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How do statistical dependencies in measurement noise influence high-dimensional
inference? To answer this, we study the paradigmatic spiked matrix model of principal
components analysis (PCA), where a rank-one matrix is corrupted by additive noise.
We go beyond the usual independence assumption on the noise entries, by drawing the
noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise
correlations make the setting relevant for applications but analytically challenging. We
provide characterization of the Bayes optimal limits of inference in this model. If the
spike is rotation invariant, we show that standard spectral PCA is optimal. However, for
more general priors, both PCA and the existing approximate message-passing algorithm
(AMP) fall short of achieving the information-theoretic limits, which we compute
using the replica method from statistical physics. We thus propose an AMP, inspired
by the theory of adaptive Thouless–Anderson–Palmer equations, which is empirically
observed to saturate the conjectured theoretical limit. This AMP comes with a rigorous
state evolution analysis tracking its performance. Although we focus on specific noise
distributions, our methodology can be generalized to a wide class of trace matrix
ensembles at the cost of more involved expressions. Finally, despite the seemingly strong
assumption of rotation-invariant noise, our theory empirically predicts algorithmic
performance on real data, pointing at strong universality properties.

high-dimensional inference | structured data | principal components analysis | replica method |
approximate message passing

The success of inference and learning algorithms depends strongly on the structure of the
high-dimensional noisy data they process. Consequently, quantifying how this structure
helps algorithms to overcome the curse of dimensionality has become a central topic in
statistics and machine learning. Classical examples include sparsity in compressed sensing
(1), low-rank structure in matrix recovery (2), or community structure in community
detection (3). In all these models, structure is usually assumed only at the signal’s level.
But the decomposition of the data into “signal” (the component considered of interest)
and “noise” (the rest) is often arbitrary and application dependent. For example, in the
classification of “dogs/cats,” the training images contain a lot of information unrelated to
dogs and cats—e.g., on the notions of “inside/outside,” “day/night,” etc. Yet, this highly
structured potential source of information is discarded as random noise (independent,
Gaussian, etc.). Most of the research effort has thus focused on understanding how the
signal structure alone helps inferring it. In contrast, much less is known about the role
of the noise structure and how to exploit it to improve inference.

Given their ubiquitous appearance in the statistics literature, spiked matrix models,
which were originally formulated as models for probabilistic principal component
analysis (PCA) (4), are now a paradigm in high-dimensional inference. Thanks to their
universality features, they, and their generalizations, find numerous applications in other
central problems, including community detection (3), group synchronization (5), and
submatrix localization or high-dimensional clustering (6). They thus offer the perfect
benchmark to quantify the influence of noise structure. In this paper, we focus on the
following estimation problem: A statistician needs to extract a rank-one matrix (the spike)
P∗ := X∗X∗ᵀ, X∗ ∈ RN , from the data

Y =
λ

N
P∗ + Z ∈ RN×N , [1]

with “noise” Z and signal-to-noise ratio (SNR) λ ≥ 0.
The spectral properties of finite rank perturbations of large random matrices like Eq. 1

were intensively investigated in random matrix theory (see, e.g., refs. 7–9), showing the
presence of a threshold phenomenon coined BBP transition (in reference to the authors
of ref. 7): When λ is large enough, the top eigenvalue of Y detaches from the bulk
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of eigenvalues. Its corresponding eigenvector has then a nontrivial
projection onto the sought ground truth X∗ and can be used as
its estimator. The problem has also been approached from the
angle of Bayesian inference (10–13). In particular, besides the
previous spectral estimator, there exists a whole family of iterative
algorithms, known as approximate message passing (AMP), that
can be tailored to take further advantage of prior structural
information about the signal and noise. AMP algorithms were
first proposed for estimation in linear models (14, 15) but
have since been applied to a range of statistical estimation
problems, including generalized linear models (16, 17) and low-
rank matrix estimation (11, 18). An attractive feature of AMP
is that its performance in the high-dimensional limit can often
be characterized by a succinct recursion called state evolution
(19, 20). Using the state evolution analysis, it has been proved
that AMP achieves Bayes-optimal performance for some models
(11, 16, 18), and a conjecture posits that for a wide range of
estimation problems, AMP is optimal among polynomial-time
algorithms (21).

The references mentioned above rely on the assumption of
independent and identically distributed (i.i.d.) noise, often taken
Gaussian Zij = Zji ∼ N (0, 1), under which Eq. 1 is the well-
known spiked Wigner model (4). This independence, or “absence
of structure,” in the noise simplifies greatly the analysis. In order
to relax this property, we may seek inspiration from the statistical
physics literature on disordered systems. An idea that was first
brought forth in refs. 22 and 23 for the Sherrington–Kirkpatrick
model, and later imported also in high-dimensional inference
(24, 25), is that of giving an inhomogeneous variance profile to
the noise matrix elements; we mention that this idea in inference
is similar to the earlier definition of “spatially coupled systems”
(26, 27) in coding theory, see ref. 12 for its use in the present
context. The procedure makes the (Zij) no longer identically
distributed, but it leaves them independent. This is an important
step toward more structure in the noise. Yet, the independence
assumption is a rather strong one. In fact, ref. 25 showed that a
broad class of observation models, as long as the independence
assumption holds, are information-theoretically equivalent to one
with independent Gaussian noise.

One way to go beyond is to consider noises belonging to
the wider class of rotationally invariant matrices. Since the
appearance of the seminal studies (28–30), there has been a
remarkable development in this direction, as evidenced by the
rapidly growing number of papers on spin glasses (31–33) and
inference (34–37) that take into account structured disorder,
including the present one. Indeed, we hereby consider a spiked
model in which the noise Z is drawn from an orthogonal matrix
ensemble different from the Gaussian orthogonal ensemble (the
only one with independent entries). Intuitively, the presence of
dependencies in the noise should be an advantage for an algorithm
sharp enough to see patterns within it and use them to retrieve
the sought low-rank matrix. Going in that direction, Fan (35)
proposed a version of AMP designed for rotationally invariant
noises (using earlier ideas of refs. 31 and 32). Furthermore,
in a recent work (38), part of the authors analyzed a Bayes
estimator and an AMP, both assuming Gaussian noise, whereas
the actual noise in the data was drawn from a generic orthogonal
matrix ensemble. However, besides intuition and the mentioned
studies, to the best of our knowledge, there is little theoretical
understanding of the true role played by noise structure in
spiked matrix estimation and more generically in inference. In
particular, prior to our work, there was no theoretical predic-
tion of optimal performance to benchmark practical inference
algorithms.

1. Setting and Main Results

Our analysis focuses on two types of signal’s distributions:
the factorized prior dPX (x) =

∏
i≤N dPX (xi) and a uniform

prior measure over the N -dimensional sphere of radius
√

N .
By convention,

∫
x2 dPX (x) = 1, which amounts to rescale

λ. The noise matrix Z is drawn from a trace random matrix
ensemble, defined by a certain potential V : R 7→ R. V is
extended to matrices as follows: if A = diag(a1, . . . , aN ) then
V (A) = diag(V (a1), . . . , V (aN )). For real symmetric matrices
M = UAUᵀ, with U orthogonal, V (M) = UV (A)Uᵀ. With
these notations, we can write the density of the trace ensemble
(with normalization constant CV ) as

dPZ (Z) = CV exp
(
−

N
2

TrV (Z)
)∏

i≤j

dZij. [2]

Instances of such ensembles have a spectral decomposition
Z = ODOᵀ, with O uniformly distributed over N × N
orthogonal matrices. The distribution of the eigenvalues in the
diagonal matrix D, which is independent of O, can be explicitly
written, see SI Appendix, section 1.2. Only the special case
V (x) = x2/(2σ ), corresponding to the Gaussian orthogonal
ensemble, induces independent (Gaussian distributed) matrix
entries. Any other potential generates dependencies among
matrix elements and thus structure. For example, if we take
V (x) = x4/4, the probability density would be proportional
to
∏

exp(−N
8 ZijZjkZkl Zli), which is clearly not factorizable over

matrix entries.
Analyzing the model for a generic potential V is possible

through the methodology presented in this paper. Indeed, as
discussed in SI Appendix, A, this can be done by studying
the inference problem whose noise’s potential is a polynomial
approximation of V . However, if we take a generic polynomial
potential V , the higher the order, the more technical and
cumbersome our derivations become. Therefore, for the sake of
clarity, we focus on a concrete example of nontrivial correction to
i.i.d. noise: the quartic matrix potential V (x) = µx2/2+γ x4/4,
whereµ and γ are two nonnegative real numbers (39). We could
have also considered a nonsymmetric potential with a cubic
term too, but for simplicity, we restrict ourselves to that case
as symmetry slightly simplifies the computations. The noise Z
drawn from the quartic matrix ensemble has a known N →∞
asymptotic eigenvalue distribution (40)

ρ(x)dx = (µ+ 2a2γ + γ x2)
√

4a2 − x2/(2π) dx, [3]

where a2 := (
√
µ2 + 12γ −µ)/(6γ ). In order to have a coher-

ent definition of SNR, we also fix
∫

x2dρ(x) = 1, which implies
γ = γ (µ) = (8 − 9µ +

√
64− 144µ+ 108µ2 − 27µ3)/27.

When µ = 1, γ (1) = 0 and we recover the pure Wigner case.
On the contrary, (µ = 0, γ (0) = 16/27) corresponds to a
purely quartic case with unit variance, the “most structured”
ensemble in this class. Therefore, µ allows us to interpolate
between unstructured and structured noise ensembles.

We emphasize that, although this model may seem rather
academic at first sight, we will see that our main assumption,
that is, the rotational invariance of the noise, turns out to yield
a theory which accurately predicts the empirical performance of
algorithms for inference of low-rank matrices hidden in noise
coming from real datasets from various application domains.
This is probably a consequence of strong universality properties,
yet to be understood from a theoretical perspective, along the
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lines of refs. 41 and 42. We thus argue that our assumptions are
in fact rather mild, making our inference algorithms relevant for
potential future applications.

We now introduce the Bayesian framework we are going to
analyze. Let P := xxᵀ. The posterior measure reads

dPX |Y (x | Y)=
CV

PY (Y)
dPX (x) exp

(
−

N
2

TrV
(
Y−

λ

N
P
))
.

[4]

The evidence PY (Y) is simply the integral of the numerator. We
stress that the prior PX and the likelihood PY |X match respectively
the distribution of the signal and the noise density PZ , and λ is
known. Therefore, we are in the Bayes-optimal setting. Studying
the limits of inference in this setting draws a fundamental line
between what is information-theoretically possible and what is
not in terms of performance of inference.

A main object of interest is the free entropy, which is minus the
Shannon entropy of the data: FN (Y) := −H(Y) = E ln PY (Y).
It is related to the mutual information between signal and data
through the identity I(P∗;Y) = −FN (Y)+ln CV−

N
2 ETrV (Z).

The relevance of the latter is extensively discussed in SI Appendix,
section 1.4. Using the form of the observation model in Eq. 1, it
reads

−I(P∗;Y) = E ln
∫

dPX (x)e−HN (x;Z,X∗) =: E lnZ , [5]

where the Hamiltonian linked to the partition function Z is

HN (x;Z,X∗) := N
2 Tr

[
V
(
Z + λ

N (P∗ − P))− V (Z)
]
. [6]

In this way, the problem is mapped onto a statistical mechanics
model with “quenched randomness” Z,X∗ and “spins” x with
Gibbs–Boltzmann distribution associated with this Hamiltonian
(i.e., the posterior). This Hamiltonian is tricky to directly deal
with, so a key point will be to “convert” it into a more tractable
quadratic form; see Section 1 and SI Appendix, section 3.1.

Result 1: Information-Theoretical Limits. Our first result is a
variational formula for the mutual information via the cele-
brated replica method (43) outlined in Section 1: If we let
�∗ := argmax{fρ(�) : � ∈ R13,∇fρ(�) = 0}, then we
have the following low-dimensional expression for the mutual
information between hidden spike and the data:

1
N I(P∗;Y)

N→∞
−−−−→ − fρ(�∗). [7]

The argmax is selected and not the argmin as fρ is a free
entropy (i.e., minus free energy, the free energy being minimized
in physics). fρ and its derivation are reported in SI Appendix,
section 3.2. The 13 coupled fixed point equations coming from
∇fρ = 0 will reduce to only 2 (SI Appendix, Eqs. 79–84) thanks
to special symmetries inherent to the Bayes-optimal nature of our
analysis. One of the two remaining order parameters, denoted m2

and called (squared) “magnetization,” quantifies the asymptotic
trace inner product between the minimum mean-square error
(MMSE) estimator

∫
dPX |Y (x | Y)xxᵀ and the spike X∗X∗ᵀ. It

allows us to compute the MMSE as

1
2N 2 E‖X∗X∗ᵀ −

∫
dPX |Y (x | Y)xxᵀ

‖
2
F

N→∞
−−−−→

1−m2

2 , [8]

with m solving the aforementioned system of equations.

Result 2: Optimality of PCA for Rotationally Invariant Priors.
The above results hold for a factorized prior P⊗N

X . Nevertheless,
if X∗ is uniformly distributed on the sphere, a variational
formula analogous to Eq. 7 can still be derived, as shown in
SI Appendix, section 3.6, and the related MMSE computed.
Analytical arguments and numerical experiments show that
the latter can be achieved using the naive spectral estimator
C��ᵀ of P∗ obtained from the principal eigenvector � =
�(Y) of Y properly rescaled by a certain factor C(λ, ρ);
see ref. 9.

Result 3a: Optimal Preprocessing of the Data. Instead of using
an AMP with iterates based on Y, we introduce a preprocessing
procedure driven by the AdaTAP formalism (32). The end
result is an effective quadratic model (i.e., with only pairwise
interactions) which is “equivalent” (in a proper sense described
below) to the original one, with coupling matrix

J(Y) = µλY− γ λ2Y2 + γ λY3. [9]

This model being quadratic is now solvable using AdaTAP/AMP
and possesses the same thermodynamic properties (free entropy,
phase transitions, etc.) as well as the same marginal means and
variances as the model in Eq. 4 when N → ∞ (and thus
equivalent for our purposes). Therefore, to approximate the
MMSE estimator, one can simply “preprocess” Y by applying
J(Y) and then efficiently compute the marginals of the resulting
quadratic model by AdaTAP/AMP, see next section. AdaTAP
allows us to parametrize the free entropy (i.e., log-partition
function) of a model with quadratic Hamiltonian, for a given
instance of the interaction matrix, in terms of O(N ) order
parameters, some of which correspond to the sought marginal
means (〈xi〉)i≤N and associated variances. The extremization
w.r.t. them yields equations that can be solved iteratively and
identified with an AMP algorithm. However, the Hamiltonian
in Eq. 6 is not quadratic in x but can be made so by fixing
certain order parameters as outlined in Section 1. The resulting
coupling matrix depends on Y and on the fixed order parameters,
whose values are constrained by Bayes optimality (SI Appendix,
section 1.4). Using these values, for an initial quartic V (x) =
µx2/2 + γ x4/4, we get the above interaction matrix in Eq. 9
(SI Appendix, sections 5.1 and 5.2).

The “cleaning effect” of J(Y) is illustrated in Fig. 1. In
general, for a (K + 1)-order polynomial matrix potential, the
preprocessed matrix is a polynomial J(Y) =

∑
k≤K ckYk, with

(ck)k≤K depending on V . For example, for V (x) = ξx6/6 (with
ξ = 27/80 to select unit variance), the preprocessing (derived
similarly to the quartic case, see SI Appendix, section 5.3) is
J6(x) = ξλx5

− ξλ2x4
− ξλ2x2; it has an effect similar to that

in Fig. 1. We point out that the statistics of the noise could be
only partially known. This issue can be overcome by learning the
(ck) from the data; see SI Appendix, B.

Result 3b: Bayes-Optimal AMP. First, we show in SI Appendix,
section 4 that existing AMPs (35, 36) do not saturate the
MMSE predicted by Eq. 8. We provide a replica-based theory
showing that despite these existing AMPs are aware of the
noise structure/statistics, they nevertheless make an implicit
mismatched assumption of i.i.d. Gaussian noise: The noise
structure is “only” exploited to enforce convergence despite the
mismatch, rather than as a source of greater statistical accuracy,
in contrast to the proposed AMP we explain now.
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Fig. 1. We have set � = 0, (0) = 16/27, � = 5, N = 4,000 and generated one instance of the data model Eq. 1. (Left) Histogram of the eigenvalues of Y. The
leading eigenvalue is emphasized, and the orange curve is the density in Eq. 3. (Middle) Optimal preprocessing function J(x) = ��x − �2x2 + �x3. (Right)
Histogram of the eigenvalues of J(Y). The preprocessing J flushes the bulk to the negative axis while pushing only the leading eigenvalue even further from the
bulk in the positive direction.

To cure this issue, we employ the preprocessed J(Y) in AMP,
which leads to our (conjectural) Bayes-optimal approximate
message-passing (BAMP) algorithm with recursion

ft = J(Y)ut
−

∑
i≤t

ct,iui, ut+1 = gt+1(ft), t ≥ 1, [10]

with gt+1 applied component-wise. For simplicity, we assume
to have access to an initialization u1

∈ RN independent of the
noise Z and with a strictly positive correlation with X∗, i.e.,

(X∗, u1)
W2
−→ (X ∗, U1), E[X ∗U1] := ε > 0, E[U 2

1 ] = 1.
[11]

This requirement is rather standard in the analysis of AMP
algorithms (16, 35, 44). However, as having access to such an
initialization is often impractical, recent work (18, 36, 45) has
designed AMPs initialized with the top eigenvector �(Y).

By carefully choosing the Onsager coefficients {ct,j}j∈[t], we
rigorously obtain BAMP’s state evolution characterization.

Theorem 1 (State evolution of BAMP). Let J(Y) =
∑

i≤K ciYi.
Consider the AMP of Eq. 10 initialized as Eq. 11, with Onsager
coefficients {ct,j}j∈[t] given in SI Appendix, section 6.2, and where
(gt+1)t≥1 are C1 and Lipschitz. Then, the following limit holds
almost surely for any order 2 pseudo-Lipschitz function* ψ :
R2t+2

→ R and t ≥ 1:

1
N

∑
i≤N

ψ(u1
i , . . . , ut+1

i , f 1
i , . . . , f t

i , X ∗i )

N→∞
−−−−→ Eψ(U1, . . . , Ut+1, F1, . . . , Ft , X ∗). [12]

Here, for i ∈ [t], Ui+1 = gi+1(Ft) and (F1, . . . , Ft) = �tX ∗ +
(W1, . . . , Wt), with (Wi)i≤t a multivariate Gaussian vector whose
covariance as well as �t are given in SI Appendix, section 6.2.

Eq. 12 provides a high-dimensional characterization of our
proposed BAMP. A suitable choice of ψ readily gives the MSE
of the BAMP iterates. We also note that our result is equivalent
to the almost sure convergence in Wasserstein-2 distance of the
joint empirical distribution of (u1, . . . , ut+1, f1, . . . , ft ,X∗) to
(U1, . . . , Ut+1, F1, . . . , Ft , X ∗), see corollary 7.21 of ref. 44.

We emphasize that our BAMP algorithm is not the usual
AMP of ref. 35, where the data matrix Y are just replaced

*A function  : Rm
→ R is pseudo-Lipschitz of order 2 if there exists a constant C > 0 such

that, for all x,y ∈ Rm , ‖ (x)−  (y)‖2 ≤ C(1 + ‖x‖2 + ‖y‖2)‖x− y‖2 .

by the preprocessed matrix J(Y). Indeed, tuning the Onsager
coefficients {ct,i} entering BAMP requires a type of “multistage”
state evolution recursion which is completely different from
the one in ref. 35. The acronym we introduce stresses this
crucial distinction. While our replica prediction for the MMSE
is nonrigorous, the state evolution analysis of BAMP is rigorous.
In Section 2, we show that BAMP improves over the AMP in ref.
35 by comparing their fixed points. This improvement is thus a
rigorous conclusion, while the conjecture is that BAMP saturates
the Bayes-optimal performance.

Finally, the “multistage” state evolution of BAMP suggests a
choice of the denoisers in the AMP of ref. 35, which differs from
the greedy strategy of ref. 36 (i.e., picking the full posterior mean
denoiser at every iteration). The numerical results of Section 2
also show that this denoiser selection—motivated by BAMP—
meets the BAMP performance and, hence, the replica prediction
of the Bayes-optimal error.

2. Numerical Results and Discussion

BAMP vs the Replica Prediction. The Left plot of Fig. 2 considers
the quartic ensemble for µ = 0, and the right one refers to the
pure power six potential. The signal X∗ has a Rademacher prior
X ∗i ∼

1
2 (δ1 + δ−1). The estimators of the spike X∗X∗ᵀ are

compared in terms of the MSE achieved at the fixed point,
as a function of the SNR λ. All algorithms are run for N
= 8,000, they are initialized with u1 that satisfies Eq. 11,
and the results are averaged over 50 trials; the state evolution
recursions and the replica prediction are for N → ∞. In SI
Appendix, section 7.2, we provide additional numerical results
for a sparse Rademacher prior, which display a similar qualitative
behavior.

We observe that all algorithms converge rapidly: 10 iterations
are sufficient to reach the corresponding fixed points. A few
remarks concerning the results displayed in Fig. 2 are now in
order. First, in all settings, the fixed point of the BAMP state
evolution (red) matches the replica prediction (black). This is
a strong numerical evidence supporting our conjecture that the
proposed BAMP algorithm is Bayes-optimal. These theoretical
curves for N →∞ are also remarkably close to the MSE achieved
by the BAMP algorithm at N = 8,000.

Second, there is a clear performance gap between our proposed
BAMP (red) and the existing AMP algorithms (35, 36) (single-
step denoiser in blue, and multistep in ochre). For V (x) =
ξx6/6, the gap is even more evident. As predicted by our theory,
the gap is reduced whenµ approaches 1 with all curves collapsing
for µ = 1; see SI Appendix, section 7.2.
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Fig. 2. Quartic potential with � = 0 (Left) and pure power six potential (Right). Comparison of the following inference procedures: (i) (black) replica prediction
of the MMSE, Eq. 8. (ii) (red) Performance of the BAMP algorithm, where gt+1 is the single-iterate posterior mean denoiser gt+1(f ) = E[X∗ | Ft = f ]. The
red line corresponds to the fixed point of the MSE given by the state evolution recursion, and the red stars denote the MSE obtained by running BAMP
Eq. 10 with the proper preprocessing. (iii) (blue) Performance of the AMP proposed in ref. 35. The blue line corresponds to the fixed point of the MSE
obtained with a single-iterate posterior mean as denoiser, and the blue diamonds denote the MSE obtained by running the AMP of ref. 35 with the same
denoiser. (iv) (ochre squares) MSE obtained by the AMP of ref. 36 (without the preprocessing of Y), which employs a full memory posterior mean denoiser:
ht+1(f1 , . . . , ft) = E[X∗ | (F1 , . . . , Ft) = (f1 , . . . , ft)]. Finally, (v) (green triangles) performance of BAMP when the uniformly distributed matrix O (appearing in the
spectral decomposition of the noise Z) is replaced by the product of the Hadamard–Walsh matrix and a diagonal matrix with i.i.d. Rademacher entries as in
ref. 42. In the smaller plots in the Top-Right corner, we report the performance of AMP-AP (blue) and of BAMP for our universality experiments involving the
CIFAR-10 “plane” class (purple) and the “muscle skeletal” GTEx dataset (orange).

Thirdly, we consider a choice of denoisers in the AMP of
ref. 35, which is motivated by our BAMP: If the potential has
degree K , every K -th nonlinearity is the full memory posterior
mean denoiser, and all the other denoisers are chosen to be
the identity. The algorithm is dubbed AMP with alternating
posteriors (AMP-AP), and its connection to BAMP is discussed
at the end of the 1 section. As evident from the smaller plots in
the top right corner, AMP-AP (blue) matches the performance
of BAMP and of the replica prediction as well.

Last, BAMP is numerically unstable for low SNR. For the
quartic potential and λ = 2.3, 5 out of 50 trials do not reach the
state evolution fixed point (and are thus discarded). Furthermore,
BAMP’s state evolution detaches from the replica prediction as
the SNR gets smaller. Considering an initialization closer to the
fixed point mitigates the issue. This instability is likely due to
the fact that BAMP’s state evolution corresponds to an auxiliary
AMP that multiplies the number of iterations (see the 1 section)
and which thus amplify errors.

Universality of the Rotational Invariance Assumption. We be-
lieve that our results apply beyond the rotational invariance
assumption to cases where the eigenbasis of the noise is invariant
under more restrictive transformations (such as permutations),
or even “quasideterministic.” This intuition comes from recent
studies (41, 42) showing that, when AMP or its linearized version
are used, the class of rotationally invariant matrices leads to the
same performance as a much broader class of matrices (with same
spectral density). While the existing literature considers a setting
different than ours, this still suggests that our predictions should
remain true more generally. To confirm this, we plot in Fig. 2 the
performance of BAMP when the uniformly distributed matrix
O (i.e., the noise Z eigenbasis) is replaced by i) the product
of the Hadamard–Walsh matrix and a diagonal matrix with
i.i.d. Rademacher entries, as in ref. 42 (green squares), or ii)
the eigenbasis of the covariance matrix for two popular datasets
in computer vision and quantitative genetics, i.e., the CIFAR-10
(46) “plane” class and the “muscle skeletal” GTEx dataset (47, 48)

(purple and orange markers, respectively, in the Top-Right plots).
The excellent match clearly supports the universality of our
predictions. Additional validations are contained in SI Appendix,
section 7.2. These results can be understood from the fact
that any eigenbasis O is typical w.r.t. the Haar measure, so
for a fixed instance, as long as O is sufficiently independent
of the eigenvalues, the universality should hold. This suggests
that, in practice, our rotational invariance assumption effectively
corresponds to assuming decoupling between eigenbasis and
eigenvectors.

3. Methods
Outline of the Replica Computation. The starting point of the
replica method is the “replica trick” limN→∞ E lnZ(Y)/N =
limn→0 limN→∞ ln EZn(Y)/(Nn) that implicitly assumes the commutation
of the n, N limits. Another key assumption is to consider n ∈ N in the
computation and then assume an analytic continuation to n close to 0+.
The expectation is with respect to Y or equivalently the independent O, X∗;
concerningD, we only need that its empirical eigenvalue distribution converges
weakly to ρ and that it has asymptotically no outliers. When computing Zn,
we get multiple integrals over (x`)0≤`≤n, with x0 ≡ X∗, and a sum of
n Hamiltonians as in Eq. 6 in the exponential. Expanding the exponent, we
identify some order parameters: For 1 ≤ ` ≤ n,

v` :=
‖x`‖2

N
, M(k)` :=

xᵀ
`
Zkx`
N

, κ` :=
xᵀ
`
Zx0

N
, m` :=

xᵀ0 x`
N

,

After fixing these using the Fourier representation of the Dirac delta function,
the replicated partition function reads

EZn = EZ,x0

∫ n∏
`=1

dPX(x`)d�`d�̂` e−HN(�` ,�̂` ,x`;x0 ,Z),

where HN(� , �̂ , x; x0, Z) := Nh(� , �̂) + xᵀJ1(� , �̂ , Z)x+ xᵀJ0(� , �̂ , Z)x0,
and �` := (v`, M(1)`, κ`, m`) with �̂` being the Fourier conjugate. The
definitions of (h, J1, J0) can be found in SI Appendix, section 3.1. This point
is crucial as it allows us to write the n Hamiltonians (one per x`) as at most
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quadratic functions of x`. Due to the quartic nature of the potential, the original
HN would instead have quartic interactions, or higher-order ones for polynomial
V of degree greater than four. Yet, by identifying the proper order parameters,
a similar reduction to effective quadratic Hamiltonians would still be possible.

In EZn, the replicas are coupled in the system only through the expectation
over the quenched noise, that can be rewritten as an expectation over the
Haar distributed noise eigenbasis EO. The entire computation then boils
down to the evaluation of an inhomogeneous log-spherical integral that we
introduced and defined as follows: Let the matrices C``′ = diag((Ci,``′)i≤N),
Ci = (Ci,``′)`,`′≤n, and vectors h` = (hi,`)i≤N, hi = (hi,`)`≤n all having
bounded entries uniformly in N. The sequence (hi ∈ Rn, Ci ∈ Rn×n)i≤N
is assumed to have an empirical law tending to that of the random variable
(h ∈ Rn, C ∈ Rn×n). The inhomogeneous log-spherical integral is defined as

IN :=
1
N

ln EO exp
( ∑
`,`′≤n

(Ox`)
ᵀC``′Ox`′+

∑
`≤n

(Ox`)
ᵀh`

)
.

Its limit depends only on the law of (C, h) and on the overlaps q``′ :=
1
N x

ᵀ
`
x`′ , ` ≤ `′, that we need to fix with additional Dirac deltas in addition

to the previous order parameters. We find that limN→∞ IN is expressed by
a variational formula; see SI Appendix, section 2.1. This integral is a natural
generalization of the standard spherical integral (49) and thus may have an
interest beyond the present model, in particular, in random matrix theory or
spin glasses.

The final ingredient is a replica symmetric ansatz, justified by the strong
concentration-of-measure effects taking place in the Bayes-optimal setting
(50, 51). It amounts to assume that all order parameters entering the model
are independent of the replica index `. Finally, a saddle point yields an
extremization over R13 of an effective action. Eqs. 7 and 8 follow directly.

Concerning the reduction from 13 to 2 order parameters (saddle point
equations): This is possible thanks to a symmetry arising as a consequence of
the Bayes rule which is specific to the Bayes-optimal setting and often called
Nishimori identity. It allows to “interchange” the ground-truth signal X∗ with a
sample x from the posterior Eq. 4 inside joint expectations over the posterior
and data (see, e.g., ref. 51) and as a consequence to automatically fix the value
of most order parameters.

Auxiliary AMP and Onsager Coefficients. The Onsager coefficients
{ct,i}i∈[t],t≥1 are designed so that, conditioned on the signal, the empirical dis-

tribution of the iterate ft is Gaussian, namely (f1, . . . , ft)
W2
−→ (F1, . . . , Ft) :=

�tX∗ + Wt , with Wt ∼ N (0,6t) for some mean vector �t and covariance
matrix6t . For the AMP in ref. 35, this condition is enforced via the reduction to
an auxiliary AMP, which also allows to track the iterates of the original algorithm
and yields the state evolution parameters, such as �t and 6t above. This
reduction crucially relies on splitting the matrix Y that multiplies the iterate ut ,
into the rank-one signal plus the noise matrix. In contrast, in Eq. 10, the iterate
is multiplied by the preprocessed matrix J(Y), which cannot be directly split in
a similar fashion. Hence, we track all the contributions (Ykut)k≤K , so that we

can split them as Ykut = Y Yk−1ut = λ
N X∗〈X∗, Yk−1ut〉+ ZYk−1ut .

The key idea is to map the first T iterations of Eq.10 to the firstK× T iterations
of an auxiliary AMP with iterates (z̃t , ũt)t∈[KT] and denoisers {h̃t+1}t∈[KT],

z̃t = Zũt −
∑
i≤t

b̄t,iũ
i, ũt+1 = h̃t+1(z̃

1, . . . , z̃t , u1, X∗), [13]

whose state evolution can instead be deduced from ref. 35. The denoisers
{h̃t+1}t∈[KT] of this multistage auxiliary AMP are chosen so that, for t ∈ [T]
and ` ∈ [K],

1
N
‖ũK(t−1)+`

− Y`−1ut‖2
2

N→∞
−−−−→ 0. [14]

More specifically, for t ∈ [T] and ` ∈ {2, . . . , K}, the denoiser h̃K(t−1)+` giv-

ing ũK(t−1)+` is a linear combination of past iterates ũ1, . . . , ũK(t−1)+`−1

and of z̃K(t−1)+`−1; furthermore, the coefficients of these linear combinations
are chosen to ensure that ũK(t−1)+`

≈ Y`−1ut . Hence, by using Eq. 13 with
Kt in place of t, one gets (Y`ut)`∈[K] from z̃Kt and (ũK(t−1)+`)`∈{2,...,K}

(up to an oN(1)). Thus, J(Y)ut can be expressed as a linear combination
of (ũ1, . . . , ũKt , z̃Kt), which in turn is a linear combination of i) the past
iterates {ui}i∈[t], ii) the signal X∗, plus iii) independent Gaussian noise. By
inspecting the coefficients of this linear combination, one deduces a) the
Onsager coefficients {ct,i}i∈[t],t≥1 (as the coefficients multiplying the past

iterates {ui}i∈[t]), b) the mean µt (as the coefficient multiplying the signal
X∗), and c) the covariance matrix6t (as the covariance matrix of the remaining
noise terms). Finally, by making h̃Kt+1 depend on gt+1, we enforce that

ũKt+1
≈ ut+1. The description of the auxiliary AMP is deferred to SI Appendix,

C.1, and its state evolution follows in SI Appendix, C.2.
In summary, the derivation of BAMP’s Onsager coefficients involves approxi-

mating {Ykut}k≤K−1. This suggests an alternative choice of denoisers leading
to the algorithm dubbed AMP-AP: For each batch of K iterations, we pick linear
denoisers in the first K − 1 of them, as this allows to construct {Ykut}k≤K−1;
then, at the K-th iteration, we pick the posterior mean using all the past iterates,
as this—in principle—allows one to assemble the vectors {Ykut}k≤K−1 to obtain
J(Y)ut as in BAMP. We note that AMP-AP does not require the coefficients of
the polynomial J(Y), but it rather leaves to the posterior mean denoiser to learn
them from the data. As such, it provides an efficient alternative to our proposed
BAMP.

Data, Materials, and Software Availability. All codes for generating the
figures and to test the proposed AMP algorithm have been deposited in GitHub
(https://github.com/fcamilli95/Structured-PCA-) (46). The CIFAR-10 dataset is
available at (https://www.cs.toronto.edu/~kriz/cifar.html) (48). The GTEx dataset
is available at (https://gtexportal.org) (52).
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