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Abstract

Masonry structures, although classically suitable to withstand gravitational loads, are sensibly
vulnerable if subjected to extraordinary actions such as earthquakes, exhibiting cracks even for
events of moderate intensity compared to other structural typologies like as reinforced concrete
or steel buildings. In the last half-century, the scientific community devoted a consistent effort to
the computational analysis of masonry structures in order to develop tools for the prediction (and
the assessment) of their structural behavior. Given the complexity of the mechanics of masonry,
different approaches and scales of representation of the mechanical behavior of masonry, as well
as different strategies of analysis, have been proposed. In this paper, a comprehensive review of
the existing modeling strategies for masonry structures, as well as a novel classification of these
strategies are presented. Although a fully coherent collocation of all the modeling approaches is
substantially impossible due to the peculiar features of each solution proposed, this classification
attempts to make some order on the wide scientific production on this field. The modeling strategies
are herein classified into four main categories: block-based models, continuum models, geometry-
based models, and macroelement models. Each category is comprehensively reviewed. The future
challenges of computational analysis of masonry structures are also discussed.
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1. Introduction

Masonry structures represent a large part of the existing constructions in the world. A

great part of the historic architectural heritage consists of monumental masonry structures

(buildings, towers, castles, churches, mosques, temples, etc.). Furthermore, ordinary resi-

dential buildings are typically made of masonry in several countries. As it can be noted in

Figure 1, considerable differences appear between monumental and ordinary buildings, in

terms of material, geometry and structural details.

(a) (b)

Figure 1: Examples of (a) monumental and (b) ordinary masonry structures.

It is well known that unreinforced masonry (URM) structures, although classically suit-

able to withstand gravitational loads, are sensibly vulnerable if subjected to extraordinary

actions such as earthquakes. Indeed, the structural response to this kind of actions is often

characterized by the arising of cracks in the masonry and/or partial (or even full) collapses

even for seismic events of moderate intensity if compared to other structural typologies

like as reinforced concrete or steel buildings. Cracking in masonry structures could be also

caused by differential settlements of the soil under foundations. Given the heterogeneity of

masonry, made of blocks usually bonded with mortar, cracks typically run along the mortar

joints, although cracks through blocks may appear as well depending on the relative strength

properties of the two basic components (i.e. mortar and blocks). Indeed, alternative solu-

tions to the unreinforced one have been developed over the centuries, aimed at improving the

properties of ductility and dissipation as well as the strength, as the confined or reinforced

masonry. Despite that, the paper focuses only to the unreinforced masonry solution.

In the last half-century, the scientific community devoted a consistent effort to the com-

putational analysis of masonry structures. The main objective at the basis of this topic
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is that, if a mechanical model is found to be able to simulate the structural response of

masonry structures, it can be used to predict the structural response to extraordinary loads

and, therefore, to evaluate the main weaknesses and safety of a masonry building. Although

new masonry buildings can be designed and computationally analyzed, this approach has

been mainly oriented to the assessment of the near-collapse behavior of existing masonry

buildings, given their widespread dissemination and their weak structural response.

However, given the deep complexities and uncertainties which characterize the geometry

of buildings (especially for the historic ones) and the mechanical response of masonry (highly

nonlinear), the computational analysis of masonry structures is still a challenging task.

In this paper, a comprehensive review of the existing modeling strategies for masonry

structures is presented and a classification of these strategies is proposed. This classification

of modeling strategies for masonry structures consists of the following four categories (Figure

2): (i) block-based models (BBM), (ii) continuum models (CM), (iii) macroelement models

(MM), and (iv) geometry-based models (GBM). Although a fully coherent collocation of

all the modeling approaches is substantially impossible due to the peculiar features of each

solution proposed, this classification attempts to make some order on the wide scientific

production on this field.

Firstly, the main mechanical and geometrical challenges of masonry structures are briefly

discussed in Section 2. Then, the limitations and possibilities of analysis approaches (i.e.

incremental-iterative analysis and limit analysis) for masonry structures are pointed out

in Section 3. The proposed classification of modeling strategies for masonry structures is

presented in Section 4. Each category is then comprehensively reviewed (BBM in Section

5, CM in Section 6, MM in Section 7, and GBM in Section 8) and the limitations and

possibilities of each strategy are deeply discussed. In the conclusions (Section 9), a summary

of the pros and cons and of the fields of application of each category is given and a discussion

on future challenges of computational analysis of masonry structures is held.
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Figure 2: Modeling strategies for masonry structures.
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2. Mechanical and geometrical issues

A reliable simulation of the mechanical response of an existing masonry structure should

be based on reliable mechanical properties characterized through experimental tests and on

detailed geometrical and structural surveys.

This section aims to briefly highlight the main mechanical and geometrical challenges

which arise when dealing with masonry structures. Further aspects on this topic can be

found in [1, 2].

2.1. Masonry mechanical behavior

Masonry is a very complex material from a mechanical point of view. It is composed of

blocks usually bonded with mortar. Blocks are typically made of quasi-brittle materials such

as building stones, fired and non-fired bricks. Blocks are assembled with a certain pattern,

which is called “bond”. This makes masonry an heterogeneous material. As highlighted in

[1], the term “masonry” actually refers to a very wide category of building materials (Figure

3), with different mechanical features and peculiarities.

(a) (b) (c)

Figure 3: Examples of masonry: (a) brick masonry, (b) stone masonry and (c) Inca’s masonry (dry stone
masonry).

The overall masonry response is governed by the mechanical properties of its compo-

nents (block and mortar) and the bond between them. Masonry components are generally

characterized by a quasi-brittle response in tension and compression. In particular, the

compressive behavior is characterized by much higher values of strength and fracture en-

ergy with respect to the tensile behavior. Beyond the nonlinearity showed by the masonry

components, the bond between blocks and mortar is usually very weak, characterized by

a normal stress-dependent cohesive-frictional behavior in shear and a cohesive behavior in

tension (with essentially irrelevant cohesion in case of dry stone masonry), both including

softening of the cohesion [2]. Therefore, the overall response of masonry is highly nonlinear.
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Masonry is an anisotropic material [3]. Anisotropy can be observed in the elastic be-

havior (elastic anisotropy), in the strength properties (beyond the difference between com-

pressive and tensile strengths, distinctive of quasi-brittle materials, it shows also different

strengths along with different directions, i.e. strength anisotropy), and in the post-peak

response (brittleness anisotropy). In particular, regular brick masonry usually shows sig-

nificant anisotropic properties. Conversely, anisotropy in random stone masonry, although

a significant difference in compressive and tensile strengths is always observed, could be

less significant (e.g. in terms of elasticity, strengths, and brittleness) than in regular brick

masonry, given the lack of periodicity in the material.

The interpretation of the mechanical behavior of masonry could be based on different

scales, typically the scale of the material [3, 4, 5] and the scale of the structural element

[6, 7, 8, 9, 10]. For both cases, the description of the mechanical behavior has to be generally

defined in terms of stiffness, strength and ductility. Figure 4 shows the limit strength

domains of masonry at the scale of the material (Figure 4(a)) and at the scale of the pier

(Figure 4(b)) for plane stress states.

(a) (b)

Figure 4: Failure modes and limit domains of masonry: (a) scale of the material and (b) scale of the pier,
from [7].
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Failure mechanisms in masonry are usually complex and articulated. Typical failure

modes of masonry at a two-block masonry assemblage scale are sketched in Figure 5. At a

structural scale, some examples of masonry failure are depicted in Figure 6.

(a) (b) (c)

(d) (e)

Figure 5: Masonry failure mechanisms (at a two-block masonry assemblage scale, from [11]): (a) block-
mortar bond tensile failure, (b) block-mortar bond shear sliding, (c) diagonal masonry cracking, (d) masonry
crushing, and (e) block and mortar tensile cracking.

2.2. Experimental characterization of masonry

The experimental characterization of masonry mechanical properties is still a challenging

task. Indeed, although several experimental tests and set-ups have been proposed in the

last decades, their reliability and reproducibility are still object of debate [13, 14].

Basically, the experimental characterization of masonry could be done at different scales,

as shown in Figure 7: masonry components (block, mortar and block-mortar bond), wallets

(small masonry assemblages), panels (real-scale masonry walls), and buildings (full-scale

masonry structures).

When dealing with existing masonry buildings, in-situ tests should be used to mechani-

cally characterize the structure [16, 17]. However, in-situ testing is usually characterized by

larger difficulties and limitations than laboratory testing. This leads, in general, to greater

uncertainties on the characterized mechanical properties. Even, merely non-destructive tests

7



(a) (b) (c) (d)

Figure 6: Masonry failure mechanisms (at a structural scale): (a) diagonal cracking, (b) sliding, (c) crum-
bling, and (d) crushing (from [12]).

(a) (b) (c) (d)

Figure 7: Experimental characterization of masonry at different scales: (a) masonry components testing
(from [13]), (b) wallets testing (from [15]), (c) panels testing (from [15]), and (d) building testing (from
[15]).

could be used in historic monumental buildings to guarantee their conservation and authen-

ticity [18, 19]. To limit the invasiveness, together with experimental tests, also indirect

methods have been proposed in the literature [20] to assign mechanical properties to ma-

sonry which are based on a qualitative interpretation of its main features (such as quality of

mortar joints, effectiveness of in-plane and transversal interlocking, bond). Anyway, a lim-

ited mechanical information can be generally obtained on this kind of masonry structures.

2.3. Structural details

In masonry structures, structural details play a fundamental role in the mechanical re-

sponse. Indeed, the toothing between orthogonal walls (Figure 8), the quality of connection

with horizontal diaphragms, the flexibility of horizontal diaphragms, the interaction with ad-

jacent buildings, etc., could considerably affect the structural behavior of masonry buildings
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[21].

(a) (b)

Figure 8: Example of corner between two orthogonal masonry walls (one leaf running bond walls): (a)
toothing texture, and (b) without-toothing texture of the corner.

In general, the structural details also depend on the historical evolution of the building,

in terms of restorations, additions of parts, destination changes, damages and repairs, etc.

The knowledge of these aspects could be challenging for historic structures, as they are the

result of a subsequent superimposition of modifications along with the centuries. Indeed, the

setting up of an effective knowledge procedure when dealing with masonry cultural heritage

assets is related not only to the cost-benefit optimization (with respect to the reliability of

the final outcome), but also to the minimization of invasiveness on the construction, with

the aim of its conservation [22]. Beyond the traditional approaches proposed in standards

or guidelines for the seismic assessment of existing buildings (e.g. at international levels,

Eurocode 8 - Part 3 [23] and ASCE/SEI 41/06) or, more specifically, of heritage structures

[24, 25], literature proposals to improve the knowledge phase have been recently developed

[26, 27].

2.4. Geometrical challenges

In some cases, the definition of the geometry of the structure could be challenging as

well, especially for historic monumental buildings characterized by complex and irregular

geometries. In these cases, an accurate geometrical and structural survey is required.

One first issue concerns the identification of the structure (i.e. the load-bearing system)

within the building geometry. This non-trivial operation has to be carried out by the analyst

basing on the knowledge of the building.

Another issue regards the employability of the geometry in structural analysis purposes.

The geometry of these structures can be manually drawn on a computer-aided design (CAD)

environment basing on the geometric survey. The CAD-based geometry can be directly used
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within simplified structural analysis frameworks, such as the one proposed in [28]. However,

the employability of this CAD-based geometry in mesh-based structural analysis could be

problematic. Indeed, the discretization process of these geometries is usually accompanied

by mesh errors, compatibility problems, excessively refined meshes, etc. Several approaches

which use as input 3D point clouds for the automatic mesh generation of historic building

have been recently proposed in [29, 30, 31, 32] to deal with the aforementioned issues. The

development and the optimization of these methods is still an on-going process.

3. Analysis approaches

The collapse or near-collapse response of masonry structures can be investigated following

two main ways: (i) incremental-iterative analyses and (ii) limit analysis-based solutions. In

this section, the main features of these two analysis approaches are briefly recalled.

3.1. Incremental-iterative analyses

In incremental-iterative analysis procedures, the evolution of the equilibrium conditions

of a structure subjected to certain actions is investigated step-by-step. The loading and the

structural response are divided into a sequence of intervals, increments or “steps”. Iterations

are hence carried out to reach equilibrium within each step. These procedures allow to

account for mechanical nonlinearity, which is fundamental and mandatory to be considered

for a reliable assessment of the collapse and near-collapse behavior of masonry structures.

Geometric nonlinearity can be accounted for as well. Although few examples of linear elastic

models have been developed for the preliminary assessment of historic masonry structures

[33, 34], their effectiveness in investigating the failure mode and the safety of these structure

is substantially limited.

As the aim of these analyses consists in studying the collapse behavior of masonry struc-

tures, large displacements could occur and, therefore, geometrical nonlinearity could play a

non-marginal role and should be included in the computations.

Incremental-iterative analyses could be classified in nonlinear static and nonlinear dy-

namic (time history) analyses:

(i) Nonlinear static analysis. In nonlinear static analyses, the structure is subjected to

certain actions step-by-step until its peak-load and beyond that into the post-peak

regime. The pseudo-time in which the structural response evolves does not represent

any physical characteristics. Simulations can be performed in either load control or
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displacement control, and in event-by-event damage control (e.g. sequentially linear

analysis [35, 36]).

Given the mechanical nonlinearity assumed for the material, nonlinear differential

equations have to be solved. These equations can be transformed in nonlinear al-

gebraic equations and solved within a numerical framework. Typically, the nonlinear

equations are linearized in a step-wise manner and resolved following an iterative proce-

dure. Among the most famous iterative implicit procedures are: the Picard iteration

(or direct iteration) method, the Newton-Raphson iteration methods, and the Riks

methods (the interested reader is referred to [37] for more information about iterative

procedures).

These kind of analyses are typically used to simulate quasi-static experimental tests on

masonry structures and to perform the so-called pushover analysis. Pushover analysis

is a very common and standardized procedure to assess the seismic behavior of a

masonry structure, which is subjected to a monotonically increasing displacement of

a control node given a load pattern of horizontal forces kept constant in shape during

the analysis.

(ii) Nonlinear dynamic (time history) analysis. In nonlinear time history analysis (also

called transient nonlinear analysis), the structure is step-by-step subjected to time-

dependent actions and the structural response evolves in the actual time, accounting

for inertial and damping effects as well.

Time integration methods are employed to approximately satisfy the equations of

motion during each time step of the analysis. These methods may be classified as either

explicit or implicit [38]. An explicit method is labeled as one in which the new response

values calculated at each step depend only on quantities obtained in the previous step.

Conversely, in an implicit method the expressions giving the new values for a given

step include values which pertain to that same step. Therefore, trial values of the

unknowns must be assumed and refined by successive iterations. Among the most

famous time integration methods are the following: Euler-Gauss procedure, Newmark

Beta methods, second central difference formulation, linear acceleration procedures

[38]. In any case, a large body of literature has been written on this topic and the

interested reader is referred to [38] for more details.

Nonlinear time history analyses can simulate the effects of dynamic actions (e.g. earth-

quakes, impacts, explosions, etc.) on masonry structures. Indeed, the possibility to
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account for time-dependent loads allows to simulate the response of the structure

against, for instance, a real accelerogram. Shaking table experimental tests on ma-

sonry structures can be analyzed as well. Occasionally, dynamic analysis can be also

used for simulating quasi-static tests and processes, by applying, for example, loads in

a very slow way.

3.2. Limit analysis-based solutions

Heyman [39] firstly applied limit theorems of plasticity to masonry structures, adopting

the following three hypotheses:

(i) masonry has no tensile strength,

(ii) the compressive strength of masonry is infinite,

(iii) sliding of one masonry block upon another cannot occur.

These hypotheses, together with the negligibility of elastic strains, allowed the formulation

of the static theorem (lower-bound limit analysis) and the kinematic theorem (upper-bound

limit analysis) for masonry structures.

The Heyman’s rigid no-tension model has been widely used and fruitfully applied in

analyzing the stability of masonry systems [40]. Firstly, these assumptions allowed simple

graphic statics solutions for the stability analysis of masonry vaults [41], and kinematic

analysis of common seismic failure modes of masonry buildings [42]. Secondly, the Hey-

man’s hypotheses established a solid base for the formulation of modern computational

limit analysis-based methods. These numerous methods (that will be discussed in the fol-

lowing) are based on either the static theorem [43] or the kinematic theorem [44], and the

problem can be formulated as solution of an optimization problem (using or not genetic

algorithms), of nonlinear differential equations, of linear or sequential linear programming,

etc.

One of the main disadvantages of limit analysis-based solutions consists in the fact that

their output is limited to the collapse multiplier and the collapse mechanism, and no in-

formation is available on the ultimate displacement and/or post-peak response (like as in

discontinuity layout optimization (DLO) procedures [45]), which appear fundamental in

widely adopted displacement-based seismic assessment procedures for masonry structures.

12



4. Modeling strategies

In this section, a classification of the modeling strategies for masonry structures is pro-

posed. This classification is focused on the ways masonry and/or masonry structures are

modeled. Therefore, the analysis approaches discussed in Section 3 can be, in principle,

applied to each modeling strategy category.

Each modeling strategy has some peculiar appealing features, which, in general, could

have a specific area of application. Furthermore, depending on the scale of representation

conceived in the numerical strategy, different scales of material testing (Figure 7) could be

used to calibrate the mechanical parameters of the model, see Section 2.2.

Although each modeling solution that can be found in the scientific literature presents

original and peculiar features and, hence, a fully coherent collocation of all the modeling

approaches appears substantially impossible, the following solution tries to make some order

on the wide scientific production on this field.

The present classification proposes four main categories of modeling strategies for ma-

sonry structures (Figure 2):

(i) Block-based models. Masonry is modeled in a block-by-block fashion and, therefore, the

actual masonry texture can be accounted for. The block behavior can be considered

rigid or deformable, whereas their interaction can be mechanically represented by

means of several suitable formulations, that are reviewed in Section 5.

(ii) Continuum models. The masonry material is modeled as a continuum deformable

body, without distinction between blocks and mortar layers. The constitutive law

adopted for the material can be defined either through (i) direct approaches, i.e. by

means of constitutive laws calibrated, for example, on experimental tests, or through

(ii) homogenization procedures and multi-scale approaches, where the constitutive law

of the material (considered as homogeneous in the structural-scale model) is deduced

from a homogenization process which relates the structural-scale model to a material-

scale model (representing the main masonry heterogeneities) of a representative volume

element (RVE) of the structure. In this case, the solution of structural-scale problems

could be formulated in a multi-scale framework. These continuum models are reviewed

in Section 6.

(iii) Macroelement models. The structure is idealized into panel-scale structural compo-

nents (macroelements) with a phenomenological or mechanical-based response. Typ-

ically, two main structural components may be identified: piers and spandrels. The
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subdivision of the structure into panel-scale portions is an a priori operation made by

the analyst who interprets the structural conception of the building. Although these

models could, in some respects, be considered continuum approaches, the main differ-

ence with the models in (ii) is that the constitutive law of macroelements attempts

to reproduce the mechanical response of panel-scale structural components, while the

constitutive law of the models in (ii) tries to reproduce the mechanical behavior of the

masonry material. Macroelement models are reviewed in Section 7.

(iv) Geometry-based models. The structure is modeled as a rigid body. The geometry of

the structure represents the main (or even the only) input of these modeling strategies.

The block-by-block definition of masonry is not pursued in this category, being block-

based approaches included in category (i). The structural equilibrium and/or collapse

are investigated through different procedures. Typically, these methods implement

limit analysis-based solutions (see Section 3.2), which can be based on either static or

kinematic theorems. Although these models could, in some respects, be considered as

continuum models (see category (ii)), it should be remarked that the present category

is based on the assumption of rigid body. The geometry-based models are reviewed in

Section 8.

In the following, each category is comprehensively reviewed, showing the limitations and

possibilities of each approach, accounting for new and recently proposed solutions. In this

spirit, the following sections could be seen as an updating of well-known review papers

[46, 47, 48] on this field.

5. Block-based models

Block-based models represent the masonry behavior at the scale of the main heterogeneity

of the material, characterized by blocks assembled by mortar (or dry) joints, which governs

the main aspects of its mechanical and failure response. Indeed, these models can account

for the actual masonry texture, which substantially controls the anisotropy and the failure

pattern of the material.

The first example of nonlinear block-based models dates probably back to 1978, thanks

to the pioneering work by Page [49], where masonry is considered as an assemblage (that

will be called “textured continuum” in the following) of elastic brick elements acting in

conjunction with linkage elements simulating the mortar joints which have limited shear
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strength depending upon the bond strength and the level of compression. From that work,

several block-based models have been developed and proposed.

The main positive features of the block-based modeling strategy category can be sum-

marized as:

� Representation of the actual masonry bond and many structural details (e.g. toothing

of corners between orthogonal walls, see Figure 8);

� Mechanical characterization from small-scale experimental tests;

� Clear representation of the failure modes, which do not need demanding interpretation.

Indeed, detailed insights on the weakest parts of the structure can be found, helping

the designing of strengthening devices;

� Anisotropy intrinsically accounted for in the definition of the actual masonry bond;

� 3D solid and 2D shell models can account for, at the same time, the in-plane and

out-of-plane responses of masonry walls (and their interactions [50]);

� The interaction between orthogonal walls if subjected to horizontal loads (in terms,

for example, of vertical reaction transfer) is intrinsically accounted for in 3D models.

Conversely, the main negative features of the block-based models can be summarized as:

� The main issue of these models resides in their huge computational demand. This well-

known problem [46, 47], typically limits the applicability of these modeling strategies

to panel-scale structures. Indeed, few examples of applications on full-scale masonry

structures can be found in the literature [51, 52]. However, given the continuous power

increment of the computational facilities, this problem could be less significant in the

near future;

� 2D membrane models unlikely show a reliable out-of-plane response;

� The actual bond of existing masonry structures is often non-completely know. There-

fore, the block-by-block discretization could be approximated in those cases;

� The assembly of the model is usually a time-consuming and complex operation, which

limits the use of these modeling strategies to academic studies and very few high-level

consultancy groups.
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In this section, block-based models are classified into different subcategories depending

on the way the interaction between blocks is formulated (Figure 9):

1. Interface element-based approaches;

2. Contact-based approaches;

3. Textured continuum-based approaches;

4. Block-based limit analysis approaches;

5. Extended finite element approaches.

Each subcategory is then exhaustively reviewed in the following.

16



Block-based models (BBM)
Interface element-based approaches

Baraldi & Cecchi (2017)

D’Altri et al. (2018)

Chisari et al. (2018) Lourenço & Rots (1997)

Milani (2008)

Çak� et 
al. (2016)

Bea�ni et al. (2017)

Contact-based approaches

Textured continuum-based approaches

Block-based limit analysis approaches

Extended �nite element approaches

Gambaro�a & 
Lagomarsino (1997)

Fo� et al. (2018) Forgács et al. (2017)

Rafiee et al. (2014)

Serpieri et al. (2017)

Ali & Page 
(1988)

Petracca et al. 
(2017)

Abdulla et al. (2017)

Zhai et al. (2017)

Orduña & 
Lourenço (2005)

Ferris & Tin-Loi (2001)
Cavicchi & Gambaro�a (2006)

Por�oli et al. (2014)

Figure 9: Examples of block-based models.
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5.1. Interface element-based approaches

One of the first nonlinear interface-based models to simulate the collapse behavior of ma-

sonry structures appeared in [53], where the mortar joints were modeled with zero-thickness

interface elements and the masonry units (which were considered as expanded to account for

the geometry of the mortar joints) were modeled with smeared crack elements, within a FE

approach (Figure 10). In particular, a dilatant interface plasticity-based constitutive model

capable of simulating the initiation and propagation of interface fracture under combined

normal and shear stresses was developed.

Figure 10: Example of a pioneering interface-based model [53].

Other early applications of interface elements to masonry were reported in [54, 55] where

a method was also introduced to enlarge the blocks so as to be able to use zero-thickness

interface elements for mortar joints, given that they show a certain thickness in reality.

Furthermore, a priori defined potential cracks within the blocks were introduced [54, 55].

An important improvement of this approach has been proposed by Lourenço & Rots

[56]. In particular, they developed a multi-surface interface-based model in which all the

nonlinearities (including shear sliding, tensile cracking and also compressive crushing) were

concentrated in the interfaces. This permitted to increase the efficiency of the model, in the

framework of softening plasticity. Such a model [56] has been diffusely used in the years that

followed, and is still today utilized for many applications on masonry structures [57, 58]. For

example, an interesting application of this interface model has been conducted in [59] for

historic non-regular stone masonry shear walls. Furthermore, an extension of the interface

model developed in [56] to the cyclic behavior of masonry shear walls has been presented

and validated in [60], fully-based on the plasticity theory.

A cyclic mortar joint interface model based on damage mechanics has been developed by

Gambarotta & Lagomarsino [61]. In particular, the constitutive equation of the interface is
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postulated in terms of two internal variables representing the frictional sliding and the mortar

joint damage. The interface model exhibits a brittle response under tensile stresses and is

characterized by frictional dissipation together with stiffness degrading under compressive

stresses (Figure 9).

Other approaches, based on cohesive interfaces with damage and friction have been

presented in [62, 63, 64], which were suitable for the simulation of masonry shear walls.

Additionally, several strategies have been based on the assumption of rigid blocks which

interact through nonlinear springs simulating the response of masonry joints as well as

crushing. This is the case, for example, of the model developed by Malomo et al. [65] within

the framework of the so-called applied element method. Although similar, in principle, to

the rigid body spring model (RBSM) developed by Casolo [66] (which is, however, used

without accounting for the actual masonry bond and, so, the spring linear and nonlinear

properties have to be homogenized), in [65] the block-by-block modeling is pursued for the

analysis of the in-plane cyclic behavior of masonry walls.

All references described up unto this point are conceived for the analysis of 2D prob-

lems, typically in-plane problems. This aspect, as discussed above, considerably limits the

applicability of the modeling strategies to real problems. To overcome this issue, several 3D

models have been developed [67, 68, 69] to deal with real case studies as well. Primarily,

two different interface elements have been developed specifically for 3D analysis of masonry

structures.

Firstly, an extension of the Lourenço & Rots [56] multi-surface interface model to the 3D

case, accounting also for geometrical nonlinearity, has been developed by Macorini and Iz-

zudin [70]. In particular, a co-rotational approach has been employed in [70] for the interface

element, which shifts the treatment of geometric nonlinearity to the level of discrete entities,

and enables the consideration of material nonlinearity within a simplified local framework

employing first-order kinematics (Figure 9). This approach has been extensively used for

real applications [71, 72] by using partitioning routines [73, 74]. Moreover, the interface

model presented in [70] has been further developed for simulating the cyclic response of

masonry structures [51] by using a damage-plasticity approach.

Secondly, another interface constitutive model has been developed in [75] and coupled

with elasto-plastic block elements for the explicit cyclic analysis of 3D masonry walls. This

interface model has been broadly used for studying several aspects of the mechanics of

masonry walls [76, 77, 50, 78].
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5.2. Contact-based approaches

Block-based modeling strategies based on contact mechanics are widely used for the ac-

curate modeling of masonry structures. Basically, rigid or deformable (linear or nonlinear)

blocks interact following a frictional or cohesive-frictional contact definition. Although sev-

eral in-house formulations have been developed and validated (see for instance [79, 80]),

three main families of contact-based approaches can be found.

Firstly, a wide family of modeling approaches has been based on the distinct element

method (DEM), also called discrete element method in the literature [81], originally pro-

posed by Cundall & Stack [82] for the analysis of granular assemblies and implemented in

the UDEC code [83]. DEM approaches are based on contact penalty formulations and ex-

plicit integration schemes. In this context, several applications have been conducted on real

masonry structures [84, 85, 86, 87, 88, 89, 90, 91, 92, 93] using rigid or linear elastic blocks

(Figure 9).

Secondly, an implicit approach which considers the deformability of blocks is the so-

called discontinuous deformation analysis (DDA) [94]. DDA fulfills constraints of no tension

between blocks and no penetration of one block into another. Also, Coloumb’s law is fulfilled

at all contact positions for both static and dynamic computations [95].

Thirdly, another family is based on the non-smooth contact dynamics (NSCD) method,

developed by Jean [96] and Moreau [97] and characterized by a direct contact formulation,

in its non-smooth form, implicit integrations schemes, and energy dissipation due to blocks’

impacts. This approach, although successfully applied to several real case studies [98, 99,

100, 101], appears limited to dry stone masonry structures, as it seems still not capable in

representing cohesive responses of the mortar joints.

Although the approaches belonging to the aforementioned three families are generally

rather fast and permit full-scale applications as well, they cannot properly account for ma-

sonry crushing, which can be, in some cases, crucial in the mechanical response of masonry

structures. To this aim, other approaches have been developed to account for block non-

linearity in tension and compression (Figure 11). For example, Sarhosis & Lemos [102]

accounted for masonry crushing (Figure 11(a)) conceiving masonry units and mortar joints

as an assemblage of densely packed discrete irregular deformable particles bonded together

by zero-thickness contact interfaces, .

In the framework of the so-called finite-discrete element method (FDEM) [103], Smol-

janović et al. [104] developed a code for the computational analysis of dry stone masonry

structures [104] and extended it to 3D structures in [105]. Additionally, they implemented
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the nonlinear response of blocks in [106] to account for masonry crushing and block frag-

mentation (Figure 11(b)).

Finally, a very recent 3D block-based model with contacting damaging blocks has been

developed and validated in [11], where the mortar layers are explicitly modeled in the block

mesh (becoming a “detailed” model according to the definition in [46]). This model, based

on implicit integration schemes, contact penalty method, compressive and tensile damage for

the blocks, and rigid-cohesive-frictional contact behavior, provided very accurate results for

the in-plane and out-of-plane response of masonry panels. Moreover, the model presented in

[11] has been extended to the cyclic behavior of full-scale masonry structures (Figure 11(c))

in [52].

(a) (b) (c)

Figure 11: Examples of contact-based approaches which include masonry crushing [102, 106, 52].

5.3. Textured continuum-based approaches

The main idea of block-based textured continuum models [49] is to have, in a FEM

framework with nonlinear elements, blocks and joints modeled separately without any inter-

face between them, allowing for nonlinear deformation characteristics of the two materials

as well as failure of the blocks, the mortar, or the mortar joints by bond.

An example of a pioneering mesh discretization of this kind of approaches is shown in

Figure 9 (see Ali & Page [107]), in which the FEs with block properties are distinguished

from the ones with mortar (or more correctly mortar joint) properties. In particular, the

model used in [107] uses a strength criterion for crack initiation and propagation, and the

smeared crack modeling technique for reproducing the effects of the crack.
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More recently, a block-based textured continuum model which discretizes both units and

mortar-joints with continuum elements, making use of a tension/compression damage model,

has been developed in [108]. Particularly, in [108] the damage model has been refined to

properly reproduce the nonlinear response under shear and to control the dilatancy. Another

solution, based on a enriched kinematic damage model, has been proposed in [109].

A very innovative approach to mechanically model the nonlinear response of mortar

joints has been lately presented in [110], where a microstructured 3D composite interphase

formulation based on a multiplane cohesive-zone model has been proposed. Basically, a

multiscale modeling strategy for the constitutive law of mortar joints has been adopted,

allowing to conduct a consistent and reproducible calibration procedure of the mortar joint

parameters.

5.4. Block-based limit analysis approaches

Block-based limit analysis represents an accurate and robust approach for the predic-

tion of collapse load and failure mechanism of masonry structures. Several 2D and 3D

approaches have been developed along the last two decades (Figure 9), generally based on

either static or kinematic theorems of limit analysis, even if the implementation of friction

in the computations is usually non-conservative with respect to the limit analysis theorems.

The first block-based limit analysis approach applied to masonry assemblages is proba-

bly the one developed by Baggio & Trovalusci [111], where the solution of the limit analysis

problem in the presence of friction at interfaces between rigid blocks, i.e. a nonlinear pro-

gramming problem, is obtained by solving a preliminary problem of linear programming,

corresponding to a linearized limit analysis in the presence of dilatancy at the interfaces

[112].

Another approach has been developed by Ferris & Tin-Loi [113], where the computa-

tion of the collapse loads of discrete rigid block systems, characterized by nonassociative

friction and tensionless contact interfaces, is formulated and solved as a special constrained

optimization problem, i.e. the so-called mathematical program with equilibrium constraints.

Furthermore, Sutcliffe et al. [114] developed a technique for computing the lower bound

limit loads in unreinforced masonry shear walls under conditions of plane strain. By using

a Mohr–Coulomb approximation of the yield surfaces, the numerical procedure proposed

in [114] computes a statically admissible stress field via linear programming and finite ele-

ments. By imposing equilibrium, an expression of the collapse load is formed by imposing

equilibrium, and the solution obtained is a rigorous lower bound on the actual collapse load.
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Later, Orduña & Lourenço [115, 116] proposed a solution procedure for the non-associated

limit analysis of rigid block masonry assemblages, incorporating non-associated flow rules

and a coupled yield surface.

Moreover, a formulation for limit analysis of masonry block structures with non-associative

frictional joints, using linear programming, has been proposed in [117], extended to 3D

structures accounting for torsional effects in [118], and optimized using cone programming

in [119]. In these approaches, rigid blocks interact via no-tension contact surfaces with

Coulomb friction.

Conversely, the approach proposed and developed by Milani [120], based on 3D FE upper

bound limit analyses of in- and out-of-plane loaded masonry walls, implements interfaces

with a Mohr–Coulomb failure criterion with tension cut-off and cap in compression for

mortar joints, whereas a Mohr–Coulomb failure criterion is adopted for bricks. Therefore,

mortar joint cohesion and masonry crushing are accounted for in this approach. Other

direct applications of this model can be found in [121, 122], whereas applications within

homogenization procedures are going to be discussed in the following section.

Although block-based limit analysis approaches have been also applied to real struc-

tures, e.g. masonry bridges in [123], their computational demand appears particularly high,

preventing their use for large-scale masonry structures.

5.5. Extended finite element approaches

Very recently, few block-based models formulated in the framework of the extended finite

element method (XFEM) have been proposed [124, 125] (Figure 9).

Particularly, Abdulla et al. [124] proposed a 3D model which includes surface-based

cohesive behavior to capture the elastic and plastic behavior of masonry joints and a Drucker-

Prager plasticity model to simulate crushing of masonry under compression (Figure 9).

Furthermore, XFEM is adopted in [125] to model the cracking behavior and the com-

pressive failure of masonry in infill panels, and the discrete interface element is employed

to simulate the behavior of the masonry mortar joints and the joints at the frame-to-infill

interface (Figure 9).

Although only two models have been proposed so far in this subcategory, these ap-

proaches can represent a powerful alternative for block-based analysis of masonry structures.

6. Continuum models

In continuum approaches, masonry is modeled as a continuum deformable body (Figure

12). This category of modeling strategies has the advantage that the mesh discretization does
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not have to describe the main heterogeneities of masonry, and, hence, can have dimensions

which can be significantly greater than the block size. So, the computational effort of

these approaches is, in general, lower than block-based approaches. However, given the

complexities of masonry from a mechanical point of view (Section 2), the definition of suitable

homogeneous constitutive laws for masonry is a challenging task, and can be pursued either

through (i) direct approaches, i.e. by means of constitutive laws calibrated, for example, on

experimental tests, or through (ii) homogenization procedures and multi-scale approaches,

where the constitutive law of the material (considered as homogeneous in the structural-

scale model) is derived from an homogenization process which relates the structural-scale

model to a material-scale model (representing the main masonry heterogeneities). The

homogenization process is typically based on refined modeling strategies (e.g. block-based

models) of a representative volume element (RVE) of the structure.
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Figure 12: Examples of continuum models.
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6.1. Direct approaches

Direct continuum models rely on continuum constitutive laws which can, somehow, ap-

proximate the overall mechanical response of masonry. In these approaches, the mechanical

properties (elastic parameters, strength domain, etc.) could be calibrated through experi-

mental tests or other data (e.g. experimentally-derived analytical strength domains), with-

out resorting to RVE-based homogenization procedures.

Several formulations, with different levels of approximation, have been developed and

tested on real applications. Indeed, although the mechanical properties of the homoge-

neous model should be, in theory, rigorously deduced from homogenization theories, many

simplified approaches have been successfully applied on interesting case studies.

One first family of direct approaches consists in a drastic idealization of the masonry

mechanical behavior, i.e. masonry is conceived as a perfectly no-tension material. Generally,

perfectly no-tension material means an isotropic medium incapable of sustaining tensile

stresses but, otherwise, linear-elastic [126]. This radical hypothesis, although sustained by

the fact that the mechanical characterization of masonry is very challenging especially in the

tensile regime, can be a valuable basis for preliminary structural analyses [127]. Nevertheless,

the hypothesis of no-tension material has been widely used in the analysis of the stability of

masonry vaults and domes [39, 40], in the framework of geometry-based models (Section 8).

In [127], an approximate, piecewise-linear description of perfectly no-tension material

behavior has been developed, leading to a very simple formulation of the discretized bound-

ary value problem in finite terms. Later, Angelillo [128] proposed a FE solution based on

a complementary energy theorem for elastic no-tension bodies. The solution relies on a

problem of minimization of a quadratic function with equality and inequality constraints.

Starting from an elementary stress field, an optimal approximate solution (safe in the spirit

of limit analysis) is reached. Other solutions of the FE analysis of no-tension structures can

be found in [129, 130, 131]. More recently, Bruggi [132] proposed a FE analysis of no-tension

structures as a topology optimization problem. Then, Bruggi & Taliercio [133] proposed a

non-incremental energy-based algorithm to define the distribution and the orientation of

an equivalent orthotropic material, minimizing the potential energy so that to achieve a

compression-only state of stress.

Although the cited no-tension approaches represent elegant solutions for such a complex

problem, their applicability to real case studies is still limited. Indeed, all the aforementioned

approaches are limited to 2D problems and only very recently 3D no-tension structures have

been investigated [134]. However, these approaches cannot simulate the post-peak behavior
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of masonry structures, which is a strong limitation in the field of seismic assessment of

structures. Moreover, although the assumption of null tensile strength can be considered,

in general, conservative, this could lead to failure mechanisms which are not coherent with

the ones experimentally observed, given that in reality the tensile strengths of masonry are

non-zero.

Other direct continuum models for masonry structures rely on continuum nonlinear con-

stitutive laws based either on fracture mechanics (smeared crack models), on damage me-

chanics, or on plasticity theory. Several smeared crack [135, 136], plastic [137], damage [138],

and plastic-damage [139, 140] models have been primarily developed for the FE analysis of

concrete structures. However, their usability for the simulation of the collapse or near col-

lapse behavior of masonry structures presents some limitations, mainly due to the multi-level

anisotropy (elastic, strength and brittleness anisotropies, see Section 2) of masonry and its

heterogeneity introduced by mortar joints. A pioneering test of the accuracy of smeared

crack models for masonry structures is reported in [141]. While the model adopted in [141]

showed good performance with respect to flexure-dominated behavior, it showed problems

in capturing the brittle shear behavior of masonry panels.

Although non-fully coherent with masonry mechanics, smeared crack and isotropic dam-

age and plastic-damage models have been extensively used for analyzing masonry structures

[142], mainly due to their efficiency, their diffusion in commercial FE codes, and the relatively

few mechanical parameters to characterize.

Particularly, the utilization of these nonlinear models has been found especially indicated

for the analysis of historic monumental structures, given their limited computational effort

and their capability to represent complex and large-scale 3D geometries. In addition, historic

buildings are usually characterized by multi-leaf irregular randomly-assembled masonries,

which are often impossible to represent block-by-block and to mechanically characterize,

given also the strict limitations for destructive in situ tests on historic buildings [143]. Indeed,

poor information is usually available on the mechanical properties of historic masonries,

favoring the use of isotropic nonlinear models. Many applications of isotropic smeared crack,

damage and plastic-damage models have been successfully conducted on historic towers

[144, 145, 146, 146], churches and temples [147, 148, 149, 150], palaces [151, 152, 30, 153], and

masonry bridges [154, 155]. In particular, most of the applications on historic monumental

structures rely on 3D models (Figure 13), as the structural behavior is rarely representable

by 2D models, given the complex and irregular geometries of these buildings (Section 2).

Although each reliable damage model has to conceive a regularization of the fracture en-
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(a) (b) (c)

(d)

Figure 13: Examples of direct continuum isotropic approaches applied on historic monumental structures
[144, 153, 148, 155].

ergy, which is usually normalized on a characteristic dimension of the element, very coarse

meshes could lead to unsafe results as they are not able to essentially represent the damage

pattern and the stress redistribution. An enhancement of the aforementioned constitutive

models could be represented by the use of crack-tracking algorithms, originating from the

analysis of localized cracking in quasi-brittle materials, which ensure mesh-bias indepen-

dency of the numerical results and the realistic representation of propagating cracks in the

numerical simulation of fracture in quasi-brittle materials [156, 157].

However, when dealing with periodic well-organized masonry, the assumption of only one

tensile strength value (that governs the tensile response in each direction) risks to be too

simplistic. To this aim, some orthotropic nonlinear constitutive laws have been developed

and applied on masonry structures [158].

A first example of an orthotropic plasticity model with softening has been proposed in

[159], while in [160] the ability of that continuum model to represent the inelastic behav-

ior of orthotropic materials is shown, and a set of experimental tests to characterize the

constitutive behavior of masonry is proposed, demonstrating the capability of the model to
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reproduce the strength behavior of different masonry types.

Successively, the effect of anisotropy has been introduced in [161] by means of fictitious

isotropic stress and strain spaces. The material properties in the fictitious isotropic spaces

are mapped into the actual anisotropic space by means of a consistent fourth-order tensor.

The advantage of the model is that the classical theory of plasticity can be used to model

the non-linear behavior in the isotropic spaces.

Later, an orthotropic damage model specifically developed for the analysis of brittle

masonry subjected to cyclic in-plane loading has been described in [162]. Different elastic

and inelastic properties have been assumed along the two natural axes of the masonry (i.e.

the bed joints and the head joints directions) also as principal axes of damage.

More recently, Pelà et al. [163, 164] proposed an orthotropic damage model for the

analysis of masonry structures, in which the orthotropic behavior is simulated through the

concept of mapped tensors from the anisotropic field to an auxiliary workspace. The model

affords the simulation of orthotropic induced damage, while also accounting for unilateral

effects, thanks to a stress tensor split into tensile and compressive contributions. The dam-

age model has also been combined with a crack-tracking technique [165] to reproduce the

propagation of localized cracks in the FE problem.

Although the described direct continuum anisotropic approaches (Figure 12) represent

scientifically sound solutions, their application on real case study has been limited by the fact

that their computational effort and the number of material properties to be mechanically

characterized is substantially higher than isotropic approaches.

Additionally, other solutions adopt an homogeneous FE model of the structure, but,

instead of a proper continuum, they use alternative solutions to describe the nonlinear

behavior of masonry. For example, Reyes et al. [166] proposed a numerical procedure for

fracture of brickwork masonry based on the strong discontinuity approach, accounting for

the anisotropy of the material.

Other approaches, based on FE limit analysis, conceive the homogeneous structural-

scale model made of rigid or deformable elements, placing nonlinear interfaces in between

the elements, where plastic dissipation can occur. Dealing with historic full-scale buildings,

FE limit analysis approaches have been successfully applied [167, 32] by using averaged

mechanical properties, without using a rigorous homogenization procedure.

Finally, other approaches based on systems of springs [168, 169] can be fully characterized

through a suitable calibration of linear and nonlinear spring properties.

These latter approaches (FE limit analysis and spring-based approaches) can be con-
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sidered borderline in the context of continuum models (as they have interfaces between

elements or spring systems instead of a proper continuum). However, given that they even-

tually behave as a continuum (where all the deformabilities and nonlinearities are lumped in

the interfaces/springs) and the structure is effectively discretized by means of a continuum

mesh, their classification in this category could be considered legitimate.

6.2. Homogenization procedures & multi-scale approaches

The constitutive law of the homogeneous structural-scale model which tries to repre-

sent masonry can be deduced from homogenization processes, typically based on RVEs.

The definition of a proper RVE is essential, as it should be statistically representative of

the material-scale heterogeneity under study, embodying the characteristic material hetero-

geneities. To this aim, several RVEs geometries have been proposed, to account for different

periodic and non-periodic patterns of masonry (Figure 14).

(a) (b) (c)

(d) (e)

Figure 14: Examples of RVEs adopted for the derivation of homogenized masonry mechanical properties
[170, 171, 172, 173, 174].

Given the mechanical complexity of masonry, in terms, for example, of anisotropy, a

very wide family of continuum approaches rely on homogenization procedures and multi-

scale approaches [175]. Basically, three main families of approaches could be distinguished

(Figure 15):

(i) A priori homogenization approaches (Figure 15(a)), which typically rely into two steps:

in the first step, (a priori) RVE-based homogenization is performed to deduce the
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mechanical properties of the structural-scale material; the second step relies into the

introduction in the structural-scale model of the homogenized mechanical properties.

(ii) Step-by-step multi-scale approaches (Figure 15(b)), in which the overall behavior at the

structural scale is step-by-step determined by solving a boundary value problem (BVP)

on the RVE for each integration point of the structural-scale model. In this way, an

estimation of the expected average response to be used as constitutive relations in the

structural-scale model is step-by-step obtained. In these approaches, the heterogeneity

of masonry is not directly accounted for in the structural-scale model, being explicitly

accounted for into the material-scale RVE.

(iii) Adaptive multi-scale approaches (Figure 15(c)), in which the material-scale model is

adaptively inserted and resolved on the structural-scale model, thus establishing a

strong coupling between the two scales.

(a)

(b) (c)

Figure 15: Homogenization procedures and multi-scale approaches: (a) a priori homogenization [176], (b)
step-by-step multi-scale [177], and (c) adaptive multi-scale [178] approaches.
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6.2.1. A priori homogenization approaches

A priori homogenization approaches typically consists of two steps: in the first step the

mechanical properties are deduced through an homogenization process, and in the second

step homogenized properties are introduced in the structural scale model. However, most of

the solutions provided in the literature focused on the first step, while only few approaches

dealt with both steps.

The deduction of homogenized constitutive laws for the analysis of heterogeneous quasi-

brittle materials, such as masonry, can be based on closed-form (analytical), quasi-analytical,

and numerical methods.

A pioneering contribution on the mathematical description of the macroscopic behavior

of brick masonry has been given in [179]. Successively, Anthoine [170] rigorously derived

the in-plane elastic characteristics of masonry through homogenization theory. Briccoli

Bati et al. [180] applied a material-scale model for the determination of the overall linear

elastic mechanical properties of a simple texture of brick masonry. In the framework of

the Cosserat continuum models, Masiani & Trovalusci [181] studied the case of 2D periodic

rigid block assemblies joined by linear elastic mortar joints, deducing the structural-scale

model characterization of the equivalent medium by equating the virtual stress power of the

coarse model with the virtual power of the internal actions of the discrete fine model. An

extension to the 3D case has been analyzed in [182]. Further approaches for the derivation

of homogenized elastic properties of masonry can be found in [183, 184, 185, 186, 187, 172].

Other approaches, beyond the definition of elastic properties, attempted to derive ma-

sonry strength domains (both in-plane and out-of-plane) [188]. For example, in [189], a

structural-scale strength criterion for in-plane masonry response is derived through a con-

tinuum model. Zucchini & Lourenço [190, 191] derived both elastic moduli and failure

surfaces through a linear and nonlinear homogenization procedures. Wei & Hao [192] de-

velop a continuum damage model for masonry accounting for the strain rate effect, using

a homogenization theory implemented in a numerical algorithm. Stefanou et al. [173] pro-

vided a straightforward methodology for the estimation in closed-form of the overall strength

domain of an in-plane loaded masonry wall by accounting for the failure of its bricks.

Most of the existing models for masonry concerned periodic material-scale textures.

Cecchi & Sab [193] analyzed non-periodic masonries, typical of historic buildings, by means

of a perturbation approach, while Cavalagli et al. [171, 194] used a random media material-

scale approach.

Moreover, several approaches for the derivation of the homogenized failure surfaces for
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masonry have been based on FE limit analysis [195, 196, 197, 174, 198, 199]. For example,

in [195] a simple material scale model for the homogenized limit analysis of in-plane loaded

masonry has been proposed. In particular, a linear optimization problem is derived on

the RVE in order to recover the homogenized failure surface of the brickwork, under plane

stress conditions. One of the main benefits of these approaches relies on the fact that,

once homogenized the masonry properties in terms of elastic moduli and strength domain

(so, they are a priori defined), they can be directly implemented in structural-scale models

(Figure 16), to solve real case studies [200, 201].

(a) (b)

Figure 16: Examples of homogenized FE limit analysis approaches [200, 201].

The same benefit can be observed in RBSM approaches [202, 203, 204, 176], where the

linear and nonlinear properties of the springs between rigid elements, which do not represent

the actual masonry bond, can be a priori homogenized (Figure 17). Once determined the

homogenized properties, they can be directly used for structural applications [176].

(a) (b)

Figure 17: Examples of homogenized RBSM approaches [204, 176].
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6.2.2. Step-by-step multi-scale approaches

Plenty of step-by-step multi-scale approaches can be found in the scientific literature,

which may differ in terms of:

� Continuum type adopted in the structural-scale model (Cauchy continuum, Cosserat

continuum, etc);

� Type of homogenization procedure (first or second order computational homogeniza-

tions, transformation field analysis (TFA), etc);

� Type of modeling of the RVE (i.e. modeling strategy adopted for the material-scale

model, e.g. block-based models).

These approaches typically rely on step-by-step and point-by-point transitions between

the structural-scale model and the material-scale model, and vice-versa. Multi-scale compu-

tational homogenization methods are traditionally implemented within the FEM framework

and, so, also called FE2 approaches. Most of these approaches are based on FE first-order

homogenization schemes.

In this context, Cauchy continuum models have been classically adopted in structural-

scale models, which are recovered applying periodic homogenization techniques for the sim-

ulation of in-plane behavior of masonry structures (Figure 15(b)).

A pioneering computational homogenization method has been proposed by Papa [205],

where a unilateral damage model for masonry based on a homogenization procedure has

been developed, and by Luciano & Sacco [206, 207], where a damage model for periodic ma-

sonry has been developed from a material-scale heterogeneity analysis. Around that time,

Gambarotta & Lagomarsino [208] considered an equivalent stratified medium made up of

mortar joints and brick units layers, adopting the damage constitutive laws both for the

bricks and the mortar joints developed in [61]. Successively, a continuum framework has

been developed for modeling of inelastic behavior of structural masonry in [209]. This for-

mulation incorporated the anisotropic material characteristics and addressed both stages of

the deformation process, i.e. those associated with homogeneous as well as localized defor-

mation mode. Calderini & Lagormarsino [210] obtained homogenized in-plane constitutive

equations, in terms of mean-stress and mean-strain. Different in-plane damage mechanisms

have been considered, being the damage process governed by evolution laws based on an en-

ergetic approach and on a non-associated Coulomb friction law. Later, Zucchini & Lourenço

[211] proposed an improved material-scale model for masonry homogenization in the non-
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linear domain, incorporating suitably chosen deformation mechanisms coupled with damage

and plasticity models.

Sacco [212] proposed a multi-scale procedure based on a micromechanical analysis of the

damaging process of the mortar material, assuming linear elastic blocks. In this case, a

nonlinear homogenization procedure based on TFA has been proposed, making use of the

superposition of the effects and the FE method. An improvement of this approach has been

developed by Marfia & Sacco [213], where an extension of the TFA-based homogenization

procedure to the case of nonuniform eigenstrain, as well as the use of nonlinear behavior of

blocks in the material-scale model has been implemented.

In first-order computational homogenization schemes, where the formulation relies on

the first gradient of the kinematics field, two main limitations could arise.

The first limitation is linked to the principle of separation of scales, which enforces the

assumption of uniformity upon the structural-scale fields attributed to each RVE. Indeed,

this assumption is not totally effective in structural-scale parts where high deformation

gradients are present in the relative RVE.

The second limitation derives from the cohesive (quasi-brittle) response of masonry, i.e.

due to the fact that softening effects arise in the stress–strain relationships. Being the

characteristic lengths of the structural- and material-scales non-intrinsically accounted for

in classical Cauchy continuum models, mesh-sensitivity issues tend to arise when material

softening behavior appears. In order to overcome such a drawback, nonlocal approaches,

higher-order continuum models, as well as regularization processes can be adopted to guar-

antee problem objectivity.

A simple way to overcome localization problems consists in following a regularization

process, for example, in terms of fracture energy. A classical first order computational

homogenization together with a regularization procedure based on the fracture energy of the

material-scale model has been proposed in [177]. In this approach, a generalized geometrical

characteristic length takes into account the size of the structural-scale element as well as the

size of the RVE, ensuring objectivity of the dissipated energy at the structural-scale.

Massart et al. [214] proposed an enhanced multi-scale model using nonlocal implicit gra-

dient isotropic damage models for both the constituents, describing the damage preferential

orientations and employing at the macroscopic scale an embedded band model.

A second-order computational homogenization of periodic masonry has been proposed

by Bacigalupo & Gambarotta [215, 216]. This computational procedure has been derived

assuming an appropriate representation of the material-scale displacement field as the su-
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perposition of a local structural-scale displacement field and an unknown material-scale

fluctuation field accounting for the effects of the heterogeneities.

Other approaches have been based on the adoption of Cosserat continuum models at

the structural-scale. Generally, this allowed to account for a internal length of the material

and to overcome localization problems [217]. Salerno & de Felice [218] investigated on the

accuracy of various identification schemes for Cauchy and Cosserat continua, showing that

micro-polar continuum better reproduces the discrete solutions, in the case of non-periodic

deformation states, due to its capability to take scale effects into account. Alternatively,

Casolo [219] considered isotropic linear elastic models both for the brick and the mortar and

used a computational approach to identify the homogenized elastic tensor of the equivalent

Cosserat medium. In addition, Addessi et al. [220] developed a structural-scale Cosserat

continuum, which automatically accounts for the absolute size of the masonry components,

derived by a rational homogenization procedure based on TFA. Another homogenization

method for the Cosserat continuum has been presented by De Bellis & Addessi [221]. Finally,

Addessi & Sacco [222] developed a nonlinear constitutive law for the material-scale model,

which includes damage, friction, crushing and unilateral contact effects for the mortar joints.

The nonlinear homogenization has been performed employing the TFA technique, properly

extended to the structural-scale Cosserat continuum.

Although the multi-scale approaches mentioned earlier where focused on the in-plane

response of masonry walls, also the out-of-plane analysis of masonry structures is an inter-

esting issue, especially from a earthquake engineering point of view. To this aim, Mercatoris

& Massart [223] presented a multi-scale framework for the failure of periodic quasi-brittle

thin planar shells, using a shear-enhanced element with the Reissner- Mindlin description

and employing it for the failure of out-of-plane loaded masonry walls. Furthermore, a com-

putational homogenization approach for the analysis of general heterogeneous thick shell

structures, with special focus on periodic brick-masonry walls has been proposed in [224].

A very efficient multilevel approach has been developed by Brasile et al. [225, 226].

Although this approach could be considered borderline in a multi-scale framework (being

rather a multilevel approach), the strategy proposed in [225, 226] is based on an iterative

scheme which uses two different (local and global) masonry models simultaneously. The for-

mer is a fine block-based model and describes the nonlinear mechanical response including

damage evolution and friction toughness phenomena. The latter is a linearized FE approx-

imation of the previous model, defined at the rough scale of the wall and used to accelerate

the iteration. The proposed iterative scheme proved to be efficient and robust for in-plane
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nonlinear analysis of masonry façades.

6.2.3. Adaptive multi-scale approaches

A second multi-scale strategy (CMM) consists in the use of the so-called adaptive multi-

scale methods [227, 228, 178, 229] (Figure 15(c)). In these approaches, a first-order ho-

mogenized model initially represents the masonry response until a threshold criterion is

reached. For instance, such a criterion could be able to account for the onset of damage

propagation. After reaching the threshold, the area of interest is replaced by an heteroge-

neous material-scale description able to represent the high localized deformation without

the mesh-dependency of the first-order theory.

7. Macroelement models

In macroelement models (Figure 18), the structure is idealized into panel-scale structural

components with a phenomenological or mechanical-based nonlinear response. Typically,

two main structural components may be identified: piers and spandrels.

These approaches are mainly focused on the analysis of the global seismic response of

masonry buildings. Indeed, macroelement models are generally based on the assumption

that any activation of local failure mode, mainly associated with the out-of-plane response

of masonry walls, is prevented [230]. In this framework, the global seismic response is,

therefore, strictly related either to the in-plane capacity of walls or to the load transfer due

to the presence of diaphragms. In these approaches, global analyses (incremental-iterative

static and/or dynamic) are typically conducted on 3D models, to account for load transfer

between the bearing walls due to an horizontal action.

In these modeling approaches, the structural components (piers and spandrels) need

to be a priori identified, on the basis of damage observations on real buildings. Indeed,

earthquake-damage observations showed that cracks and damages are usually concentrated

in piers and spandrels. Piers are the vertical resisting elements which carry either vertical or

horizontal loads. Conversely, spandrels are the horizontal parts of the structure between two

vertically aligned openings, which couple the response of contiguous piers when horizontally

loaded. Although the identification of masonry piers and spandrels [231, 232, 233, 234,

235, 236, 237, 238, 239] may result easy and rather trivial in case of masonry façades with

regularly distributed openings (e.g. for regular ordinary masonry structures, see Figure

1(b)), it becomes more complex in case of irregularly arranged openings, being substantially

impossible for very complex geometries (e.g. for historic monumental masonry structures,

see Figure 1(a)).
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Macroelement models (MM)
Equivalent beam-based 

approaches

Spring-based approaches

Xu et al. (2018)

Addessi et al. 
(2014)

Caliò et al. (2012)

Aghababaie Mobarake 
et al. (2017)

Belmouden & Lestuzzi (2009)

Rinaldin et al. (2016)

Chen et 
al. (2008)

Lagomarsino et al. (2013)

Liberatore & Addessi (2015)
Roca et al. (2005)

Penna et al. (2014)

Raka et al. (2015)

Figure 18: Examples of macroelement models.

Macroelement models are the most widely diffused modeling strategies particularly for

the seismic assessment of masonry structures, substantially the only one used by practition-

ers. Indeed, their very limited computational effort (also in case of 3D structures), coupled

with the easy and quick definition of the model and mechanical properties, leaded their

widespread dissemination.

However, being the macroelement models one of the most simplified approaches to ana-

lyze masonry structures (Figure 2), they present, together with their manageable computa-

tional effort, also some drawbacks. In particular, they usually assume that any activation of

local (out-of-plane) failure mode is prevented. This decoupling assumption, although local

failure modes can be separately assessed through kinematic limit analysis (see Section 8.2),
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could lead to conventional estimate of the seismic capacity, as in reality out-of-plane and

in-plane damages can simultaneously arise [50]. Additionally, macroelement models cannot

meticulously account for structural details, such as the toothing between orthogonal walls.

Finally, the a priori idealization of the structure in piers and spandrels could lead to the

definition of a mechanical system that could be far from the actual one, particularly for

the case of very irregular opening layouts. Therefore, a certain level of expertise is anyway

requested to the analyst.

Although most of macroelement models are equivalent beam-based [240], several spring-

based approaches have also been recently developed. Either equivalent beam-based or spring-

based approaches (Figure 18) are reviewed in the following.

7.1. Equivalent beam-based approaches

The idealization of masonry panels as nonlinear beams represent the most common as-

sumption in the so-called “equivalent frame models”. A pioneering equivalent beam-based

model has been proposed by Tomaževič [241]. The so-called POR method [241] was based on

crude mechanical assumptions, i.e. in-plane damage for horizontally loaded masonry façades

was only due to shear forces in the piers, while both spandrels and nodal regions were con-

sidered rigid and fully resistant. This simple mechanical description, based on simplified

elasto-plastic relationships to describe beam nonlinearity, provided sufficient reliability only

in the case of buildings with weak piers and strong spandrels. Successively enhancements

were presented in [234], implementing the flexibility and the limited strength of masonry

spandrels.

Other more advanced equivalent beam-based models [242, 243, 244, 245, 246, 247, 248]

proposed the idealization the masonry structure as an assemblage of pier and spandrel

beam elements, linked by rigid links (Figure 18) which represent the nodes between piers

and spandrels (i.e. zones in which seismic damage is rarely observable). These models rely

on the phenomenological nonlinear elasto-plastic constitutive laws adopted for the beam

elements.

Later, Grande et al. [249] proposed a simple beam FE for the nonlinear analysis of

masonry structures, based on three parts: two rigid offsets, able to simulate the very stiff

behavior of the masonry pier-lintel intersections, and a flexible central part. Furthermore,

special shear interfaces were also introduced in the model to account for the shear failure.

Another 2-node force-based beam FE has been formulated in [250], where the resultant stress

components were exactly interpolated along the beam axis, performing analytical integration

(without resorting to a fiber approach). The beam FE was composed of a central flexible
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element, characterized by a no-tension constitutive relationship, and a lumped nonlinear

shear hinge. A further beam FE has been proposed in [251], where both flexural and shear

plastic lumped hinges were inserted at the two nodes of the beam, following a classical

elastic-plastic constitutive relationship. Finally, Liberatore & Addessi [252] developed a 2-

node force-based beam FE consisting of a central linear elastic element, two flexural hinges

and a shear link with elastic-perfectly plastic behavior, determined by a predictor–corrector

method.

A 2D nonlinear beam with lumped plasticity that assumes a bi-linear relation with cut-off

in strength (without hardening) and stiffness decay in the nonlinear phase has been proposed

in [235], as implemented in the Tremuri software [253]. Being the latter particularly efficient

for monotonic actions, more recently the formulation of this nonlinear beam has been refined

by Cattari and Lagomarsino [254] through a piecewise-linear behavior. In particular, such

refined constitutive law allows the description of the nonlinear response until very severe

damage levels (from 1 to 5), through progressive strength degradation in correspondence of

assigned values of drift.

The model includes also an accurate description of the hysteretic response formulated

through a phenomenological approach, to capture the differences among the various possible

failure modes (flexural type, shear type or even hybrid) and the different response of piers

and spandrels, which revealed particularly efficient in performing nonlinear dynamic analyses

[255].

Finally, a very advanced equivalent beam-based macroelement has been recently pro-

posed by Raka et al. [256] for the nonlinear static and dynamic analysis of masonry build-

ings. The beam formulation considered axial, bending, and shear deformations within the

framework of the Timoshenko beam theory. In particular, a phenomenological cyclic law

for the beam section, accounting for the shear panel response, has been coupled with a

fiber-based model that accounts for the axial and bending responses. Although the model

accuracy is strongly dependent on the fiber and shear constitutive laws adopted, the formu-

lation proposed in [256] is general and versatile.

7.2. Spring-based approaches

Alternatively to the use of equivalent beam elements, several macroelement models have

been formulated by implementing nonlinear springs (Figure 18), within a fictitious frame,

to approximate the in-plane nonlinear response of masonry walls and façades.

A pioneering application of a spring-based macroelement model has been presented in

[257], adapting a model with nonlinear shear springs in series with rotational springs orig-
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inally developed, in the 1980s, for the in-plane analysis of reinforced concrete walls. The

proposed formulation for the analysis of masonry structures included an axial spring, three

shear springs, and two rotational springs to simulate the axial, bed joint sliding, diagonal

tension, and rocking/toe crushing failure modes experimentally observed on masonry pier

tests.

In [258] and [259] a two-node element capable to represent the in-plane cyclic behavior of

a whole masonry panels has been proposed aimed to describe both the shear behavior and

the coupled axial-flexural one at the two nodes thanks to a bed of spring and two additional

internal degree of freedom. In particular, the shear stress-strain cyclic relation has been

derived by the macroscopic integration of the continuum model developed in [208]. Some

aspects of this original formulation were further improved by Penna et al. [260] including

a nonlinear degrading model for rocking damage, which permits to keep into account the

effect of limited compressive strength. The latter model has also been implemented in the

Tremuri software [235].

An interesting advance in the context of spring-based macroelement models has been

developed by Caliò et al. [261], where piers and spandrels where idealized through equivalent

discrete elements made of nonlinear springs to simulate the in-plane nonlinear response

of masonry walls. The basic panel element is represented by an articulated quadrilateral

constituted by four rigid edges connected by four hinges and two diagonal nonlinear springs.

Each side of the panel can interact with other panels by means of a discrete distribution of

nonlinear springs. The reliability of the proposed approach has been evaluated by means

of nonlinear incremental-iterative static analyses performed on masonry structures. In [261]

(and also in [262] for infilled frame structures), such a modeling approach has been used

to directly represent piers and spandrels through basic panel elements. Nevertheless, given

the versatility of the approach, such a modeling strategy has been used in [168, 169, 263]

to simulate the masonry material response (and, so, not only the structural components

response), see Section 6.1.

Another spring-based approach has been presented in [264], where each structural com-

ponent has been described through multi-spring nonlinear elements connected by rigid links.

In particular, nonlinear springs were placed at the two ends of the piers and spandrels for

describing the flexural behavior and in the middle for representing the response in shear.

The other parts were constituted of rigid links. Specific hysteretic rules for the degradation

of stiffness and strength were also used for modeling the structural response under cyclic

loading.
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Aghababaie Mobarake et al. [265] proposed a basic panel element made-up of six sub-

elements including upper and lower rigid beams and right, left (bilateral) and X-bracing

nonlinear trusses, with four nonlinear zero-length sub-elements between the upper and lower

beams and truss sub-elements. Each pier, spandrel and node between them is idealized by

using a single proposed basic panel element. The approach proposed in [265] provided a

rather simple and efficient platform for nonlinear static and dynamic analyses by considering

the in-plane behavior of masonry panels.

Finally, a very recent and simplified solution has been presented by Xu et al. [266], where

the masonry façade is considered as an integral unit, rather than composed of independent

piers and spandrels. According to the strategy proposed in [266], the masonry façade is

modeled by means of two vertical springs and a horizontal nonlinear spring that governs the

wall shear response. The hysteretic behavior is governed by a group of control parameters,

that depend on the distribution of openings and/or confining elements as well as on the

dimensions, material properties and boundary conditions of the façade. The extremely

simplified modeling strategy proposed in [266] could represent a complementary approach

for the analysis of masonry structures subjected to horizontal cyclic loadings.

8. Geometry-based models

In geometry-based models, the structure is modeled as a rigid body. The geometry of

the structure substantially represents the only input of these modeling strategies, beyond

the definition of the loading condition. These approaches typically investigate the structural

equilibrium and/or collapse through limit analysis-based solutions (Figure 19), which can

be based on either static or kinematic theorems. Although typically based on limit analysis

and on the Heyman’s rigid no-tension model [39], these approaches have been formulated

following several innovative solutions.

8.1. Static theorem-based approaches

As shown by Heyman in [39], applications of the static theorem of limit analysis on

real masonry structures were possible by simple graphic statics [39, 41]. Particularly, static

theorem-based approaches (Figure 19) appear specially suitable for the investigation of the

equilibrium states in masonry arches, vaults and domes (i.e. masonry vaulted structures). In

general, these approaches can provide the range of possible equilibrium states of the vaulted

structure, bounded between two extreme equilibrium conditions.
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Geometry-based models (GBM)
Static theorem-based

Kinematic theorem-based

Block et al. (2006)

Block & Ochsendorf (2007)

Angelillo (2015)

O’Dwyer 
(1999)
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Chiozzi et al. (2017)

Chiozzi et al. 
(2018a)

Marmo & Rosa� 
(2017)

Fraternali (2010)

Chiozzi et al. (2018b)

Figure 19: Examples of geometry-based models.

A first computational development for the equilibrium analysis of masonry vaults has

been proposed by O’Dwyer [267], where, after the decomposition of the vault into an opti-

mized system of arches in equilibrium, a procedure for the application of the static theorem

to vaults and domes has been presented. Another computational approach, called funicular

model, for the assessment of masonry structures based on the well-known analogy between

the equilibrium of arches and that of hanging strings has been presented in [268]. Further,

a computational tool for the real-time limit analysis of 2D vaulted masonry structures has

been presented by Block et al. [269].

An innovative approach for the equilibrium analysis of vaulted masonry structures, called

thrust network analysis (TNA), has been proposed by Block & Ochsendorf [270]. The TNA

method, based on a duality between geometry and in-plane forces in networks, finds pos-

sible funicular solutions under gravitational loading within a defined envelope, generating

compression-only vaulted surfaces and networks. In this way, the range of possible equilib-

rium states of the vault, bounded by a minimum and maximum thrust, can be obtained.

A nonlinear extension of TNA has been presented in [271] for the application on Gothic
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masonry vaults, while in [272] TNA is extended with the use of structural matrix analysis

and efficient optimization strategies. Finally, an extension of TNA with joints consideration

has been provided in [273].

Another interesting thrust network approach has been developed by Fraternali [274],

where the equilibrium problem of unreinforced masonry vaults is investigated through poly-

hedral stress functions. The masonry vault is conceived as a no-tension membrane carrying

a discrete network of compressive singular stresses, through a non-conforming variational

approximation of the continuous problem. The geometry of the thrust surface and the as-

sociated stress field are determined by means of a predictor–corrector procedure based on

polyhedral approximations of the thrust surface and membrane stress potential. Another

approach which considers masonry vaulted structures as unilateral membrane has been pro-

posed by Angelillo et al. [275] and by Angelillo [276], where the discrete network of singular

stresses has been defined basing on the Airy’s stress formulation [277].

Finally, a reformulation of the original version of the TNA [270] by discarding the dual

grid and focusing only on the primal grid, thus significantly enhancing the computational

performances, has been proposed by Marmo & Rosati [278]. In [278], TNA is also extended

by including horizontal forces in the analysis as well as holes or free edges in the vault. A

further application on masonry helical staircases has been presented in [279].

In summary, static theorem-based approaches appear particularly attractive for the as-

sessment of the statical safety of masonry vaulted structures. Indeed, if compression-only

networks can be found within the boundaries of a vault, then the vault will stand in com-

pression. Moreover, if the solution lie within the middle third of the section, any tension

(and, therefore, any hinges) will be present in the section. This easy and powerful concept

for understanding the stability and proximity to collapse of such structures has been for-

merly expressed by Heyman [39]. However, only few of the above-mentioned approaches can

account for horizontal actions (such as seismic actions [278]), and no one could account for

the interaction with the bearing structures (e.g. bearing walls), whose deformations could

induce damage and equilibrium changes in the vaulted structure, as evidenced in [280] for

earthquake actions.

8.2. Kinematic theorem-based approaches

Kinematic theorem-based limit analysis approaches have been widely used in the last

decades for the fast and effective assessment of existing masonry buildings. Giuffrè [281]

proposed a kinematic limit analysis approach for studying the seismic vulnerability of ma-

sonry buildings based on their decomposition into rigid blocks, following failure mecha-
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nisms actually observed in existing masonry buildings in Italy. Given the simplicity and

effectiveness of the approach proposed by Giuffrè, it has been adopted in the Italian code

[282, 24, 283, 284]. Figure 20 shows few examples of collapse mechanisms to be accounted

for in the seismic assessment of masonry churches through kinematic limit analysis, from

[24]. Kinematic linear and nonlinear (in which the displacement capacity of the structure

until collapse is also evaluated) are commonly used in the professional practice for the safety

assessment of existing masonry buildings [283].

Figure 20: Examples of collapse mechanisms to be accounted for in the seismic assessment of masonry
churches through kinematic limit analysis [24].

Basically, in all these cases, the collapse mechanisms to be analyzed are a priori de-

termined, on the basis of recurring failure mechanisms actually observed. However, in the

context of static theorem-based approaches, the collapse multiplier evaluated in this way is

not necessarily the lower one, given, for instance, peculiar features of the geometry of the

structure.

To this aim, more advanced computational static theorem-based approaches have been

developed to precisely evaluate the collapse multiplier and the collapse mechanism of ma-

sonry structures (Figure 19). Milani [285] developed a simple discontinuous upper bound

limit analysis approach with sequential linear programming mesh adaptation to analyze the

actual failure mechanisms of masonry double curvature structures. Very recently, Chiozzi

et al. [286] proposed a genetic algorithm for the limit analysis of masonry vaults based on

an upper bound formulation. Given a masonry vault geometry, that can be represented by

a non-uniform rational B-spline (NURBS) parametric surface, and a NURBS mesh of the

given surface, each element of the mesh is a NURBS surface itself and can be idealized as a

rigid body. The initial mesh is adjusted by means of a genetic algorithm in order to enforce

that element edges accurately represent the actual failure mechanism. This approach has

also been validated for the out-of-plane collapse behavior of masonry walls [287]. Finally,

an automatic upper bound adaptive limit analysis program for masonry churches, called

UB-ALMANAC, has been proposed in [28]. A NURBS mesh is directly prepared within a

CAD environment based on the 3D geometrical model of the whole church. Limit analysis
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is then performed automatically under the desired horizontal loads distribution, using the

kinematic theorem of limit analysis with dissipation allowed only along interfaces and pro-

gressive adaptation of the mesh through a genetic algorithm, leading to a quick estimation

of the first activating failure mechanism and the most vulnerable part of the church.

Although these approaches cannot provide the displacement capacity of a masonry struc-

tures, they are very powerful for the fast and effective evaluation of the main vulnerabilities

of a masonry building.

9. Conclusions

In this paper, a comprehensive review of the existing modeling strategies for masonry

structures, as well as a classification of these strategies, has been presented. The classifica-

tion of modeling strategies for masonry structures consisted of four categories (Figure 2):

block-based models, continuum models, macroelement models, and geometry-based models.

Although a fully coherent collocation of all the modeling approaches was substantially im-

possible due to the peculiar features of each solution proposed, this classification attempted

to make some order on the wide scientific production on this field.

From the comprehensive review of modeling strategies for masonry structures carried out

in this paper, the following conclusions can be drawn:

� Block-based models could represent the most accurate strategy to analyze the mechan-

ical response of masonry structures. Several applications showed the potentialities of

BBM to investigate the structural behavior of large-scale structures (specifically for

contact-based approaches), with irregular and complex geometries as well. However,

although the area of application of BBM appears theoretically large, their high compu-

tational demand currently limits their employment to very important case studies and

academic works. Anyway, they could be adopted to gain in-depth insights on specific

features of the mechanics of masonry structures, and to provide reference solutions for

more simplified approaches (e.g. MM).

� Continuum models represent widely used solutions for the structural analysis of ma-

sonry buildings. Concerning direct approaches, isotropic smeared crack and plastic-

damage constitutive laws have been widely used for the structural assessment of his-

toric monumental structures. Indeed, these approaches often represent the only suit-

able strategy to deal with such complex structures. However, the results obtained

should be carefully interpreted, as they could sensibly overestimate, for example, the
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ultimate displacement capacity. Although no-tension continuum approaches seem to

fail in a proper mechanical analysis of masonry structures, other simplified approaches,

such as homogenized FE limit analysis and homogenized discrete approaches, appear

particularly suitable for the structural assessment of full-scale masonry structures,

even though the difficulties in the homogenization processes. Concerning multi-scale

approaches, although very smart solutions have been proposed, they present some lim-

itations. In particular, most of them have been tested only on 2D panel-scale masonry

structures, with very few exceptions. Eventually, the so called FE2 methods appears

computational demanding. Indeed, although theoretically more efficient than BBM,

the fact that their are usually implemented in homemade codes sensibly limits their

efficiency and optimization. So far, no example of 3D computational homogenization

method exists, being all the approaches developed in the last decades limited to 2D

problems. Furthermore, being these approaches based on the mechanical response of

the periodic RVE, the possibility of accurately representing specific structural details

appears rather limited.

� Macroelement models mostly represent the only modeling strategy manageable by

practitioners for seismic assessments of masonry buildings. Nevertheless, their relia-

bility should be further improved by accounting for structural details (e.g. toothing

between orthogonal walls) and the interaction between out-of-plane and in-plane dam-

ages. Also, further enhancements should concern ad hoc developments of spandrel

macroelements, as, so far, the calibration of the models is based almost entirely on ex-

perimental tests of piers elements. Anyway, MM are limited to the seismic assessment

of ordinary masonry structures.

� Geometry-based models, although typically based on limit analysis solutions, can pro-

vide very useful outcomes. On the one hand, static theorem-based computational

approaches represent effective solutions (substantially the only ones) for the investiga-

tion of the equilibrium states (and, therefore, the safety) in masonry vaulted structures.

On the other hand, static theorem-based computational approaches appear especially

suitable to predict the collapse mechanism (and the collapse multiplier) in complex ma-

sonry structures. These results, although non-comprehensive, represent a fundamental

information in the mechanical analysis of masonry structures.

In summary, although significant advances have been made in the context of modeling

strategies for masonry structures, each computational solution shows peculiar limitations and
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a specific area of application. Therefore, the choice of the most suitable modeling strategy

should be formulated depending on the features and the complexity of the structure under

investigation, the output required, the data available, and the expertise level.

Finally, the use of 3D models, which can represent the 3D features of a masonry structure,

appears particularly indicated for the seismic assessment of masonry buildings to account

for the geometric irregularities and the structural details which usually characterize ordinary

and monumental buildings.
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[14] M. Kržan, S. Gostič, S. Cattari, and V. Bosiljkov, “Acquiring reference parameters of masonry for the
structural performance analysis of historical buildings,” Bulletin of earthquake engineering, vol. 13,
no. 1, pp. 203–236, 2015.

[15] F. Messali, R. Esposito, S. Jafari, G. Ravenshorst, P. Korswagen, and J. G. Rots, “A multiscale
experimental characterization of dutch unreinforced masonry buildings,” in Proceedings of the 16th
European conference on earthquake engineering, 16ECEE, 2018.

48



[16] A. Borri, G. Castori, M. Corradi, and E. Speranzini, “Shear behavior of unreinforced and reinforced
masonry panels subjected to in situ diagonal compression tests,” Construction and Building Materials,
vol. 25, no. 12, pp. 4403–4414, 2011.

[17] R. Lumantarna, D. T. Biggs, and J. M. Ingham, “Compressive, flexural bond, and shear bond strengths
of in situ new zealand unreinforced clay brick masonry constructed using lime mortar between the
1880s and 1940s,” Journal of Materials in Civil Engineering, vol. 26, no. 4, pp. 559–566, 2014.

[18] D. McCann and M. Forde, “Review of NDT methods in the assessment of concrete and masonry
structures,” NDT & E International, vol. 34, no. 2, pp. 71–84, 2001.

[19] V. Bosiljkov, V. Bokan-Bosiljkov, B. Strah, J. Velkavr, and P. Cotič, “Review of innovative tech-
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