also set by Jóhannes-
son et al. (2022), which propose a computationally efficient procedure for its esti-
mation, exploiting the representation of the model as a generalized latent Gaussian 
model. They also include in the predictors spatially structured random effects, as 
done, among the others, by Dyrrdal et al. (2015) and Geirsson et al. (2015) in mod-
eling precipitation extremes. This model architecture is also used, for example, by 
Huerta and Sansó (2007) to analyze Ozone concentration extremes, Lee et al. (2013) 
to model wind data, and Räty et  al. (2022) for sea levels. A limitation of such a 
strategy is caused by the conditional independence assumption among stations: this 
allows only to predict marginal return levels. If multivariate return levels are needed, 
a max-stable modeling framework should be pursued (Asadi et al. 2015).

In flood frequency analysis, this class of GEV regression models generally 
assumes linearity among the covariates and parameters. This could represent an 
important restriction in the analysis of complex environmental processes that can 
be relaxed by defining flexible models based on spline regression. In this paper, the 
setting of Bayesian P-splines by Lang and Brezger (2004) is adopted. Its conveni-
ence is due to the parsimonious parameterization brought by the usage of basis func-
tions and the automatic penalization for roughness induced by the use of smoothing 
priors for splines coefficients (Fahrmeir et  al. 2010). Räty et  al. (2022) proposed 
their usage in modeling sea level extremes. Other examples of extreme values mod-
els that include spline regressions can be found in Lee et al. (2013), which exploited 
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Bayesian multivariate adaptive regression spline in modeling extreme loads in 
wind turbines and Yousfi and Adlouni (2017) which discuss and compare different  
penalization methods for B-splines. Lastly, it is worth mentioning the body of  
literature focusing on frequentist spline models, such as Chavez-Demoulin and 
Davison (2005), Padoan and Wand (2008) and Rohmer et  al. (2021), for which  
interesting computational tools are also provided (e.g., the evgam package available 
for R, Youngman 2022).

In this paper, data from stations located in the Upper Danube River basin are ana-
lyzed with the aim of carrying out a regional flood frequency analysis. The explora-
tory analysis pointed out that the relationship between station-specific covariates 
and the GEV parameters is strongly non-linear, motivating the proposal of a GEV 
regression model with Bayesian P-splines. In this framework, another interesting 
problem is the selection of relevant regressors. For example, Dyrrdal et al. (2015) 
carry out this step through a Bayesian model averaging step in a regional flood fre-
quency analysis model that assumes linearity. The use of P-splines poses an addi-
tional problem of function selection, in order to obtain a model with only relevant 
covariates showing a parsimonious representation of their effect, i.e., their impact on 
parameters. This task was tackled by Scheipl et al. (2012), which proposed a particu-
lar formulation of spike-and-slab prior that hierarchically performs both the selec-
tion steps at once. An interesting prior distribution that is able to mimic the behavior 
of the spike-and-slab prior is the horseshoe (HS, Carvalho et al. 2010 ), which does 
not introduce discrete latent variables and, for this reason, it is also implementa-
ble within the popular Stan probabilistic language (Carpenter et al. 2017). The HS 
prior can be extended to define a grouped HS prior (Xu et al. 2016) that is able to 
perform both variable and functional selection. Such a prior distribution is adopted 
for the coefficients involved in the GEV regression with P-splines and its effective-
ness in improving the predictions of return levels for ungauged locations is discussed 
by means of a cross-validation study.

The rest of the paper is organized as follows. Section 2 contains an introduction 
to extreme value theory and the GEV distribution, setting also basic notations. The 
Danube data are introduced in Sect.  3, together with an exploratory analysis that 
motivates the development of the proposed modeling solutions, which are defined 
in Sect. 4. The empirical results coming from a cross-validation study and from the 
analysis of the whole dataset are shown in Sect. 5, whereas Sect. 6 offers some con-
cluding remarks.

2 � Basic concepts of extreme value theory

When the main interest of a statistical procedure is to describe a phenomenon 
through quantities strongly related to the tails of the distribution, then it is necessary 
to resort to the extreme value theory. In this branch of statistics, two main approaches 
can be pursued: block maxima and peak-over-threshold (Coles 2001; Beirlant et al. 
2004). The first strategy considers the maxima of a time block sequence, which are 
used to estimate the parameters of the assumed distribution: the most common is the 
GEV distribution, but other proposals such as the Log-Normal, the Pearson III and 
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the Log-Pearson III distribution are largely used in flood frequency analysis. The 
second procedure is constituted by two steps: i) a threshold above which observa-
tions are considered to be extremes is selected; ii) the threshold exceedances are 
used to estimate the parameters of a Generalized Pareto distribution, that can be 
shown to be connected with the GEV. In this framework, alternative strategies are 
available in the literature: among the others, Bačová-Mitková and Onderka (2010) 
proposed a Weibull distribution instead of the Generalized Pareto and many studies 
investigate the use of mixture models (see Pan et al. 2022, for a review).

In this paper, the block maxima approach is adopted, and the GEV distribution 
is used as a foundation for the proposed statistical procedure. According to the 
Fisher–Tippett–Gnedenko theorem, the GEV distribution arises as the limiting dis-
tribution of a sequence of normalized block maxima related to a stationary series, 
and, hence, plays a relevant role in this framework. Indeed, this probabilistic result 
is exploited in extreme value theory, assuming that a sequence of recorded maxima 
over T distinct temporal blocks (e.g. years or days), denoted by yt, t = 1,… , T  , is 
distributed as

Such a distribution is ruled by three parameters: � ∈ ℝ controls the location, � ∈ ℝ
+ 

the scale and � ∈ ℝ the shape, affecting the behavior of the distribution tails and, 
consequently, its support. In particular, 𝜉 < 0 implies a short and finite right-tail 
( yt ∈ (−∞;� − �∕�] ), � = 0 a light right-tail ( yt ∈ ℝ ) and 𝜉 > 0 a heavy right-tail 
( yt ∈ [� − �∕�,+∞) ). In the latter case, � has an impact also on the existence of the 
distribution moments: the moment of order � is finite if 𝜉 < 1∕𝜌 . The GEV distribu-
tion is usually defined through its cumulative distribution function:

where [g]+ = max(g, 0).
In the statistical analysis of extremes, the most typical output is the estimation 

of return levels associated with a return period R. It is defined as the quantile Qp 
that has a probability equal to p = 1∕R of being exceeded in the chosen time block. 
In other words, the return level Q1∕R is expected to be surpassed once every R time 
blocks and, under the assumption of stationarity over time, it is defined inverting the 
(2) as

Once the probabilistic setting is defined, some remarks about the inferential side of 
the problem are worthy. In this paper, a Bayesian approach is adopted: it is becom-
ing increasingly popular in extreme value statistics thanks to the possibility of elic-
iting prior information and the natural ability to estimate the model uncertainty, 

(1)yt|�, �, �ind∼GEV(�, �, �), ∀t.

(2)F(y;�, �, �) =

⎧
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propagating it in distinct steps of the analysis (Coles and Powell 1996; Coles 2001). 
For example, making inference on return levels (3) requires combining the three dis-
tribution parameters that need to be estimated: if the Bayesian approach is chosen 
and Monte Carlo Markov Chain (MCMC) methods are exploited, then draws from 
the parameters posterior can be combined to obtain the whole posterior distribution 
of Q1∕R . Once the posterior distribution becomes available, several summary statis-
tics can be computed, including the mean for point estimates, the standard deviation 
as a measure of dispersion, and quantiles to construct credible intervals. It is worth 
noting that analogous computations can be performed within a frequentist inferen-
tial framework using approximations, such as the Delta method, and computational 
tools like parametric and non-parametric bootstrap methods.

3 � Data on Danube river basin

The proposed strategy targets the estimation of return levels for the discharge of riv-
ers belonging to the Danube upper basin (i.e. the part located both in Germany and 
Austria). The analysis considers data that are freely available from different sources 
to propose a general procedure that can also be replicated in other river basins. In 
this section, the sources of information considered in the analysis are listed, together 
with some remarks about the data integration procedure.

The response variable required for implementing a flood frequency analysis is 
the river discharge, usually measured in m3∕s . The time series with daily river dis-
charge observations are retrieved from the GRDC portal (The Global Runoff Data 
Centre 1988), selecting all the gauging stations present in the area under study. To 
determine the final set of locations, some data quality and reliability checks are per-
formed: by focusing on the period 1985–2017, only stations with a maximum of 2% 
daily missing observations in each year are selected. Furthermore, the coordinates 
of the gauges should correctly locate on the river network to avoid location incon-
sistencies and possible mismatches. The shapefiles with the network of main rivers 
in the basin are retrieved from the River Network Database (Copernicus Programme 
2020). The final database is constituted by yearly maxima from S = 62 stations that 
satisfied the aforementioned requirements (Fig. 1). The yearly maxima are denoted 
as yst , referring to the gauging station s = 1,… , 62 in the year t = 1,… , 33 . For 
brevity, ys indicates the vector of maxima related to a single station s.

River discharge values are complemented by station-specific auxiliary variables, 
that are listed in Table 1. To carry out the proposed analysis, certain features of the 
catchment area, typically taken into account in flood frequency analysis, are incor-
porated into the study. These characteristics are chosen to encompass various factors 
that might influence the flooding process, and it is important to note that the list can 
be adapted to account for specific features of the basin, as briefly described in what 
follows. Most of the considered variables are derived from the EU Digital Elevation 
Model (EU-DEM, Copernicus Programme 2016), starting from the determination of 
stations sub-catchments through GIS-based tools within the whitebox R package 
(Lindsay 2016). The spatial location is accounted for by latitude and longitude, the 
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sub-catchment area is an important measure directly related to the river discharge 
magnitude, whereas the features of the terrain characterizing the sub-catchment are 
computed by averaging indicators derived from the EU-DEM in the area (elevation, 
slope and aspect). In addition, the average rainfall (O’Donnell and Ignizio 2012) and 
the proportion of area covered by buildings (from CORINE land cover raster, Buch-
horn et al. 2020 ) are considered. The final dataset is provided in the Supplementary 
material.

3.1 � Exploratory analysis

This section presents the results of an exploratory analysis aimed at elucidating the 
primary motivations for the modeling strategies discussed in the paper. A two-step 
analysis is performed: firstly, a GEV distribution is fitted on the maxima sequences 
ys registered at each station s: yst

ind
∼GEV(�s, �s, �s), ∀t . Then, the estimates of the 

GEV parameters are used as responses in Bayesian semi-parametric additive mod-
els, to investigate how they are influenced by the station-specific covariates.

In the first step, S = 62 station-specific GEV models are fitted adopting the 
Bayesian approach. To retrieve the posterior distributions of the parameters, the 
model specification must be completed by choosing prior distributions. Given the 
exploratory purpose of this step, non-informative priors on the parameters are set; 
namely, zero mean Gaussian distributions with scale 10,000 for �s and log(�s) , 
and a standard normal for the shape parameter �s . Samples from the posterior 
distribution of the GEV parameters are drawn using an MCMC algorithm imple-
mented in Stan (Carpenter et al. 2017) via its R interface, rstan (Stan Devel-
opment Team 2023). As point estimates, the posterior means are then computed 
and are denoted as (𝜇s, 𝜎s, 𝜉s), ∀s.

The first goal of this exploratory step is to assess whether the multivariate link 
function proposed in Jóhannesson et  al. (2022) is reasonable for the discussed 
application. They propose to link the covariates to three transformations of the 
original set of GEV parameters, namely

Table 1   Station-specific covariates used in the analysis

Covariate Description Source Transformation

Latitude Station latitude GRDC Identity
Longitude Station longitude GRDC Identity
Area Area of the station sub-catchment EU-DEM Logarithm
Elevation Mean terrain elevation EU-DEM Logarithm
Slope Mean slope EU-DEM Logarithm
Aspect Mean aspect of slopes EU-DEM Identity
Cover Proportion of built areas CORINE Identity
Rainfall Mean annual rainfall WorldClim Logarithm
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The function applied to the shape parameter, denoted as h(�s) , is characterized by 
the expression:

with specific coefficients (a�, b�, c�) = (0.062376, 0.39563, 0.8) . The purpose of 
this transformation is to confine the range of �s within the interval (−0.5, 0.5) while 
maintaining an approximately linear relationship with �s around zero. This domain 
restriction ensures that the variance of the GEV distribution is finite (when 𝜉s < 0.5 ) 
and that the upper bound of the distribution remains greater than �s + 2�s (when 
𝜉s > −0.5 ). Within this range, the regularity conditions required for the existence 
of maximum likelihood estimators are also met ( 𝜉s > −0.5 ). Importantly, this lower 
bound should not pose a limitation in flood frequency analysis, as negative val-
ues for the shape parameter are rarely observed in practice (Martins and Stedinger 
2000). It is worth noting that while the shape parameter is typically directly linked 
to the predictor, its limited range of commonly assumed values suggests that appro-
priate link functions can not only highlight how covariates may influence it but also 
stabilize the estimates. Nevertheless, alternative transformations have been recently 
proposed, such as a logit function truncated to restrict the domain of �s to the inter-
val (−1, 0.5) (mgcv package, Wood 2017). Lastly, it is important to emphasize that 
the subsequent developments discussed in this paper remain applicable even if a dif-
ferent link function is chosen.

Figure 2 reports the distributions of the estimated GEV parameters, which are 
contained in the following vectors: �̂ = (𝜇̂1,… , 𝜇̂S)

⊤ , �̂ , �̂ . We first note that all 
the MCMC draws from the posteriors of �s, ∀s , are positive, and the distribution 
of �̂ is markedly skewed. For this reason, modeling the logarithmic transforma-
tion of the location parameter might be useful to reduce the skewness, noting that 
the implied positivity assumption is not restrictive. Furthermore, Pearson’s lin-
ear correlation between log(�̂) and log(�̂) is 0.987: consequently, modeling the 

(4)g(𝜇s, 𝜎s, 𝜉s) =
(
𝜓s = log(𝜇s), 𝜏s = log(𝜎s∕𝜇s),𝜙s = h(𝜉s)

)⊤
, ∀s.

(5)h(�s) = a� + b� log
{
− log

[
1 − (� + 0.5)c�

]}
,

Fig. 1   Gauging stations of the Danube upper basin included in the analysis
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functional �s = log
(
�s∕�s

)
 as dispersion parameter in place of �s is convenient to 

reduce the dependency between model parameters. Lastly, the restricted interval 
for �s appears to be justifiable as only four stations show an estimate 𝜉s higher 
than 0.5.

In the second step of the analysis, the transformations of GEV parameters 
estimates, i.e. log(�̂) , log(�̂∕�̂) and h(�̂) , are used as responses in three distinct 
Bayesian Gaussian additive models implemented by the stan_gamm4() func-
tion of the rstanarm package (Goodrich et al. 2022). All the covariates sum-
marized in Table 1, transformed according to the reported function, are included 
in the model as smooth terms through a Bayesian P-spline representation. This 
choice is motivated by the presence of non-linear relationships among the covari-
ates and the target parameters (e.g., see Fig. 3). The exploration of the posterior 
results supports the choice of specifying smooth effects for the covariates. The 
residuals of the fitted additive models are studied in order to check if a residual 
spatial trend can be detected (Cooley et  al. 2007). The variograms reported in 
Fig. 4 are related both to the model with all the covariates (Full) and the model 
without covariates (Null) and they do not point out a relevant residual spatial var-
iation when the full model is considered.

For these reasons, our modeling proposal focuses mainly on the presence of 
non-linear relationships among the transformations of the GEV parameters and 
the covariates included in the analysis. On the other hand, the inclusion of spa-
tially structured random effects is omitted to keep the model as simple as pos-
sible, pointing the attention on the implementation of Bayesian semi-parametric 
GEV models.

Fig. 2   Histograms of posterior means for the station-specific GEV parameters

Fig. 3   Effect of the logarithm of the elevation on the transformed parameters estimates log(�̂) , log(�̂∕�̂) 
and h(�̂)
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4 � The proposed modeling framework

Let us consider that a collection of N maxima yst from s = 1,… , S gauging stations 
are available for blocking times t = 1,… , T . It is assumed that, conditionally on site-
specific parameters, the maxima are distributed as:

The assumption of conditional independence represents a simplification but it is a 
quite standard one in the extreme value literature when marginal return levels need 
to be estimated (Dyrrdal et al. 2015; Thorarinsdottir et al. 2018; Jóhannesson et al. 
2022). Alternatively, max-stable spatial processes can be considered, even if the 
complexity of the modeling framework sensibly increases (Asadi et  al. 2015). As 
already hinted in Sect. 3.1, the multivariate link function proposed in Jóhannesson 
et al. (2022) and reported in equation (4) is adopted, to obtain transformed param-
eters that are convenient to specify regression models for. To simplify the notation, 
the station-specific transformed parameters are stored in the following vectors: 
� = (𝜓1,… ,𝜓S)

⊤ , � = (𝜏1,… , 𝜏S)
⊤ and � = (𝜙1,… ,𝜙S)

⊤.
If a linear relationship between covariates and the parameters is assumed, the fol-

lowing latent regression models are specified:

where the design matrix X = [x∙1 ⋯ x∙M] ∈ ℝ
S×M contains the standardized covari-

ates x∙m ∈ ℝ
S, m = 1,… ,M . The standardization procedure is carried out without 

loss of generality in order to have zero mean and unit standard deviation. Each pre-
dictor, related to the generic parameters vector � ∈ {� , � ,�} , is constituted by an 
overall intercept �0� and a linear regression with coefficients stored in �� ∈ ℝ

M . A 

(6)yst|�s, �s, �s
ind
∼GEV(�s, �s, �s), ∀s, t.

(7)

� = 1S�0� + X�� + u� ;

� = 1S�0� + X�� + u� ;

� = 1S�0� + X�� + u�;

Fig. 4   Variograms for the residuals of the models fitted with (Full) or without (Null) covariates on the 
transformations of the GEV parameters
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vector of station-specific unstructured random effects u� ∈ ℝ
S completes the equa-

tion, to account for possible residual variation. To keep the notation simple, all the 
model equations in (7) contain the same covariates, as will be the case in the appli-
cation, but this assumption can be easily relaxed.

The model specification must be completed by setting prior distributions for the 
parameters. Firstly, weakly informative Gaussian priors are assumed for the coeffi-
cients. To account that the transformed GEV parameters have different magnitudes, 
they are calibrated by exploiting the results from the exploratory analysis of Sect. 3.1. 
More in detail, following the advices from the rstanarm package (Goodrich et al. 
2022), the following prior is set for the intercepts:

where m𝜃̂ and s2
𝜃̂
 are the mean and the variance of the generic vector of fitted param-

eters �̂ . Recalling that the covariates are standardized, independent zero-mean 
Gaussian priors with equal scales are specified for the regression coefficients:

Lastly, focusing on the vector of unstructured random effects, a spherical multivariate 
Gaussian prior with scale parameter �� is set:

where N+(⋅, ⋅) indicates an half-Normal distribution. It is worth noting that the prior 
specification strategy described so far exclusively includes Gaussian priors for the 
predictor parameters, thereby defining a Generalized Latent Gaussian Model. This 
same assumption underpins the modeling formulations introduced in the subsequent 
paragraphs.

4.1 � GEV regression with Bayesian P‑splines

When the evidence of non-linear relationships between covariates and responses 
is pointed out, it is natural to extend the linear models in (7) by allowing for flexible 
regression terms. Among the possible strategies, the Bayesian P-splines method by 
Lang and Brezger (2004) is implemented:

(8)𝛽0𝜃 ∼ N

(
m𝜃̂ , 2

2s2
𝜃̂

)
,

(9)��m ∼ N
(
0, 22

)
, m = 1,… ,M.

(10)u�|�� ∼ NS(0, �
2
�
IS), �� ∼ N

+(0, 22), � ∈ {� , �,�};

(11)

� = 1S�0� +

M∑
m=1

Bm�� ,m + u� ;

� = 1S�0� +

M∑
m=1

Bm��,m + u� ;

� = 1S�0� +

M∑
m=1

Bm��,m + u�.
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The predictors are characterized by the sum of M flexible regression terms defined 
as the product of a matrix Bm ∈ ℝ

S×K of cubic B-spline basis functions evaluated at 
K knots, multiplied by a vector of associated coefficients ��m ∈ ℝ

K . In the P-splines 
approach, the smoothness of the fitted effect is encouraged by setting a second-order 
random walk prior on the splines coefficients:

The matrix K� has rank K − 2 and it is a precision matrix describing a second-order 
random walk, whereas ��m is a scaling parameter. Due to the rank deficiency of 
the precision matrix, the prior is improper and the specification of linear constraints 
might be required. To better understand the features of the P-splines setting, the rep-
resentation of the (11) as a mixed model could be useful.

4.1.1 � Mixed model representation

The linear predictors defined in (11) can be reparameterized by exploiting the spec-
tral decomposition of BmK

−
𝛾
B⊤

m
 , i.e. the covariance matrix of Bm��m . The model 

representation defined in the following is particularly suitable to perform functional 
selection since the structured and improper prior on the spline coefficients in (12) is 
traced back to a proper spherical Gaussian prior on coefficients, associated with a 
matrix of orthonormal basis (Scheipl et al. 2012).

To set the notation, the spectral decomposition is defined as:

where �+ ∈ ℝ
(K−2)×(K−2) is a diagonal matrix containing the non-null eigenval-

ues, U+ ∈ ℝ
S×(K−2) is the orthogonal matrix with the associated eigenvectors and 

U0 ∈ ℝ
S×(R−K+2) contains the eigenvectors that span the null space of BmK

−
𝛾
B⊤

m
.

Combining the prior in (12) and the spectral decomposition (13), it is possible to 
split the generic flexible term Bm��m into a penalized component and an unpenalized 
one:

The unpenalized part is constituted by the term x∙m��m and it is strictly related to 
the null space of the structure matrix that defines the prior assumed for the splines 
coefficients. Indeed, under the considered second-order random walk, a polynomial 
of order one in the covariate is required, i.e. a constant term (already included in 
the overall intercept) and a linear trend on the covariate. Concerning the penal-

ized component, B̃m = U+�

1

2

+ ∈ ℝ
S×(K−2) determines a matrix of orthonormal 

basis and �̃𝜃m ∈ ℝ
K−2 constitutes the vector of related splines coefficients. Due to 

the orthogonalization procedure, such vector of coefficients has a spherical prior: 

(12)��m|��m ∼ NK(0,�
2
�m
K−

�
), ��m ∼ N

+(0, 22), ∀m; � ∈ {� , �,�}.

(13)BmK
−
𝛾
B⊤

m
=
[
U+ U0

]⊤ [�+ 0

0 0

] [
U+ U0

]
= U+�+U

⊤

+
,

Bm𝜸𝜃m = x∙m𝛽𝜃m + B̃m𝜸̃𝜃m.
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�̃𝜃m|𝜔𝜃m ∼ NK−2(0,𝜔
2
𝜃m
IK−2) . Hence, linear predictors in (11) can be expressed in 

the following way:

The model specification can be completed by the already discussed priors (8), (9) 
and (10), whereas for the scaling parameter ��m the same prior of equation (12) can 
be set. In this way, a standard Bayesian P-splines model can be implemented, even if 
only proper priors are specified.

4.1.2 � Variable selection: the grouped HS prior

When several covariates are available and their relationships with the modeled latent 
parameters are unknown, it can be useful to set a prior distribution that is able to 
shrink the non-relevant regressors to zero. Scheipl et  al. (2012) proposed to use 
spike-and-slab priors for functional selection. The behavior of such priors is also 
mimicked by the HS priors, which have been proposed in a hierarchical version to 
deal with shrinkage of grouped regression terms (Xu et al. 2016). Since all the coef-
ficients related to a covariate can be considered to form a group, a grouped HS prior 
appears suitable to be applied in this framework, rearranging the model in (14) to

where Zm = [x∙m B̃m] ∈ ℝ
S×(K−1) and �𝜃m =

(
𝛽𝜃m, �̃𝜃m

)
∈ ℝ

K−1 . To implement the 
grouped HS prior, the following hierarchy is necessary:

where �𝜃m =
(
𝛿𝜃1m,… , 𝛿𝜃(K−1)m

)⊤ and C+(⋅, ⋅) denotes an half-Cauchy distribution. 
The parameter �� represents the global scale of the regression coefficients. For this 
reason, its prior scale is set equal to the standard deviation of posterior estimates 
obtained from the station-specific exploratory GEV models, to account for the dif-
ferent magnitudes of the modeled quantities. The prior hierarchy is completed by a 
covariate-specific scale ��m that controls the relevance of the whole effect and the 
coefficient-specific parameter ��km.

4.2 � Posterior inference and model comparison

As previously mentioned, an MCMC approach is adopted to draw B samples from 
the posterior distributions of the model parameters, by exploiting the Stan 

(14)𝜽 = 1S𝛽0𝜃 + X𝜷𝜃 +

M∑
m=1

B̃m𝜸̃𝜃m + u𝜃 .

(15)� = 1S�0� +

M∑
m=1

Zm��m + u� ,

(16)

�𝜃m|�𝜃m, 𝜆𝜃m, 𝜂𝜃 ∼ NK−1(0, 𝜂
2
𝜃
𝜆2
𝜃m
diag[�𝜃m]), m = 1,…M;

𝛿𝜃km ∼ C
+(0, 1), k = 1,… ,K − 1; m = 1,…M;

𝜆𝜃m ∼ C
+(0, 1), m = 1,…M;

𝜂𝜃 ∼ C
+(0, s𝜃̂);



727

1 3

Environmental and Ecological Statistics (2023) 30:715–739	

probabilistic language. In the Supplementary material, the code for implementing 
the discussed models is provided. After obtaining draws from the posteriors of the 
basic parameters, it is possible to consequently retrieve posterior distributions of 
other useful quantities. More in detail, it is possible to have the posterior for the 
generic GEV parameter related to station s: �s|y . If the interest is on an out-of-sam-
ple location s′ , such quantity cannot be computed due to the presence of the station-
specific random effect term. To propagate the uncertainty, it is possible to obtain a 
prediction of the GEV parameter defined as 𝜃s� |y =

(
𝛽0𝜃 + f (xT

s�∙
) + ũ𝜃

)|y . The func-
tion of the covariates f (xT

s�∙
) depends on the kind of model that is analyzed (linear or 

spline regression) and the b-th replicate of random effect term is generated as 
ũ
(b)

𝜃
∼ N

(
0, 𝜅2

𝜃

(b)
)
 , where �2

�

(b) is the b-th draw from �2
�
|y . The samples from �s|y or 

𝜃s′ |y can be combined by following the (3) to have posterior distributions of the 
return period denoted with Q1∕R,s|y or Q̃1∕R,s� |y for the estimated and the predicted 
ones, respectively.

The posterior predictive distribution is another important quantity for making 
predictions and model assessments. It is possible to recover a random sample from 
it by exploiting the MCMC posterior samples of GEV parameters. In particular, the 
b-th replicate from the posterior predictive yrepst |y,∀s, t, is obtained generating from: 
y
rep

st

(b)
∼ GEV(�(b)

s
, �(b)

s
, �(b)

s
) . Similarly, the posterior predictive distributions for out-

of-sample stations, denoted as ỹrep
s�t
|y,∀s�, t , can be drawn relying on the posteriors 

𝜃s′ |y.
The posterior predictive distribution constitutes the pillar of several model per-

formance evaluation tools that are listed hereafter. In particular, as shown in the 
next section, a cross-validation study is carried out to assess and compare the per-
formances of the models. The quantities that are introduced in the following are 
computed by relying on the posterior predictive ỹrepst |y−s , i.e., obtained after fitting a 
model without observations from station s.

To evaluate the calibration of predictions produced by Bayesian models, the 
probability integral transforms (PIT) are widely used (Dawid 1984). In particular, 
they are defined as

i.e. the cumulative probability of the posterior predictive distribution up to the 
observed value yst . If the model predictions are calibrated, PIT values follow a uni-
form distribution. Bayesian p-values constitute another useful posterior predictive 
check. They can be flexibly defined, depending on the inferential goal characterizing 
the procedure. In extreme value estimation, GEV quantiles represent an important 
target quantity, since they determine return levels. For this reason, station-specific 
Bayesian p-values are defined for a given return period R:

(17)PITst = ℙ
[
ỹ
rep

st < yst|y−s
]
,

(18)P-valR,s = ℙ
[
Q̃1∕R,s < q1∕R(ys)|y−s

]
,
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where q1∕R(ys) is the sample quantile of the maxima of station s (computed using 
Definition 6 from Hyndman and Fan 1996). In this case, good model performances 
are underlined by values of P-vals nearby 0.5.

Lastly, the continuous ranked probability score (CRPS) is largely used to evalu-
ate the probabilistic predictions under continuous densities, even in the extreme val-
ues literature (Friederichs and Thorarinsdottir 2012). It is a score computed specifi-
cally for each observation yst and it is indicated with CRPS(yst) , and the R package 
scoringRules can be exploited to evaluate it (Jordan et al. 2019). Note that the 
model showing lower scores is preferable in terms of calibration and sharpness of 
the predictions.

5 � Application

The modeling strategies described in Sect. 4 are applied to the Danube basin data 
introduced in Sect. 3. In particular, results about three different Bayesian models are 
compared: the one assuming linear effects for the covariates, labeled as Linear and 
defined by equations in (7), the basic P-spline model of (11), labeled as Splines, and 
its extension to automatically perform model selection through grouped HS priors 
(labeled as Splines-HS).

To assess the performances of the considered models, results from a folded cross-
validation study are reported in Sect. 5.1, whereas the outcomes from the analysis 
carried out on the full dataset are discussed in Sect. 5.2.

5.1 � Cross‑validation study

The whole set of S = 62 stations is randomly partitioned into G = 31 groups con-
stituted by a couple of stations each. A folded cross-validation study is executed, 
by repeatedly fitting the 3 compared models and excluding a couple of stations at 
each iteration. The quantities introduced in Sect. 4.2, particularly PIT and CRPS, are 
evaluated for the out-of-sample stations.

A first indication from the folded cross-validation study concerns the stabil-
ity of the estimates with respect to the removal of stations. Given that the models 

Fig. 5   Box-plots of the G = 31 posterior means from the cross-validation compared to the estimate 
obtained in the model fitted with all the stations (red dotted lines)



729

1 3

Environmental and Ecological Statistics (2023) 30:715–739	

are characterized by different parameterizations, the intercepts �0� are taken into 
consideration for this aspect. Figure  5 compares the distributions of the posterior 
means obtained in the 31 runs (via box-plots) to the estimates of the intercepts in 
the models fitted considering all the stations (red dotted lines). The estimation of 
such parameters seems to be stable: the estimates obtained using the full dataset are 
often close to the median of the distribution and, in general, are included within the 
boxes. The only exception concerns the � parameter under Linear, remaking that 
such parameter is also characterized by evident differences in the estimates across 
the models. This could be expected due to the difficulties in identifying the shape 
parameter.

The calibration of the predictions produced by the compared models is firstly 
evaluated by exploring the distribution of PITst , recalling that a uniform distribution 
is required for a calibrated model. The kernel densities are shown in Fig. 6, compared 
with the expected uniform distribution. In the models including flexible regression 
terms (Splines and Splines-HS), PIT distributions are more compliant with the uni-
form when compared to the Linear model, where the excess of values far from 0 or 
1 is more evident. The visual interpretation is supported by the outcomes of the Kol-
mogorov-Smirnov test, which assesses the null hypothesis that the set of PIT values 
conforms to a Uniform distribution. Indeed, considering a significance level of 0.05, 
the null hypothesis is not rejected for Splines and Splines-HS models (p-values equal 
to 0.07 and 0.20, respectively) and it is rejected under the Linear model (p-value of 
0.01). Another indication about the calibration of predictions can be deduced from 
the Bayesian p-values P-valR,s . To summarise them, P-val∗

R
 denotes the proportion 

of Bayesian p-values far from the extremes, i.e. included in the interval (0.05, 0.95). 
Selecting R =20, P-val∗

R
 is equal to 0.84 for Splines, 0.84 for Splines-HS and 0.85 

for Linear; concerning R =30, a value of 0.87 is observed for Splines, and 0.92 for 
Linear and Splines-HS. In summary, all three models demonstrate good prediction 
calibration, with the Linear model showing slight deviations in PIT.

Lastly, further evaluations of the reliability and the sharpness of predictions are 
discussed. The average CRPS (ACRPS) is computed to have a station-specific sum-
mary: ACRPSs = T−1

∑
t CRPS(yst) , and their distributions across the stations are 

depicted in Fig. 7. To set the proposed Splines-HS model as a benchmark, the values 

Fig. 6   Kernel densities of the distribution of PITst , ∀s, t , density of the Uniform distribution as dashed 
line
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are relativized by dividing them for the corresponding ACRPS observed under this 
model. The median of the distributions of relative ACRPS is above 1 for both the 
Linear and Splines models. Specifically, 60% of stations have higher ACRPS than 
under the Splines-HS model for the Linear model, and 61% for the Splines model. 
Note that the 61% of stations have higher ACRPS under Linear model if compared 
to the Splines one, pointing out the merits of introducing flexible effects in the 
model. Another indication about the sharpness of prediction can be deduced from 
the width of the 90% credible intervals of the posterior of quantiles Q̃1∕R,s|y−s , for 
R = {20, 30} . Also in this case, Fig. 7 reports the distribution of the station-specific 
widths divided by those obtained under the Splines-HS model. It is interesting to 
stress how the Splines-HS model has intervals in median the 26.6% and 42.6% nar-
rower than the intervals retrieved with Splines and Linear models, respectively.

5.2 � Results

According to the results of the folded cross-validation study presented in the previ-
ous section, allowing for non-linear relationships among covariates and GEV param-
eters leads to some gains in terms of predictive ability. These improvements are even 
more noticeable when a prior able to automatically execute the variables selection 
step is assumed. Similar conclusions can also be detected by comparing the mod-
els fitted relying on the whole dataset. As an overall measure of goodness of fit, 

Table 2   Posterior estimates related to the random effects scale parameters

�� �� ��

Mean 95% CI Mean 95% CI Mean 95% CI

Linear 0.47 [0.39,0.58] 0.15 [0.09,0.21] 0.05 [0.00,0.12]
Splines 0.34 [0.26;0.44] 0.03 [0.00,0.09] 0.03 [0.00,0.10]
Splines - HS 0.27 [0.16,0.42] 0.04 [0.00,0.10] 0.04 [0.00,0.11]

Fig. 7   Left-hand-side plot: box-plot of ACRPSs . Right-hand-side: box-plot of the widths of 90% credible 
intervals for Q̃1∕R,s|y−s . In both cases, the values are divided by the corresponding ones obtained under 
the Splines-HS model (benchmark). Values higher than one (dashed line) indicate that the ACRPS or CI 
widths are higher if compared to the benchmark
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the leave-one-out information criterion (LOOIC, Vehtari et al. 2017) is considered. 
Models incorporating spline terms exhibit similar LOOIC values, with Splines-HS 
at 22219.5 and Splines at 22222.1. In contrast, the Linear model shows inferior per-
formance with a LOOIC of 22245.7.

A first insight to understand the benefits led by the models with Bayesian 
P-splines can be deduced from Table 2, reporting the posterior summaries about the 
random effects scale parameters �� . Such quantities can be considered as measures of 
the amount of signal captured by the covariates in the regression models: the higher 
the values, the lower the variability explained by the covariates. The Linear model 
registers noticeably higher scales, especially for the random effects related to param-
eters � and � . Despite such differences, it is interesting to remark that the in-sample 
estimates of the stations-specific GEV parameters �s and �s are similar across the 
considered models, whereas differences can be observed for the shape parameter �s , 
for which the models induce different levels of shrinkage. These results are depicted 
by the box-plots in the first row of Fig. 8, where also the estimates obtained under 

Fig. 8   Box-plots of GEV parameters posterior means under the considered models (first row). Com-
parison between estimates (second row) and out-of-sample predictions (third row) from the Splines-HS 
model and the station-specific ones. The red triangles indicate the stations considered for return levels of 
Fig. 10
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the station-specific models are added for benchmarking purposes. As a consequence, 
the inflation of the scales �� might lead to over-dispersed out-of-sample predictions: 
such behavior is captured by the PIT distribution previously reported in Fig. 6 and 
the general increase of the width of the credible intervals (Fig. 7).

To have a comprehensive understanding of the relationships between covariates 
and the transformed GEV parameters across the three compared models, Tables 3 
and 4 are produced. The mixed model representation of Bayesian P-splines, as 
described in Sect.  4.1.1, allows us to explore the relevance of the linear trend in 
all models. In pursuit of this goal, Table  3 highlights the variables that exhibit a 
linear impact on the parameters. These relationships are labeled as relevant when 
it holds that max

{
ℙ[𝛽𝜃m > 0|y],ℙ[𝛽𝜃m < 0|y]} exceed 0.8. Notable distinctions 

Table 3   Relevance of the coefficients related to the linear terms

The check marks highlight the coefficients for which it holds the condition 
max

{
ℙ[𝛽𝜃m > 0|y],ℙ[𝛽𝜃m < 0|y]} > 0.8 . The model names Linear, Splines and Splines-HS are short-

ened as Lin, Sp and Sp-HS

Variable Linear terms relevance

� � �

Lin Sp Sp-HS Lin Sp Sp-HS Lin Sp Sp-HS

Latitude ✓ ✓ ✓ ✓ ✓

Longitude ✓
Area ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Elevation ✓ ✓ ✓ ✓
Slope ✓ ✓ ✓ ✓ ✓
Aspect ✓
Cover ✓ ✓ ✓
Rainfall ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4   For each variable and transformed GEV parameters, the number of relevant splines coefficients 
is reported, comparing model Splines and Splines-HS 

Variable Number of relevant splines coefficients

� � �

Splines Splines-HS Splines Splines-HS Splines Splines-HS

Latitude
Longitude 4 1
Area
Elevation 1 3 2 1
Slope 1 1
Aspect 3 3
Cover 1 2
Rainfall 2 1 2 2 1 1
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become apparent when comparing the Linear model with models incorporat-
ing spline terms, especially in the modeling of the location parameter. Moreover, 
the effect of the grouped HS prior is evident, as the relevant coefficients under 
the Splines-HS model constitute a subset of those considered relevant under the 
Splines model. Subsequently, to ascertain the presence of evidence for non-lin-
ear relationships, Table  4 reports the count of relevant splines coefficients, i.e. ∑7

k=1
1
�
max

�
ℙ[𝛾̃𝜃mk > 0�y],ℙ[𝛾̃𝜃mk < 0�y]� > 0.8

�
 , where 1(A) is an indicator func-

tion assuming value one if the event A is observed and zero otherwise. Once again, 
the Splines-HS model stands out for its parsimony, resulting in a lower number of 
relevant coefficients. However, there is an exception in the case of the relationship 
between longitude and the location parameter, where this model identifies a notably 
non-linear function. In summary, these findings suggest that non-linear relationships 
are indeed observable in the case study under consideration.

Let us shift the focus to the comparison between the two models that include flex-
ible regression terms, in order to better understand how the grouped HS prior works. 
Figure 9 shows how three selected covariates (area, elevation and slope) impact on 
the transformations of GEV parameters. The trends detected by the two models are 
similar but the impact of the grouped HS prior for the splines coefficients emerges. 
The shrinkage towards zero for negligible effects is evident under the Splines-HS 
model, especially when modeling � , i.e. the function of the shape parameter. In this 
case, the Splines model identifies trends endowed with considerably higher uncer-
tainty, producing intervals that include the 0 value almost everywhere. The decrease 
in the effect uncertainty is also detectable when modeling parameters � and � , even 

Fig. 9   Covariate effects estimated for three selected covariates under models Splines and Splines-HS for 
the three functionals of GEV parameters. Shaded areas depict the 90% credible intervals
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if less pronouncedly. When observing the effect of area on the location parameter � , 
it becomes evident that the grouped HS prior effectively constrains the flexible effect 
back to the linearity assumption.

The results concerning covariate effects can be put in relationship with those 
about the random effects scales shown in Table  2. Indeed, the combination of 
these outputs allows to motivate the lower dispersion of the station-specific esti-
mates of the shape parameters �s under the Splines-HS model, already noticed 
in box-plots of the first row in Fig. 8. On the other hand, the Splines model pro-
duces scattered estimates. Considering the substantial shrinkage imposed by the 
grouped HS priors, the variability in estimates may not be well supported by the 
data, potentially resulting in issues of instability. In fact, it is widely known that 
the identification of the shape parameter of the GEV distribution is a tricky task 
(see, e.g., Jóhannesson et al. 2022), and the grouped HS prior can help in avoid-
ing over-fitting in this framework. In consideration of these findings suggesting a 
potentially limited impact of modeling the shape parameter, the three discussed 
models are also fitted with a shared shape parameter for all monitoring stations 
to explore whether a more streamlined configuration would yield significant 
improvements. While detailed results are omitted here for conciseness, it is worth 
noting that the estimates remained largely similar, with only slight increases in 
the LOOIC values observed for these simplified models.

The second and the third rows of Fig. 8 allow us to delve deeper into the con-
nections between parameters estimates obtained with the Splines-HS model and 
the GEV distribution fitted on the single stations. The results related to the in-
sample estimates confirm that no relevant differences are detected in estimating 
�s and �s , whereas they provide further evidence of the strong shrinking process 
affecting the estimates of �s , which are gathered around 0.25 (Pearson’s correla-
tion equal to 0.60). It is also interesting to explore how the GEV parameters are 
predicted when data related to the station are excluded from the fitting sample, 
taking the outcome of the folded cross-validation study (third row). As expected, 
the predictions concerning �s and �s are more scattered with respect to the esti-
mates from the single-station models, even if the correlation between estimates 
and predictions is strong. From these diagnostic plots, three stations, whose 
points are embedded in a red triangle, are selected to investigate the inference on 
return levels through the different modeling strategies. To this aim, the distances 
between predictions and single-station model estimates are considered, focusing 
on the stations having maximum (#6242530), median (#6243240) and minimum 
(#6342610) distances, noting that such stations are also representative of different 
values of the shape parameter according to the single-station models.

To complete the analysis of the results, a brief discussion on the estimates and 
the out-of-sample predictions of river discharge return levels is carried out (out-
comes reported in Fig.  10). As expected, the in-sample estimates are generally 
characterized by lower levels of uncertainty than predictions, whose variability is 
inflated by the presence of random effects generated from the prior, as described 
in Sect. 4.2. Another general trend to point out is that the single-station models 
produce estimates with larger credible intervals, mainly due to the issues in esti-
mating the shape parameters. Conversely, the models fitted on the overall basin 
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allow borrowing strength across the stations, reducing such variability through 
the aforementioned shrinkage process on �s . Besides, as already pointed out in 
Sect. 5.1, the Splines-HS model is also able to produce return level estimates with 
lower uncertainty levels than the other strategies, by combining lower variabil-
ity in effects identification (Fig.  9) and lower random effects scale parameters 
(Table 2). Despite the narrower bands, the points representing the observed val-
ues are included in the credible intervals, with the exception of predictions for 
station #6242530, i.e. the one characterized by the maximum distance between 
predicted and estimated parameters.

6 � Concluding remarks

This paper aims at illustrating the potential of Bayesian models in introducing flex-
ibility in extreme value analysis. In particular, the linearity assumption, often restric-
tive in dealing with complex phenomena such as environmental ones, is relaxed 
proposing non-linear functional relationships. Furthermore, a suitable regularizing 

Fig. 10   Return levels of river discharge (in m3∕s ) estimated with the whole sample (left column) and 
excluding the observation available from the station (right column). The shaded areas indicate the 90% 
credible interval. The points represent the ordered observations
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prior is introduced, allowing the incorporation of variables and functional selection 
steps within the model. While it is true that the introduction of such a shrinkage prior 
noticeably complicates the model specification, the Stan code provided in the Sup-
plementary material can assist practitioners in utilizing this more sophisticated tech-
nique. Interestingly, it could streamline the analysis process since when working with 
these types of models, selecting relevant covariates and determining the appropriate 
functional forms can often be challenging. It is worth remarking that the proposed 
method automatically addresses this task, eliminating the need for additional steps.

The performances of the models considered in the paper are compared by means 
of a cross-validation study that evaluates their ability in predicting return levels 
at ungauged locations. In doing so, the advantages brought by the use of splines 
regression tied with a regularizing prior can be highlighted. Indeed, its use allows us 
to sensibly reduce the uncertainty of the predictions without affecting model calibra-
tion if compared to other considered model specifications.

The results obtained by applying GEV regression models with these flex-
ible specifications to the discussed case study also provide insights into common 
assumptions in regional flood frequency analysis. Firstly, as discussed throughout 
this paper, it can be noted that the estimation of the shape parameter seems to be 
minimally influenced by the covariates, aligning with previous findings in the litera-
ture (e.g., see Lima et al. 2016). Furthermore, the adoption of the multivariate link 
proposed by (Jóhannesson et  al. 2022) allows us to model a dispersion parameter 
that has been adjusted for the location effect ( �s can be seen as the logarithm of a 
kind of coefficient of variation). This approach is consistent with the index flood 
method, which estimates return periods by scaling data relative to the index flood 
(Hosking and Wallis 1997).

Despite that the application tackles extreme value analysis from the block-max-
ima perspective, by adopting the typical GEV distribution, the underlying idea of 
setting a semi-parametric regression with regularizing priors can also be extended 
to other distributional assumptions and approaches of extreme value theory. Among 
the others, we mention the Blended-GEV by Castro-Camilo et  al. (2022), which 
solves the GEV problem of having a finite lower tail when the shape parameter is 
positive, or the widespread peak-over-threshold approach. In the latter framework, 
the proposed strategy might help in both in determining a non-stationary threshold 
(e.g. through quantile regression, as in Northrop and Jonathan 2011) and in the anal-
ysis of the exceedances through the Generalized Pareto distribution.

Lastly, it is worth stressing that the principle behind the use of a prior encouraging 
a grouped variable selection can also be extended to other low-rank structure matri-
ces such as tensors, useful to model a spatially structured effect jointly modeling lati-
tude and longitude, interactions and also categorical variables (Scheipl et al. 2012).
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