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ABSTRACT
We introduce AREPO-RT, a novel radiation hydrodynamic (RHD) solver for the unstructured
moving-mesh code AREPO. Our method solves the moment-based radiative transfer equations
using the M1 closure relation. We achieve second-order convergence by using a slope-
limited linear spatial extrapolation and a first-order time prediction step to obtain the values
of the primitive variables on both sides of the cell interface. A Harten–Lax–van Leer flux
function, suitably modified for moving meshes, is then used to solve the Riemann problem at
the interface. The implementation is fully conservative and compatible with the individual
time-stepping scheme of AREPO. It incorporates atomic hydrogen (H) and helium (He)
thermochemistry, which is used to couple the ultraviolet radiation field to the gas. Additionally,
infrared (IR) radiation is coupled to the gas under the assumption of local thermodynamic
equilibrium between the gas and the dust. We successfully apply our code to a large number of
test problems, including applications such as the expansion of H II regions, radiation pressure-
driven outflows, and the levitation of optically thick layer of gas by trapped IR radiation. The
new implementation is suitable for studying various important astrophysical phenomena, such
as the effect of radiative feedback in driving galactic scale outflows, radiation-driven dusty
winds in high-redshift quasars, or simulating the reionization history of the Universe in a
self-consistent manner.
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1 I N T RO D U C T I O N

Radiation fields are ubiquitous in nature. In the earliest epochs, the
Universe was a hot dense soup of matter and radiation. The mean-
free path of photons was very small due to Thomson scattering off
free electrons. As the Universe cooled to ∼4000 K about 300 000 yr
(z � 1100) after the big bang, protons began to capture the free
electrons and form atomic hydrogen (H). These recombinations
diminished the number density of free electrons allowing the matter
and radiation to decouple, making the Universe transparent to light.

The radiation from this epoch is observed today as the nearly
uniform ∼ 2.72 K cosmic microwave background (CMB; Alpher
& Herman 1948; Penzias & Wilson 1965). The CMB is currently
our best probe to explore the early Universe. The slight temperature
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inhomogeneities present in the CMB (�T/T � 10−5, Smoot et al.
1992) correspond to the primordial density fluctuations, which grow
through gravitational collapse and form the structures that we see
today (White & Rees 1978).

After recombination, the Universe went through a period of
darkness with no sources of visible light. Once the gas in the high-
density regions became dense enough, it started forming stars and
eventually protogalaxies. These early stars and galaxies have an
important effect on the surrounding environment. They emit copious
amounts of ionizing H radiation (≥ 13.6 eV), which is believed to
reionize the neutral intergalactic medium (IGM, Shapiro & Giroux
1987; Haardt & Madau 1996; Gnedin & Ostriker 1997; Madau,
Haardt & Rees 1999; Gnedin 2000). Reionization is believed to be
initially patchy with pockets of ionized plasma surrounding the most
energetic sources. As the pockets grow larger and become more
numerous, they overlap and eventually reionize the whole Universe.
In addition, the photons heat the IGM, altering its thermal state
which in turn affects the observed Lyman-α distribution (Gnedin &
Hui 1998; Gnedin 1998; Schaye et al. 2000).
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The epoch of reionization (EoR), carries plenty of information
about the process of structure formation in the Universe and provides
evolutionary links between the smooth matter distribution at early
times revealed by CMB, and the large-scale structure observed at
low redshifts. Gaining insights into this epoch is challenging, but
recent observations of the steep faint end slope of the ultraviolet
(UV) luminosity function indicates that the cosmic ionizing photon
budget is dominated by faint galaxies (Bouwens et al. 2011, 2015).
Full reionization within z ∼ 6 can only be achieved if the observed
luminosity function is extrapolated by two orders of magnitude
below the observational limit of the Hubble Space Telecscope
(Finkelstein et al. 2015). However, photoheating can suppress star
formation in low-mass haloes, and it is therefore unclear if such an
extrapolation in valid. Furthermore, the escape fraction of ionizing
photons from the interstellar (ISM) and the circumgalactic (CGM)
media is impossible to measure directly above z ∼ 4. While some
indirect measurements of the escape fraction have been made
(Zackrisson, Inoue & Jensen 2013; Dijkstra, Gronke & Venkatesan
2016; Reddy et al. 2016; Mas-Ribas et al. 2017), they are not very
constraining and allow the escape fraction to be anywhere between
1 per cent and 30 per cent.

With the imminent launch of the James Webb Space Telescope
(Gardner et al. 2006), the study of EoR enters a new era. It is
expected to increase the quality of high-redshift data and extend
it beyond z = 10. It is therefore important for theoretical models
to achieve enough accuracy to interpret the observational results.
Numerical radiation hydrodynamic (RHD) simulations offer the
most accurate and realistic theoretical models of reionization.
Hence, an implementation of an accurate and efficient radiative
transfer (RT) algorithm becomes imperative to study the high-
redshift Universe.

Radiation fields also play an important role in many physical
processes that occur inside dark matter (DM) haloes. For example,
a long-standing puzzle in galaxy formation theory has been the low
star formation efficiency in DM haloes (Silk & Mamon 2012).
Star formation efficiency peaks at about Mhalo ∼ 1012 M� and
decreases in both higher and lower mass haloes (Moster et al. 2010;
Moster, Naab & White 2013; Behroozi, Wechsler & Conroy 2013).
Feedback from stars (Navarro, Frenk & White 1996; Springel &
Hernquist 2003; Stinson et al. 2006; Dalla Vecchia & Schaye 2008;
Agertz et al. 2013; Vogelsberger et al. 2013; Hopkins et al. 2014,
2017) and the central active galactic nuclei (AGNs; Springel, Di
Matteo & Hernquist 2005; Sijacki & Springel 2006; Booth &
Schaye 2009; Choi et al. 2012; Kannan et al. 2017; Weinberger
et al. 2017) are invoked to explain this low star formation efficiency
in low- and high-mass galaxies, respectively.

Early galaxy formation simulations showed that the coupling
between supernovae (SNe) feedback energy and the ISM is very
inefficient (Katz, Weinberg & Hernquist 1996; Navarro et al. 1996),
as most of the injected energy is radiated away very efficiently.
Various sub-grid models have been proposed in order to avoid
cooling loses such as delaying the cooling of gas particles around a
star (Thacker & Couchman 2001; Stinson et al. 2006; Agertz et al.
2013), stochastically injecting energy into the surrounding gas such
that it is heated up to the temperatures where gas cooling becomes
inefficient (Dalla Vecchia & Schaye 2008; Schaye et al. 2015), and
injecting kinetic energy that adds velocity kicks to gas particles to
remove them from the inner regions of galactic discs (Springel &
Hernquist 2003; Oppenheimer & Davé 2006; Vogelsberger et al.
2013). These ad hoc methods have been quite successful in repro-
ducing the properties of galaxies in a broad sense (Vogelsberger
et al. 2014a,b; Schaye et al. 2015). However, they require fine

tuning of free parameters in the model in order to reproduce the
low-mass end of the luminosity function (Vogelsberger et al. 2014a;
Schaye et al. 2015; Pillepich et al. 2018) and in some cases require
unrealistic values of SNe feedback energy (> 1051 erg; Guedes et al.
2011; Schaye et al. 2015) or excessively large gas outflow velocities
(Pillepich et al. 2018).

Many recent works have pointed out that young massive stars
deposit large amounts of energy in the form of photons and
stellar winds before they go SNe, which can have a significant
dynamical impact on the ISM (Murray, Quataert & Thompson 2010;
Walch et al. 2012). Stinson et al. (2013) showed that the high-
energy photons emitted by OB stars can ionize and photoheat the
surrounding regions helping to regulate star formation especially
at high redshifts (Kannan et al. 2014b). However, this requires
efficient thermalization in the injected radiation energy close to the
source, which is not guaranteed in the high-density regions where
stars form. Radiation pressure, both direct UV and multiscattered
infrared (IR), is another mechanism hypothesized to drive signifi-
cant outflows (∼ 100 km s−1) (Hopkins, Quataert & Murray 2011;
Agertz et al. 2013; Hopkins et al. 2014). However, it seems that
unphysically large optical depths of IR radiation (τIR ∼ 50) are
required to effectively trap the photons and boost the momentum
injection to the levels required to efficiently suppress star formation
(Roškar et al. 2014). Alternatively, if enough radiation escapes the
star-forming regions and the ISM of galaxies, it can in principle
reduce the gas cooling rates of the CGM thereby reducing gas
inflows into the centres of galaxies (Cantalupo 2010; Gnedin &
Hollon 2012; Kannan et al. 2014a, 2016b). While these works hint
towards the importance of radiation fields, the crude nature of these
sub-grid models makes it difficult to gauge the exact mechanisms
and significance of radiation fields in regulating the star formation
rates of low-mass galaxies. Therefore, full RHD simulations are
necessary in order to gain a fundamental understanding of stellar
feedback (Rosdahl et al. 2015; Kim et al. 2017; Peters et al. 2017).

The impact of stellar feedback decreases as the mass and potential
depth of DM haloes increases. A more energetic source of feedback
is needed, which is conveniently found in the form of the central
AGN. The inability of galaxy formation simulations to resolve the
region around the central supermassive black hole, necessitates
sub-grid prescriptions to account for this feedback channel. These
models generally discriminate between a high accretion rate quasar
mode (Springel et al. 2005) feedback and a low accretion rate me-
chanical radio mode feedback (Weinberger et al. 2017). However,
the details of how the AGN energy couples to the gas in and around
galaxies is still uncertain, so modelling efforts have so far been
necessarily crude.

In general, the AGN deposits energy and momentum into the
surrounding gas driving winds. Observations show compelling evi-
dence for galaxy-scale AGN-driven outflows (Heckman et al. 1981;
Nelson & Whittle 1995; Greene & Ho 2005; Karouzos, Woo & Bae
2016). These are generally high-mass loaded (Mout > 108 M�), fast
(vout ≥ 1000 km s−1), and multiphase winds that can extended over
up to several tens of kpc (Cicone et al. 2015; Tombesi et al. 2015; Za-
kamska et al. 2016). The efficiency with which these winds suppress
star formation is still unknown mainly because the exact mechanism
of the coupling between the AGN feedback energy and the gas is
not understood. Ultrafast outflows (≥ 10 000 km s−1) can develop a
two-temperature structure, where most of the thermal pressure sup-
port is provided by the protons, while the cooling processes operate
directly only on the electrons. This significantly slows down inverse
Compton cooling, maintaining the thermal structure of the wind
and generating large momentum boosts (∼20L/c) and high kinetic
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luminosities (Faucher-Giguère & Quataert 2012; Costa, Sijacki &
Haehnelt 2014). The AGN luminosity can also couple directly to the
surrounding gas through radiation pressure on dust (Fabian 1999;
Murray et al. 2010; Thompson et al. 2016). Observations indicate
a large fraction of the optical and UV radiation is absorbed and
re-emitted at IR wavelengths by a surrounding envelope of dusty
gas before escaping the galactic nucleus (Fabian & Iwasawa 1999).
If the column density of the gas is high enough, the optical depth to
IR radiation can be rather large, trapping this radiation within the
AGN nucleus. The multiscattered IR photons boost the momentum
injection by a factor proportional to the optical depth (ṗ ∼ τIRL/c).

Many recent studies have tried to model this mechanism using
simple analytic models (Ishibashi & Fabian 2015; Thompson et al.
2016) and idealized high-resolution RT simulations of the dusty
AGN torus (Roth et al. 2012; Ishibashi & Fabian 2017; Costa et al.
2018). Recent advances in numerical techniques have allowed for
the estimation of the impact of radiation pressure on galactic scale
using isolated disc simulations (Bieri et al. 2017; Cielo et al. 2017)
and more recently in cosmological simulations (Costa et al. 2017).
These simulations suggest that IR radiation pressure can drive fast
(≥ 1000 km s−1), high-mass loaded and short-lived winds during
the obscured phase of the AGN. In fact, these winds are able
to remove enough material from the centre to completely shut
down star formation, indicating the need to employ accurate RHD
simulations to understand radiative feedback from AGNs.

On smaller scales, the radiation from massive protostars can
unbind gas in its surroundings and create cavities. These cavities
can prevent any further accretion on to the star from the direction of
the bubble, cutting off fuel supply to the star and stalling the mass
growth (Kuiper et al. 2012), although the development of Rayleigh–
Taylor instabilities (RTIs) can destroy the cavity and allow gas to
fall back on to the star (Rosen et al. 2016). The stellar radiation
fields also have a large impact on the structure of the protoplanetary
discs (Flock et al. 2016) and on the climate of exoplanets (Heng,
Frierson & Phillipps 2011).

To summarize, radiation plays a crucial role in a large variety
of astrophysical systems, and its impact ranges all the way from
small planetary systems to the large-scale thermal and ionization
history of the Universe. The complexity of RT requires accurate
RHD simulations to precisely capture and model its impact. Con-
sequently, an accurate and efficient RT implementation is needed
to improve current astrophysical simulations by taking into account
the effects of radiation. In this work, we present a moment-based RT
implementation for the moving mesh hydrodynamics code AREPO.

The paper is structured as follows. In Section 2, we briefly outline
the various RT schemes used in literature and discuss the advantages
and shortcomings of the scheme used in this paper. Section 3
describes the spatial discretization and time-integration techniques
used to solve the RT equations for our scheme. In Section 4,
we present several test problems to quantify the accuracy of our
implementation. Finally, we present our conclusions in Section 5.

2 T H E R A D I AT I V E T R A N S F E R E QUAT I O N S

Here, we first discuss the relevant RT equations that we are going
to solve. We start by defining the specific intensity Iν(x, t, n, ν), at
position x and time t, as the rate of radiation energy (Eν) flowing
per unit area (dA), in the direction (n), per unit time (dt), per unit
frequency interval (dν) centred on frequency ν, and per unit solid
angle (d�)

dEν = Iν(x, t, n, ν) (n · dA) dt dν d�. (1)

The propagation of the radiation field and interactions with the
surrounding medium such as absorption and emission of radiation
leads to a change in the radiation energy at that spatial position.
Taking these processes into account, we can write down the
continuity equation for the specific intensity as (Mihalas & Mihalas
1984)

1

c

∂Iν

∂t
+ n · ∇Iν = jν − κν ρ Iν, (2)

where jν is the emission term and κν is the absorption coefficient.
RT is a complex process due its high dimensionality. An accurate

numerical solution requires discretizing equation (2) in angular and
frequency variables in addition to spatial and time discretization.
A variety of different numerical algorithms have been proposed
to solve the RT problem. The most common method is the long
characteristic ray-tracing scheme (Mihalas & Mihalas 1984; Abel,
Norman & Madau 1999; Abel & Wandelt 2002; Greif 2014; Jaura
et al. 2017) that cast rays from each source through the simulation
domain and solve equation (2) along each ray. This method,
although very accurate, is computationally expensive (O(N2)) and
requires high angular resolution to capture the correct transport
of radiation. Furthermore, parallelizing this algorithm requires
significant data exchanges between different processors. In order to
reduce the complexity of the problem, some works have resorted to
short characteristics methods (Ciardi et al. 2001; Whalen & Norman
2006; Trac & Cen 2007; Pawlik & Schaye 2008; Petkova & Springel
2011) which integrates the RT equation only along lines that connect
nearby cells making it easier to parallelize.

The RT equations can also be solved with Monte Carlo methods.
These schemes (Oxley & Woolfson 2003; Semelin, Combes & Baek
2007; Dullemond et al. 2012), emit individual photon packets to
sample the interaction lengths and scattering angles of the photons
from the underlying probability density functions. While they
perform remarkably well, they are computationally very demanding
and the Poisson noise inherent to the statistical description of the
radiation field leads to a signal-to-noise ratio that grows only with
the square root of the number of photon packets emitted.

Solving the moments of the RT equation has gained popularity
in recent years (Levermore 1984; González, Audit & Huynh 2007;
Rosdahl et al. 2013; Rosdahl & Teyssier 2015). A fluid description
of the radiation field is obtained by taking the zeroth and first
moments of equation (2)

∂Er

∂t
+ ∇ · Fr = S − κE ρ c̃ Er, (3)

∂ Fr

∂t
+ c̃2∇ · Pr = −κF ρ c̃ Fr, (4)

where the radiation energy density (Er), flux (Fr), and pressure (Pr)
are defined as

{c̃Er, Fr, c̃Pr} =
∫ ν2

ν1

∫
4π

{1, n, (n ⊗ n)}Iν d� dν. (5)

Here (in equations 3 and 4), S denotes the source term which
quantifies the amount of radiation energy emitted, κE and κF are the
radiation energy density and radiation flux-weighted mean opacities
within the frequency range defined by [ν1, ν2] and ρ is the density
of gas in the cell. We note that we have reformulated the equations
in terms of signal speed (c̃) of radiation transport, which can be
different from the actual speed of light (c) when the reduced speed
of light approximation (RSLA) is used (see Section 3.1 for more
details).
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This set of hyperbolic conservation equations defines the rate of
change of Er and Fr as a function of time and position. However,
in order to solve these equations an estimate of Pr is required. We
therefore need to obtain the pressure tensor by invoking a closure
relation. One popular choice, which works remarkably well in opti-
cally thick media, is to recast equations (3) and (4) into a diffusion
equation (Lucy 1977; Krumholz & Thompson 2012; González
et al. 2015) by assuming that the photon flux is proportional to
the gradient of the photon energy density (Fr = −c̃∇Er/3κρ).
While this approximation performs well in highly optically thick
media, its accuracy in optically thin cases is not well understood.
Furthermore, maintaining the directionality of photon propagation
is quite difficult as the photon flux is assumed to be directed along
the gradient of the photon energy density, forcing the photons to
diffuse isotropically. This makes it difficult to form sharp shadows
behind optically thick barriers (Zhang & Davis 2017). A better
approximation can be obtained by ignoring the term of the order
c−1 in equation (4) and set

Fr = − c̃

κF ρ
∇ · Pr, (6)

which yields

∂Er

∂t
+ ∇ ·

(
− c̃

κFρ
∇ · Pr

)
= S − κE ρ c̃ Er. (7)

The Eddington tensor formalism can then be used to equate the
radiation energy density (Er) and the radiation pressure tensor (P)
by defining a proportionality tensor called the Eddington tensor (D)

Pr = Er D. (8)

This Eddington tensor essentially encodes the direction of photon
transport at each point in the domain. In this form, the RT equations
transform into an anisotropic diffusion equation. The discretization
of this equation is surprisingly non-trivial and widely used methods
give rise to unphysical oscillations (Parrish & Stone 2005). Some
works get around this problem by adding an isotropic component
to the anisotropic diffusion tensor, however, this reduces the accu-
racy with which the algorithm preserves the directionality of the
underlying photon field (Petkova & Springel 2009). Therefore, this
method suffers from the same problems as the isotropic diffusion
approximation. Furthermore, the time-step limitations imposed by
the parabolic diffusion equation requires the implementation of
implicit or semi-implicit schemes in order to make the algorithm
fast enough (Kannan et al. 2016a, 2017). These time-integration
techniques are difficult to implement and parallelize efficiently.

For these reasons, we chose to discard the approximations above
and instead solve the coupled hyperbolic conservation laws for the
photon energy density (equation 3) and the photons flux (equa-
tion 4), coupled with the Eddington closure relation (equation 8). It
is straightforward to compute D in the case of a single or few sources.
However, the computation becomes quite arduous when consider-
ing galaxy-scale simulations which can have millions of sources
within the simulation domain. Many works have tried to derive
approximate estimates of D, such as, for instance, the optically thin
variable Eddington tensor (OTVET) formalism (Gnedin & Abel
2001; Finlator, Özel & Davé 2009; Petkova & Springel 2009) or the
M1 (Levermore 1984; Dubroca & Feugeas 1999; Ripoll, Dubroca
& Duffa 2001) method. The OTVET formalism computes D by
assuming that the intervening material between the radiation source
and sink is optically thin. The obvious drawback of this method is
that direction of radiation field behind any optically thick material
will not be correctly captured. Additionally, the computational cost

associated with estimating the positions of every source relative to
every volume element can be quite significant.

On the other hand, the M1 closure requires only local quantities
of a given cell to compute the Eddington Tensor D as

D = 1 − χ

2
I + 3χ − 1

2
n ⊗ n, (9)

where

n = Fr

|Fr| , χ = 3 + 4f 2

5 + 2
√

4 − 3f 2
, and f = |Fr|

c̃Er
. (10)

Since the radiation flux cannot be larger than the signal speed times
the radiation energy density, the reduced flux (f) will always be
limited by 0 ≤ f ≤ 1. The local nature of the M1 closure implies
that the computational cost is independent of the number of sources
and only depends on the number of resolution elements within the
domain. This has allowed recent works to perform galaxy-scale
simulations with relatively low computational cost (Rosdahl et al.
2015; Costa et al. 2017; Bieri et al. 2017). Since we are mostly
interested in performing simulations containing a large number of
sources, we adopt the M1 closure formalism in our work.

Having established our numerical scheme to evolve the radiation
field, we now have to couple the radiation to the gas. The radiation
field couples to the gas hydrodynamics via photon absorption and
scattering (RHS of equations 3 and 4). These physical processes are
quantified using the average opacities (κE and κF ) of the gas. Energy
and momentum conservation then dictates that photon absorption
introduces source terms into hydrodynamic momentum and energy
conservation equations (González et al. 2007):

∂(ρv)

∂t
+ ∇ · (ρ vvT + P I) = κF ρ Fr

c
, (11)

∂(ρE)

∂t
+ ∇ · [(ρE + P )v] = −� + κE ρ c̃ Er + κF ρ

c
Fr · v, (12)

where � is the gas cooling rate which is function of the abundance
of the ionic species present in the gas, which is in turn dependent on
the incident radiation field, P its thermal pressure, E its total energy
per unit mass, and v the gas velocity field.

3 M E T H O D S

In this section, we describe in detail the spatial discretization
and time-integration techniques used to solve the RHD equations
introduced in Section 2. The transport equations (setting the RHS
of equations 3 and 4) and the source terms are solved separately
using an operator split approach. This is achieved using a Strang
split scheme (Strang 1968), which involves a half-step update of the
primitive RT variables (Er, Fr) due to the source terms, a full step
update due to the transport operations, and finally another half-step
update with the source operations. This makes the solution formally
converge at second order.

3.1 The transport equations

Let us first consider the free transport of photons, which is obtained
by setting the RHS of equations (3) and (4) to zero

∂Er

∂t
+ ∇ · Fr = 0, (13)

∂ Fr

∂t
+ c̃2∇ · Pr = 0. (14)
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Equations (13) and (14) are conservation laws for the photon
energy density and photon flux that take the form of a system of
hyperbolic partial differential equations. They can be written in
compact conservative form as

∂U
∂t

+ ∇ · F(U) = 0, (15)

where

U =
(

Er

Fr

)
, (16)

and

F(U) =
(

Fr

c̃2Pr

)
. (17)

A finite-volume simulation code like AREPO divides the compu-
tational domain into a set of control volumes. The fluid’s state is
described by the cell averages of the conserved quantities, which
are obtained by integrating the primitive quantities over the volume
of the cell

Q =
∫

V

UdV . (18)

Using the Gauss’ theorem, we can estimate the change in these
quantities with time as

∂Q
∂t

= −
∫

∂V

[F(U) − UwT ]dA, (19)

where w is the velocity of each point of the cell boundary. For
Eulerian schemes, the mesh is static (w = 0), while in a fully
Lagrangian approach, the surface would be allowed to move at
every point with the local flow velocity (w = v). For moving-mesh
codes like AREPO, it is not possible to follow the distortions of
the shapes of fluid volumes exactly in multidimensional flows and
therefore the general formula of equation (19) is used. Practically,
this requires then to solve the total flux as a combination of the flux
over a static interface (F(U)) and an advection step owing to the
movement of the interface (−UwT ).

The hydro and magnetohydrodynamic schemes solve the respec-
tive equations in the reference frame of the moving face. This
ensures full Galilean invariance, a property that is of significant
importance for cosmological simulations where highly supersonic
bulk flows are common. Unfortunately, this approach is not possible
for a photon fluid, where Galilean invariance does not have any
meaning. We instead choose to modify the Riemann solution such
that it takes the motion of the mesh into account.

We therefore write down the total flux on a moving mesh (Fm)
as

Fm =
(

Fr − Erw
T

c̃2Pr − Frw
T

)
, (20)

where the velocity of the cell interface (w) is calculated using
the method outlined in Springel (2010, equations 32 and 33).
Godunov’s (1959) approach is used to compute Fm and solve the
approximate Riemann problem normal to the interface. Since AREPO

uses unstructured Voronoi meshes, the dimensionally operator split
framework cannot be applied. Rather the unsplit approach is used
as described in Springel (2010). In a nutshell, this involves defining
the Riemann problem normal to the cell face by rotating the relevant
primitive variables into the coordinate system defined by setting the
x-axis normal to the cell face. Once the flux has been calculated, it
is transformed back to the lab frame.

We employ the Harten–Lax–van Leer (HLL, Harten, Lax &
van Leer 1983) framework that splits the solution of the Riemann

problem at each interface into three possible flux estimates

Fm =
⎧⎨
⎩
Fm

L if λ− � 0 ,

Fm
hll if λ− � 0 � λ+ ,

Fm
R if λ+ � 0 ,

(21)

where

Fm
hll = λ+Fm

L − λ−Fm
R + λ+λ−(UR − UL)

λ+ − λ− . (22)

The subscripts ‘L’ and ‘R’ refer to the value of the variables
(U,F(U)) on the left and right states of the cell interface. λ+ and λ−

are the maximum or minimum eigenvalues of the of the Jacobian
∂Fm/∂U defined as

λ+ = max(λmax
L , λmax

R ),

λ− = min(λmin
L , λmin

R ).
(23)

The eigenvalues represent the wave speeds of system of equations
which in our formulation are estimates for the lower and upper
bounds of the signal velocities. The eigenvalues of the system are
obtained by solving for λ in∣∣∣∣∂Fm

∂U − λmI
∣∣∣∣ = 0. (24)

However, from equation (20)

∂Fm

∂U = ∂Fs

∂U − wI, (25)

where w = w · n̂ is the component of the velocity of the face
along the face normal (n̂) and Fs is the total flux on a static
mesh. Substituting the value of ∂Fm/∂U from equation (25) into
equation (24), we get∣∣∣∣∂Fs

∂U − (λm + w)I
∣∣∣∣ = 0. (26)

Comparing equations (24) and (26) gives λs = λm + w, meaning
that the eigenvalues of the system on a moving mesh (λm) are just a
linear combination of the eigenvalues of the system on static mesh
(λs) and the face velocity (w),

λ+ = λ+
m = −w + λ+

s ,

λ− = λ−
m = −w + λ−

s .
(27)

This is equivalent to rotating the eigenvectors by an angle x/t = −w.
We note that if the face velocity is superluminal or greater than the
largest signal speed of the static system, then the Riemann solver
chooses to purely advect the fluxes in an upwind manner, analogous
to supersonic fluid flow in non-relativistic hydrodynamics.

The eigenvalues of the Jacobian matrix are determined by inter-
polating the tabulated values obtained by González et al. (2007).1

By setting λ+
s = −λ−

s = c̃, we obtain the Rusanov (1961) flux
function, which is also implemented (also known as the Global–
Lax–Friedrichs or GLF flux function).

A conservative time integration of equation (19) is obtained by
using the method outlined in Pakmor et al. (2016, equations 19–
22), which employs Heun’s method, a variant of the second-order
Runge–Kutta scheme. The fluxes are computed as an average of
fluxes at the beginning and end of the time-step. The mesh geometry
of the second half of the current time-step is used for the first half of
the next time-step, essentially requiring only one mesh construction

1We obtain the table from the public version of the RAMSES-RT code.
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per time-step. Therefore, the update of the conservative variables
are given by

Qn+1
i = Qn

i − �t

2

⎛
⎝∑

j

An
ij F̂

n

ij(Un) + A
′
ij F̂

′
ij(U

′
)

⎞
⎠ . (28)

This makes the scheme easily compatible with the hierarchical time-
stepping scheme used in AREPO (see Pakmor et al. 2016 for more
details).

A higher order accuracy is obtained by replacing the piecewise
constant (PC) approximation of Godunov’s scheme with a slope-
limited piecewise linear spatial extrapolation and a first-order
prediction forward in time to obtain the states of the primitive
variables on both sides of the interface (van Leer 1979)

U′
L,R = UL,R + ∂U

∂ r

∣∣∣∣
L,R

( f − sL,R) + ∂U
∂t

∣∣∣∣
L,R

�t, (29)

where s is the centre of mass of the cell and f is the centre of the
cell face. The time derivatives of the primitive variables (∂U/∂t in
equation 29) are expressed in terms of their spatial derivatives using
equations (13) and (14)

∂Er

∂t
= −∇ · Fr, (30)

∂ Fr

∂t
= −c̃2∇ · Pr. (31)

We use the local least-squares fit (LSF) method described in
Pakmor et al. (2016) to obtain the gradient estimates (∂U/∂ r in
equation 29). They are constructed such that they reproduce the cell
centred values of the neighbouring cells as well as possible. If φi is
the primitive variable defined at the centre of cell ‘i’, and φj’s are the
values of the primitive variable for all neighbouring cells ‘j’, then
the best linear approximation of 〈∇φ〉i is obtained by minimizing
the sum of the deviations for all neighbours >(Stot)

Stot =
∑

j

Aij

|sj − si|2 (φj − φi − 〈∇φ〉i (sj − si))
2, (32)

where Aij is the area of the interface between cells ‘i’ and ‘j’.
The monotonicity of the gradients is imposed by requiring that the
linearly reconstructed quantities on the face centroids are bounded
by the maxima and minima of all the cell centred values of the
neighbouring cells (equations 28–30, Springel 2010). This general
gradient estimate retains the necessary accuracy even for large
offsets between the mesh-generating points and the centre of mass
of cells.

Ordinarily, the spatial and time extrapolations of the primitive
variables are carried out independent of each other. Unfortu-
nately, these independent estimates cannot ensure that the reduced
flux at the interface (fL,R = (|FrL,R |/c̃ErL,R )) remains bounded
between [0, 1]. We can enforce this condition by limiting the
value of the extrapolated photon flux as F̃rL,R = αFrL,R , where
α = min(1, c̃ErL,R/|FrL,R |). However, this form of a limiter intro-
duces too much noise in the solution and degrades the convergence
of the code in addition to increasing the diffusivity.

Instead, the extrapolation of Fr is made dependent on value of
Er and the reduced flux. Accordingly, the gradients of Er, FN =
Fr/Er and |FN| are calculated instead of just Er and Fr. First, the
time prediction step of the photon energy density (equation 30) is

performed2

E
′
r = Er − ∇ · Fr �t, (33)

where

∇ · Fr = Tr(∇ Fr)

= Tr

(
Er ∇ FN + 1

Er
Fr ⊗ ∇Er

)
.

(34)

The spatial extrapolation is then carried out by extrapolating the
photon energy density using the estimate of the gradient of Er

E′
rL,R

= E
′
r + ∇Er · ( f − sL,R), (35)

and then, we extrapolate

|FNL,R | = |FN| + ∇|FN| · ( f − sL,R). (36)

Finally, we impose

F′
rL,R

= ψ Fr, (37)

where

ψ = |FNL,R |
|Fr| E′

rL,R
. (38)

We take advantage of the fact that the gradients are limited such
that they are bounded by the maximum and minimum cell centred
values of the neighbouring cells. This method of extrapolating the
photon flux ensures that the reduced flux at the interface (fL, R)
is always within [0, 1] without affecting the directionality of the
underlying photon field. Additionally, the photon energy density
and the reduced flux at the interface is not slope limited in any way
except for the condition that it does not create local maxima or
minima. This ensures stability without adding too much diffusion
into the scheme. We note that the prediction step is not performed
for the photon flux (Fr) because, it introduces too much noise
into the solution, in addition to making it difficult to preserve the
directionality of photon field.

Since the transport equations are solved using an explicit scheme,
the time-step of each cell is constrained by the von Neumann
stability condition

�tRT ≤ η
�x

c̃ + |vc| , (39)

where �x is the cell width, vc is the velocity of the cell in the
lab frame, and η ∼ 0.3. Since the RT scheme is coupled to
hydrodynamics and gravity the final time-step will be

�t = min(�tRT , �thydro , �tgrav ). (40)

The high speed of light demands very small �tRT forcing other
computationally expensive parts of the code, such as, mesh con-
struction and gravity force calculations, to be called more often than
actually required. In many physical problems, this can be overcome
by using the RSLA, which is applicable for systems where the
characteristic velocity is much smaller than the speed of light. For
large-scale cosmological simulations, this is no longer true. For
example, to track the ionization fronts (I-fronts) properly in the IGM
one must use the full speed of light (Rosdahl et al. 2013; Bauer et al.
2015). Implicit/semi-implicit time-integration schemes can be used
to overcome this problem. Unfortunately, scalable implementation

2For the calculation of the fluxes between two cells on different time-steps,
the time extrapolation is done for each cell always from the last time the cell
was active.
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of these schemes is quite involved as it requires inverting large
sparse matrices (e.g. Kannan et al. 2016a). The other option is to
subcycle the RT steps (Commerçon, Debout & Teyssier 2014), i.e.
perform Nsub ≥ 1 number of RT steps per hydrodynamical step. This
effectively reduces the frequency with which the time-consuming
routines are called. We chose to implement the latter and the details
of this method are described in Appendix A.

3.2 The thermochemistry and cooling equations

In this section, we describe the numerical methods to evaluate the
source terms of the RT equations (RHS of equations 3 and 4).

3.2.1 Ultraviolet thermochemistry, photoheating, and radiation
pressure

We first look at the single-scattering regime, where a particular
photon interacts with the surrounding medium only once i.e. it is
absorbed only once, which destroys the photon, and there is little
scattering. This occurs mainly in the UV regime, where the photons
have enough energy to ionize atoms such as H and helium (He).
Since the ionization potential varies quite considerably, an accurate
treatment of UV RT requires multiple frequency bins centred around
the energy of each ionization state of the gas.

In the single-scattering regime, it is easier to work with photon
number densities instead of the radiation energy densities (Er).
Therefore, we define the photon number density Ni

γ , photon number

flux (Fi
γ ), and the associated pressure tensor (Pi

γ ) in each frequency
bin ‘i’ as

{c̃Ni
γ , Fi

γ , c̃Pi
γ } =

∫ νi2

νi1

1

hν
dν

∫
4π

{1, n, (n ⊗ n)}Iν d�, (41)

where ν i1 ≤ ν i < ν i2.
Accordingly, equations (3) and (4) can be reformulated as

∂Ni
γ

∂t
+ ∇ · Fi

γ = −
∑

j

c̃ nj N
i
γ σ̄ij − κi ρ c̃ Ni

γ

+
∑

j

sij,

(42)

∂ Fi
γ

∂t
+ c̃2∇ · Pi

γ = −
∑

j

c̃ nj Fi
γ σ̄ij − κi ρ c̃ Fi

γ , (43)

where nj is the number density of a particular ionic species, which
in our case consists of j ∈ {H I, He I, He II}. κ i is the dust opacity
of photon group ‘i’ and σ̄ij is the mean ionization cross-section of
species ‘j’ in the frequency bin ‘i’

σ̄ij =

∫ νi2

νi1

4πJν

hν
σjν

dν∫ νi2

νi1

4πJν

hν
dν

, (44)

where

Jν = 1

4π

∫
4π

Iν d�. (45)

Finally, sij is the source term that accounts for recombination
radiation. Most of the previous RT implementations employ the
On-The-Spot-Approximation (OTSA), which assumes that any
radiation emitted by recombinations is immediately absorbed in
the surroundings also called case B recombinations. This is a good

approximation in optically thick media, but is not valid in optically
thin environments where the case A recombination rates are more
relevant. Here, we include the option of not applying OTSA and
define

sij =
{

0 if OTSA∑
j δij (αA

j − αB
j ) nj ne Otherwise,

(46)

where δij is unity if the recombination radiation from species ‘j’
emits into the frequency bin ‘i’, else it is set to zero and αA

j and αB
j

are the cases A and B recombination rates .
As commonly done, we use the operator split approach to solve

these equations. First, the transport equations (setting RHS of
equations 42 and 43 to zero) are solved as described in Section 3.1.
Then, the thermochemistry equations are solved, which involves
solving the equation for the change in the photon number density
and photon number flux

∂Ni
γ

∂t
= −c̃ Ni

γ

⎛
⎝∑

j

nj σ̄ij + κi ρ

⎞
⎠ +

∑
j

sij , (47)

∂ Fi
γ

∂t
= −c̃ Fi

γ

⎛
⎝∑

j

nj σ̄ij + κi ρ

⎞
⎠ , (48)

which are coupled with the equations which govern the number
density evolution of the ionic species

dnH II
dt

= −αH II nH II ne + σeH I ne nH I + c̃ nH I

∑
i

σ̄iH I Ni
γ ,(49)

dnHe II
dt

= αHe III nHe III ne + σeHe I ne nHe I

+ c̃ nHe I

∑
i

σ̄iHe I Ni
γ − αHe II nHe II ne

− σeHe II ne nHe II − c̃ nHe II

∑
i

σ̄iHe II Ni
γ ,

(50)

dnHe III

dt
= −αHe III nHe III ne + σeHe II ne nHe II

+ c̃ nHe II

∑
i

σ̄iHe II Ni
γ ,

(51)

where σ ej and αj are the collisional ionization and recombination
rates of the ionic species ‘j’. These equations are supplemented with
the following closure relations:

nH = nH I + nH II, (52)

nHe = nHe I + nHe II + nHe III, (53)

ne = nH II + nHe II + 2nHe III. (54)

We note that case B recombination rates are used if OTSA is
applied otherwise, case A recombination rates are used. Finally,
the dust reprocessed optical/UV radiation is added on to the IR
energy density

∂EIR

∂t
=

/∈IR∑
i

κi ρ c̃ ei N
i
γ , (55)
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where ei is the mean energy per photon of the frequency group ‘i’
defined as

ei =

∫ νi2

νi1

4πJνdν∫ νi2

νi1

4πJν

hν
dν

, (56)

and EIR is the energy density of the infrared (IR) radiation field.
In addition to changing the ionization state of the gas, photons

can also deposit energy through photoheating. Quantitatively, the
photoheating rate (�) of a given ionic species is given as

�j =
∫ ∞

νtj

4πJν

hν
σjν (hν − hνtj) dν, (57)

where h is the Planck constant and Ej = hνtj is the ionization
potential of the ionic species ‘j’. In order to be compatible with
a multifrequency approach, we need to discretize this equation into
finite-frequency bins. We do so by splitting the above integral as
follows

�j =
∑

i

∫ νi2

νi1

4πJν

hν
σjν (hν − hνtj) dν, (58)

which can in turn be written down as

�j = c̃
∑

i

Ni
γ σ̄ij εij, (59)

where the photoheating rate in the frequency bin ‘i’ due to the
ionization of species ‘j’ is defined as

εij =

∫ νi2

νi1

4πJν

hν
σjν (hν − hνtj) dν∫ νi2

νi1

4πJν

hν
σjν dν

. (60)

Therefore, the total amount of energy deposited into the gas through
photoheating (H) is then

H =
∑

j

nj�j. (61)

Finally, the momentum injection rate by photon absorption is
discretized in the same way and is given by

∂ρv

∂t
= 1

c

∑
i

Fi
γ

⎛
⎝∑

j

nj σ̄ij pij + κi ρ ei

⎞
⎠ , (62)

where

pij =

∫ νi2

νi1

4πJν σjν dν∫ νi2

νi1

4πJν

hν
σjν dν

. (63)

The numerical integration of this thermochemical network is
quite challenging as small changes in the photon density can lead
to rapid changes in the ionization state and temperature of the gas.
Therefore, an explicit time integration of these equations would
require very small time-steps making the thermochemistry step
computationally expensive. In order to overcome this problem, we
use a variant of the method outlined in Petkova & Springel (2009),
which employs a semi-implicit approach, that first solves for the
number density evolution of the ionic species implicitly using the
values of the ne and Ni

γ from the previous time-step. ne is then
updated with the revised values of the number density of the ionic
species according to equation (54). The change in temperature of

the gas is then calculated explicitly using the updated abundances of
the ionic species (a detailed description of this scheme is discussed
in Appendix B).

If the temperature or one of the abundances changes by more than
10 per cent during a time-step, then we resort to using the publicly
available ordinary differential equation solver SUNDIALS CVODE
(Hindmarsh et al. 2005) which employs a variable order, variable
step, and multistep backward differencing scheme to compute the
temperature and chemical abundances. This scheme is stable enough
to allow us to set the thermochemistry to the transport time-step
given by equation (39).

3.2.2 Infrared dust–gas coupling

Dust grains are solid, macroscopic particles composed of dielectric
and refractory materials. Many of the physical details are empirical
as we do not yet know the precise composition of dust grains, nor do
we know their precise physical properties. They do however, play
a major role in the physics of the ISM. Although, they only make
up about 1 per cent of the ISM (Gilmore, Wyse & Kuijken 1989;
Zubko, Dwek & Arendt 2004), they absorb and reprocess almost
50 per cent of the starlight in the galaxy (Battisti, Calzetti & Chary
2016). The surface of dust grains host a variety of chemical reactions
that changes the chemical composition of the ISM significantly,
which in turn leads to changes in the star formation rate. They are
also thought be in radiative equilibrium with the local IR radiation
field (Krumholz & Thompson 2012).

Modelling the coupling between IR radiation, gas, and dust
can be quite challenging. Ideally, this requires treating the dust
as a separate fluid and accurately accounting for the energy and
momentum exchange between gas, dust, and the IR radiation
field, which can get rather complicated. We instead choose to
couple the IR RT scheme to the semi-empirical dust model of
McKinnon, Torrey & Vogelsberger (2016). This model accounts
for the stellar production of dust, accretion of gas-phase metals on
to existing grains, destruction of dust through local SN activity,
thermal sputtering of dust, and dust driven by winds from star-
forming regions. It reproduces the dust content in low-redshift
galaxies (McKinnon et al. 2017).

In this model, the dust is treated as a passive scalar, whose
motion is coupled to the gas, which is a good approximation for
short stopping time-scales found in the ISM. We further assume
that the system is close to local thermodynamic equilibrium,
which is good approximation for cold high-density regions of
the ISM (Goldsmith 2001; Krumholz & Thompson 2013). Under
these conditions, the gas emits as a blackbody. If the IR photon
frequency bin covers a sufficiently large range, then the source
function can be approximated by the frequency integral of a Planck
spectrum

SIR = κP ρ c a T 4 (64)

where a is the radiation constant, κP is the Planck mean opacity,
and T is the temperature of the gas. If the IR spectral energy
distribution (SED) is dominated by reprocessed radiation, then
it can be approximated to a Planckian, implying that κE = κP .
Additionally, for a system with a large IR optical depth, we can
assume that the flux-weighted mean opacity is similar to the
Rosseland mean opacity κF ∼ κR . Using these assumptions, we
can then write equations (3) and (4) as

∂EIR

∂t
+ ∇ · FIR = κP ρ

(
c a T 4 − c̃ EIR

)
(65)
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∂ FIR

∂t
+ c̃2∇ · PIR = −κR ρ c̃ FIR . (66)

The dust opacities (for both IR and UV radiation bins) are calculated
self-consistently based on the empirical dust model (see Appendix C
for more details). The destruction of dust by the UV radiation
field is not included as it is sub-dominant compared to other dust
destruction mechanisms such as SNe and thermal sputtering and is
only important in highly luminous systems with an extremely hard
spectra such as gamma-ray bursts (Waxman & Draine 2000; Draine
& Hao 2002).

Using the usual operator split approach, we first solve the pure
transport equations (setting the RHS of equations 65 and 66 to zero)
using the algorithm described in Section 3.1. The source terms are
then

∂EIR

∂t
= κP ρ

(
c a T 4 − c̃ EIR

)
, (67)

∂ FIR

∂t
= −κR ρ c̃ FIR , (68)

and the change in the internal energy (u) and momentum of the gas
are given by

∂u

∂t
= −κP ρ

(
c a T 4 − c̃ EIR

)
, (69)

∂ρv

∂t
= κR ρ

c
FIR. (70)

Equations (67) and (69) form a set of coupled equations. The
fourth power dependence on the temperature makes the equations
stiff requiring very small time-steps to maintain stability of the
solution. We use a variant of the approach presented in Rosdahl
& Teyssier (2015, R15) to solve these equations. First, we get a
semi-implicit estimate of the change in UE ∈ (EIR , u)

�UE = U̇E�t(I − J�t)−1 (71)

where �t is the time-step and J = ∂U̇E
∂UE

is the Jacobian matrix.

Using the symmetry of the problem (�EIR = −�u) the change
over time-step �t can be written as

�EIR = −�u = c a T 4 − c̃ EIR

(κP ρ �t)−1 + c̃ + 4 c a T 3C−1
v

(72)

where Cv = kB/((γ − 1)μ) is the specific heat at constant volume,
γ is the adiabatic index, and μ is the mean molecular weight. If the
relative change in both EIR and u is less than 10 per cent we keep
this estimate for the solution. Otherwise, we discard it and switch
to solving these equations using the SUNDIALS CVODE library
as mentioned in the previous section. This method is quite stable
and avoids large iterative loops even when sudden changes in the
photon energy density occur.

4 TEST PROBLEMS

This section presents various test problems of our RHD im-
plementation. The relevant hydrodynamic equations are evolved
using the moving mesh finite-volume scheme outlined in Springel
(2010), with the improved time-integration and gradient estimation
techniques described in Pakmor et al. (2016).

In Section 4.1, we test the accuracy and the convergence order of
our scheme. Sections 4.2 and 4.3 discuss a test for the ionizing chem-
istry scheme (Section 3.2.1). Section 4.4 tests the UV chemistry and
cooling implementation and the ability of the scheme to capture
and maintain the directionality of the underlying photon field. The
simulations presented in Sections 4.5 and 4.6 are evolved using
the full RHD equations and test the coupling between the photons
and the gas. Section 4.7 investigates how the M1 closure relation
performs in a multisource set-up. Sections 4.8 and 4.9 analyse the
performance of the multiscattered IR+coupled dust implementation
(Section 3.2.2), specifically, the ability of our scheme to capture
accurate results in optically thick media. Finally, Section 4.10
tests the temperature coupling multiscattering, coupling to the
hydrodynamics module, and explores the competition between
gravity and radiation pressure. The simulations in Sections 4.1–
4.4, and 4.7–4.9 are run without hydrodynamics and are intended
to test the accuracy and the stability of the RT implementation only.
In Sections 4.5, 4.6, and 4.10 we additionally test the accuracy of
the our scheme when hydrodynamics and ionizing RT are coupled.
In full RHD tests, we initially start with a regular Cartesian grid,
which is then allowed to move and adapt to the local fluid motion
(Springel 2010). In addition, the mesh is regularized where needed
using the scheme outlined in Vogelsberger et al. (2012).

In many of these tests, we also vary the numerical scheme of
the basic radiation transport equations. We explore the differences
between the flux functions used to solve the Riemann problem at
the cell interfaces, specifically the differences between the GLF
and the HLL flux functions. The HLL flux function uses accurately
calculated eigenvalues that represent the wave speeds of system of
transport equations. These depend highly on the reduced flux and
the angle between the photon flux and the cell interface. The GLF
flux function on the other hand uses a single wave speed set equal
to the reduced speed of light in our calculations. So theoretically,
the HLL flux function is less diffusive and better maintains the
directionality of the photon field. Additionally, we also compare the
accuracy and stability of the PC and the linear gradient extrapolation
methods. The PC scheme assumes that the primitive variables do
not vary within a volume element and therefore the input values
for the Riemann solver are the cell centred values. On the other
hand, the gradient extrapolation scheme linearly extrapolates the
cell centred values on to the face of the cell and then solve the
Riemann problem with these extrapolated values (see Section 3.1
for more information). In summary, we test the following four
numerical transport schemes:

(i) PC-GLF: piecewise constant approximation with GLF flux
function.

(ii) PC-HLL: piecewise constant approximation with HLL flux
function.

(iii) GLF: linear extrapolation with GLF flux function.
(iv) HLL: linear extrapolation scheme with HLL flux function.

We note that our fiducial scheme is the HLL scheme.
Finally, we also explore the performance of our code on dif-

ferent mesh configurations. We mainly use three different mesh
geometries, namely a regular Cartesian mesh, a regular staggered
mesh constructed by two Cartesian meshes that are displaced from
each other by 0.45 �x in every direction, where �x is the cell size
for the given resolution and an irregular mesh, which is obtained
from the Cartesian mesh by adding a random offset of up to 0.2
�x, mimicking the typical maximum deviation between mesh-
generating points and cell centres in real problems (Vogelsberger
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Figure 1. Radiation wave propagation: L1 error after one complete wave
period as a function of the number of resolution elements (N) for different
numerical schemes. While the PC approximation converges very slowly
with a slope of � 1.0, our fiducial scheme converges much faster with a
slope of ∼2.0, irrespective of the flux function used.

et al. 2012). Finally, please note that we use the labels ‘regular
mesh’ and ‘staggered mesh’ interchangeably.

4.1 Radiation wave propagation

We start with a test to gauge the accuracy of our RT scheme.
We investigate the propagation of small-amplitude, free-streaming
radiation wave in a purely absorbing, homogeneous medium with
low optical depth, like the test described in Gardiner & Stone
(2005) and Skinner & Ostriker (2013). A 2D box of sidelength
Lbox {x, y} = {2, 1} is initialized with a photon number density as
follows

E(r) = Ebg + ε sin

(
2π(x + 2y)/

√
5

λ

)
, (73)

where Ebg is a uniform background photon density field, ε = 10−6,
and λ = 2/

√
5. The radiation flux points in the direction of the

wave and has a value |Fr| = cEr, with c = 1. The optical depth
per wavelength is set to τλ = ρκλ = 0.1 and periodic boundary
conditions are used everywhere.

We employ four different background grids a regular Carte-
sian grid, a Cartseian grid with 1 per cent deviation between the
mesh-generating point and the mesh centroid, Cartesian grid with
10 per cent deviation, and finally a Cartesian grid with 20 per cent
deviation, which we denote as an irregular mesh as it mimics the
typical maximum deviation between mesh-generating points and
cell centres in real problems. We start the simulation at time t = 0
and evolve the system until t = 0.89 so that there is one complete
wave period in each of the x - and y -directions. The solution after
one complete wave period is then given by

E(r) = Ebg + ε e−ρκt sin

(
2π(x + 2y)/

√
5

λ

)
. (74)

Figure 2. Strömgren sphere: a projected map of the ionized H fraction in
the Strömgren sphere test for the highest resolution (2 × 1283) simulations
performed using HLL (top panels) and GLF (bottom panels) functions
with underlying regular (left-hand panels) and irregular (right-hand panels)
meshes. We obtain quite spherical Strömgren regions, because the photon
injection region is well resolved.

The L1 norm measured for different resolutions for the PC and
fiducial schemes is shown in Fig. 1. The PC-GLF and PC-HLL
schemes converge rather slowly with a convergence order of � 1.0.
The fiducial schemes on the other hand start out with much smaller
errors and converge significantly faster towards the analytic solution
with an order of ∼2.0. There is essentially no dependence of the
accuracy of the solution on the type of the flux function used. The
convergence order decreases as we move to more distorted meshes,
especially at higher resolutions, which shows the importance of
using mesh regularization schemes in AREPO.

These results illustrate the advantages of our algorithm. It is less
diffusive and highly accurate even at relatively low resolutions.
A gradient extrapolated predictor–corrector scheme coupled to a
Strang split approach for sources terms is necessary to achieve
second-order accuracy.

4.2 Strömgren sphere

We now test our scheme for the classical problem of an H II

region expanding in a constant density and temperature medium
(Strömgren 1939; Spitzer 1978). This tests the radiation transport
scheme and the H chemistry implementation in parallel. A single
monochromatic radiation source is placed at the centre of a domain
of sidelength 16 kpc, which is emitting H ionizing photons with
an energy 13.6 eV. The source outputs a constant stream of
photons at a rate of Ṅγ = 5 × 1048 photons s−1. The density of
the surrounding gas is set to nH = 10−3 cm−3 and the gas has
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Figure 3. Strömgren sphere: profiles of the neutral (solid curves) and
ionized (dashed curves) H fractions as a function of radius at the end of
the Strömgren sphere test for the simulations with 2 × 1283 (red curves),
2 × 643 (green curves), and 2 × 323 (blue curves) runs. The simulations
match the analytic results (black curves) quite well.

temperature T = 104 K. The sase B recombination rate of H II under
these conditions is αB = 2.69 × 10−13 cm−3s−1. Assuming all the
emitted photons are used to ionize the surrounding H the maximal
extent of the Strömgren radius (rs, 0) is given by

rs =
(

3Ṅγ

4π αB n2
H

)1/3

= 5.38 kpc. (75)

The evolution of the radius of the I-front can be obtained by
assuming that it is infinitely thin

rI,0(t) = rs[1 − exp(−t/trec)]1/3, (76)

where

trec = 1

nHαB
= 125.13 Myr, (77)

is the recombination time for our choice of the gas density.
The radial profiles of the neutral (ñH I = nH I/nH) and ionized

H (ñH II) fractions can analytically be computed from (Osterbrock
& Ferland 2006)

ñH I(r)

4πr2

∫
dν Ṅγ (ν) e−τν (r)σν = ñ2

H II(r) nH αB, (78)

where

τν(r) = nH σν

∫ r

0
dr ′ ñH I(r

′) . (79)

We perform the simulation with 2 × 1283, 2 × 643, and 2 × 323

resolution elements using our fiducial scheme on a regular mesh.
We use the RSLA in these runs, with fr = c̃/c = 0.01. In order to
understand the effect of reducing the speed of light, we perform
additional simulations with fr = 10−4, 2 × 10−4 and 10−3. Fig. 2

shows the projected maps of ionized H, at 0.5 Gyr for the run with
2 × 1283 resolution elements. There are small departures from a
perfect spherical symmetry due to the geometry of the injection
region and to a lesser extent due to the geometry of the underlying
mesh. Resolving the injection radius with multiple cells improves
the sphericity of the solution.

The profiles of neutral (solid curve) and ionized (dashed curve)
H at 0.5 Gyr are shown in Fig. 3. The analytic solution obtained
from equations (78) and (79) is plotted in black. We can see that
our method reproduces the analytic solution and the accuracy of the
solution increases with resolution as expected.

In Fig. 4, we show the time evolution of the ionizing front,
for the runs with different light speeds. The ionization front is
defined as the radius at which the ionization fraction equals 0.5.
We note that at late times, the analytic expectations derived from
equation (76, solid black curve) and equation (78, dashed black
curve) diverge because equation (76) assumes an infinitely thin
transition region and fully ionized gas within rs which is not
an accurate description of the Strömgren sphere. The simulation
results match the more accurate analytic expectation described by
equation (78).

The position of the I-front after 0.5 Gyr is quite similar in all the
runs, implying that, given time, the simulations will converge to the
right solution irrespective of the speed of light used. However, this
is only true if we are interested in the final state of the Strömgren
sphere and not in its evolution, which is clearly different for the
different speeds of light used. As shown in R13, the behaviour of
the solution can be quantified by comparing the light crossing time
(tcross = rs/c̃) to the recombination time (trec, equation 77); q =
tcross/trec. When, q ≥ 1, the ionization front expands at the reduced
speed of light and reaches rs at t = tcross and this is insensitive to
the recombination timescale. For q < 1, the reduced speed of light
is larger than the analytic expectation of the speed of the ionization
front and hence the simulated ionization front travels at the reduced
speed of light till it reaches the analytic solution and starts following
the analytic results. Of course, these considerations are only valid
if we assume full ionization within rs. In most realistic situations,
there is a complex ionization structure given by equation (78) and
shown in Fig. 3. In these realistic situations, the time to reach the
analytic solution is longer. For example, in our simulation with fr

= 10−4 (q = 1.4), the ionization front should start to follow the
analytic solution by t/trec = 1.4, but it takes t/trec > 3.5 to achieve
this because of the complicated internal ionization structure of the
Strömgren sphere.

If τmin is the shortest relevant time-scale of a simulation, then
ensuring that tcross < <τmin will ensure that the right solution for
the evolution of the I-front will be recovered without affecting other
time-scales of the system. Therefore, we can typically set

fr = min{1, η tcross/τmin} (80)

where η � 10. The value of τmin is of course problem dependent. For
reionization simulations, where the speed of the ionization front can
reach speeds of 104 km s−1 (Bauer et al. 2015), there is very little
room to reduce the speed of light. However, if we want to simulate
the ISM, then the high densities and low gas velocities allows for
large reductions in the speed of light fr � 10−3. Since most of the
tests in the paper are performed for relatively high-density initial
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Figure 4. Strömgren sphere: radius of the ionization front as a function of
time for simulations with 2 × 323 – resolution elements performed with fr =
10−4 (cyan curve), fr = 2 × 10−4 (blue curve), fr = 10−3 (green curve), and
fr = 0.01 (red curve). The analytic solutions obtained from equations (76)
and (78) are plotted as solid black and dashed black curves, respectively.
The run with the highest speed of light matches the analytic expectations
well, while the runs with lower light speeds take longer to reach the expected
analytic rs.

conditions, a value of fr = 0.01 is good enough to capture accurate
results.3

4.3 Multifrequency H–He Strömgren sphere

As an extension of the previous test, we simulate the ionization
structure around an O4V star. For this test, we include both atomic
H and He chemistry. In order to appropriately model the absorption
of photons at different frequencies by the different ionic species, a
multifrequency approach is required. Qualitatively, the ionization
structure in a nebula with H and He depends on the He abundance as
well as the spectrum of the ionizing star. The first ionization poten-
tial of He is 24.6 eV and it can be doubly ionized when photons with
energies greater than 54.4 eV are present. The photons with energies
between 13.6 and 24.6 eV can ionize only neutral H while photons
with energies above 24.6 eV can ionize both neutral H and He. In
order to accurately capture this behaviour, we split the spectrum into
three bins with frequency ranges corresponding to the ionization
potentials of H I [13.6 eV, 24.6 eV), He I [24.6 eV, 54.4 eV), and
He II [54.4 eV, 100.0 eV).

The star is assumed to emit a blackbody spectrum with
Teff = 4.87 × 104 K and a luminosity of 7.6 × 105 L�,
which translates to a Lyman continuum photon rate of
5 × 1049 photons s−1. We simulate a domain of size 3 pc with
2 × 1283 resolution elements and a regular staggered grid. The
surrounding gas has a constant density of 103 cm−3 and a temper-
ature of 104 K.

3See R13 and Skinner & Ostriker (2013) for a more detailed discussion on
the RSLA and its applicability.

Figure 5. Multifrequency H–He Strömgren sphere: profiles of the neutral
H (solid red curve), ionized H (dashed red curve), neutral He (dot dashed
green curve), singly ionized He (solid green curve) and doubly ionized He
(dashed green curve) fractions as a function of radius around a O4V star
at the end of the multifrequency H–He Strömgren sphere test. The analytic
expectations of doubly ionized He and neutral He are over plotted as black
curves.

The approximate size of the He II zone is given by (Tielens 2005)

rs(He) =
(

3Ṅγ,Lyc(He)

4π y (1 + y) αB(He) n2
H

)1/3

, (81)

where ‘y’ is the He number fraction and for this test rs(He) ∼ 1 pc.
This estimate is only correct, if there is no H ionization. For realistic
conditions, we need to solve the RT equation and the coupled
chemistry equations as described in Section 3.2.1.

The fractional ionization profiles H I (solid red curve), H II

(dashed red curve), He I (dotted–dashed green curve), He II (solid
green curve), and He III (dashed green curve) are plotted in
Fig. 5. He is doubly ionized in the central 0.1 pc, while both H
and He are singly ionized within the central 1 pc. Even a very
hot O4V star is only able to produce a small doubly ionized
He region as the amount of photons above 54.4 eV is rather
low.

As a comparison, we also plot the analytic fractional ionization
profiles of He III and He I in black. While the position of the
transition region matches the analytic solution well, the width is
larger than the expected value. This is because the width of the
transition region is of the order of the mean-free path of ionizing
photons,

l = 1/(nH σe) ∼ 10−3 pc, (82)

which is much smaller than the cell size in our simulation. As
the ionization cross-section is highly peaked towards the ionization
potential, the stellar radiation field is least attenuated at the highest
frequencies. Since the H cross-section for highly energetic photons
is smaller than that of He, He can stay ionized slightly further out
than H as seen in the figure. We have only plotted the analytic
expectation for two of the five ionic species in the simulation, in
order to increase the readability of the plot. We note that we match
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Figure 6. I-front trapping in a dense clump and the formation of a shadow: The H I maps showing slices at z = 0.5Lbox after 1 Myr of evolution for HLL
(first column), PC-HLL (second column), GLF (third column), and PC-GLF (fourth column) schemes. The top panels depict the results for simulations using
a underlying Cartesian mesh, while the bottom panels depict the results for a staggered mesh.

Figure 7. I-front trapping in a dense clump and the formation of a shadow: same as Fig. 6 but at simulation time of t = 15 Myr. The fiducial HLL and
GLF schemes are able to form sharp shadows irrespective of the mesh geometry used. The PC-HLL scheme is only able to obtain sharp shadows if the mesh
interfaces are exactly parallel/perpendicular to the photon propagation direction as is the case in a Cartesian mesh, but fails to do so in a staggered mesh which
has cross-mesh transport. The PC-GLF scheme is unable to form sharp shadows irrespective of the mesh geometry.

the profiles of the other ionic species equally well (see figure 7.2 of
Tielens 2005 for more details). This test confirms the accuracy of
our multifrequency RT scheme coupled to the H–He chemistry.

4.4 I-front trapping in a dense clump and the formation of a
shadow

Next we simulate the trapping of a plane-parallel I-front by a dense,
uniform, spherical clump. This test mimics self-shielding within a
high-density gas cloud illuminated by ionizing UV photons. Ideally,
the other side of the clump should be shielded from the ionizing

radiation, producing sharp shadows. The ability of a clump to trap
an ionization front depends on the strength of the ionizing flux (F),
the clump density (nH), the radius of the clump (rclump), and the case
B recombination rate (αB). We can define the ‘Strömgren Number’
for a clump as Ls = 2rclump/ls(0), where ls(0) is the Strömgeren
length at zero impact parameter

ls(0) = F

αB n2
H

, (83)

Ls = 2rclump αB n2
H

F
. (84)
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Figure 8. I-front trapping in a dense clump and the formation of a shadow: the temperature maps showing slices at z = 0.5Lbox after 1 Myr of evolution.

Figure 9. I-front trapping in a dense clump and the formation of a shadow: same as Fig. 8 but at simulation time of t = 15 Myr. The temperature maps
replicate the trends seen in the H I maps.

If Ls > 1, the clump is able to trap the I-front, while if Ls < 1, the
clump would be unable to trap the I-front and would instead be flash
ionized by its passage.

In our setup, the UV ionizing radiation has a blackbody
spectrum with an effective temperature Teff = 105 K and an ion-
izing flux of F = 106 photons s−1cm−2. This flux is a plane-
parallel wave travelling in the +x-direction and is incident on
the x = 0 boundary. The domain size is 6.6 kpc on a side
with 1283 resolution elements. A spherical high-density clump
of radius rclump = 0.8 kpc is placed within the domain, with the
centre of the clump at (x, y, z) = (5, 3.3, 3.3) kpc. The density
and temperature of the clump are n

clump

H = 4 × 10−2 cm−3 and

T clump = 40 K, respectively. The remaining domain is filled with
a hot, low-density gas with a temperature of T out = 8000 K

and density of nout
H = n

clump

H /200 = 2 × 10−4 cm−3. Initially, the

domain is neutral with an ionization fraction of ñH II = 10−6.
For these parameters and assuming a case B recombination
rate of αB(T ) = 2.59 × 10−13(T /104 K)−3/4 cm3s−1, we obtain
ls � 0.78(T /104 K)3/4 kpc and Ls � 2.05(T /104 K)−3/4. There-
fore, along the axis of symmetry the I-front should be trapped
approximately at the centre of the clump for T = 104 K. In reality,
the temperature could be expected to be somewhat different and
spatially varying, but to a rough first approximation this estimate
should hold. We run the simulation for 15 Myr with fr = 0.1. A
single frequency approximation is used, so that there is no leakage
of photons beyond the I-front.

We perform this simulation with four different types of numerical
schemes, HLL, PC-HLL, GLF, and PC-GLF, which are described
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Figure 10. I-front trapping in a dense clump and the formation of a shadow:
the ionization fraction (top panels) and temperature (bottom panels) profiles
calculated in a thin cylindrical shell around the axis of symmetry after
1 Myr (left-hand panels) and 15 Myr (right-hand panels) of evolution. The
solid curves depict the results for a simulation with an underlying Cartesian
mesh, while the dashed curves are for a staggered grid. The red, green, blue,
and yellow curves show the result for HLL, PC-HLL, GLF, and PC-GLF
schemes respectively. Numerical photon diffusion increases the temperature
and H II fraction in the shadow region if the PC schemes are used.

in Section 4. We note that ‘PC’ denotes a piecewise-constant
approximation, which is used in many recent works (Rosdahl &
Teyssier 2015; Bieri et al. 2017; Costa et al. 2017; Cielo et al.
2017; Lupi et al. 2017). However, we have shown in Section 4.1
that this approximation is exceedingly diffusive. Just switching to
a less diffusive HLL flux function from GLF will only slightly
improve the numerical diffusivity of the scheme. We have shown
that it is important to have gradient extrapolated values at the
interface, in order to reduce the numerical diffusivity and increase
the convergence order of the scheme. We use this test to further
show the limitations of the ‘PC’ approximation and demonstrate
the importance of using higher order schemes for RT. We use a
reduced light speed fraction of fr = 0.1. This high speed is needed
for the light to have reached the cloud in the first snapshot under
consideration, at 1 Myr.

The I-front travels fast through the diffuse medium outside the
cloud, but moves much more slowly inside of it, and a shadow is cast
behind it. As the UV radiation slowly ionizes and heats the cloud,
the shadow very slowly diminishes in width because some photons
manage to cross through the edges of the cloud. Fig. 6 presents the
H I fraction maps in the simulations using HLL (first column), PC-
HLL (second column), GLF (third column), and PC-GLF (fourth
column) schemes after 1 Myr of evolution. The top panel denotes
the results where the underlying mesh is Cartesian. Fig. 7 shows
the same after 15 Myr of evolution. These maps reveal interesting
differences between the numerical schemes. On a regular Cartesian
mesh, the HLL, PC-HLL, and GLF schemes are able to maintain
the directionality of the photons, even after 15 Myr of evolution
resulting in accurate shadows, which is not true for the PC-GLF

Figure 11. I-front trapping in a dense clump and the formation of a
shadow: the time evolution of the average ionization fraction (top panels)
and temperature (bottom panels) of the gas clump for simulations using an
HLL (red curve), PC-HLL (green curves), GLF (blue curves), and PC-GLF
(yellow curves) schemes with an underlying Cartesian (left-hand panels)
and staggered (right-hand panels) grids. The more diffusive PC schemes
tends to increase the temperature and ionization fraction of the high-density
clump.

scheme. This verifies the results presented in Rosdahl et al. (2013;
hereafter referred to as R13). Based on this test R13 and Lupi et al.
(2017) argued that switching to an HLL flux function will reduce
the diffusion of the scheme and maintains the directionality of the
photons. The directionality of the photons is only exactly maintained
when the photon flux is either completely parallel or perpendicular
to the cell interface. The eigenvalues of the system are exactly ±c
and 0 when the angle between the photon flux and the interface is 90
and 0 deg, respectively, and the value of the reduced flux f = 1 (see
fig. 1 of González et al. 2007). In this test, the photon flux is exactly
perpendicular to the cell interfaces along the photon propagation
direction and parallel to the other faces, in a Cartesian mesh. This
necessitates that the perpendicular numerical diffusion is exactly 0
by construction.

However, this geometry can only be achieved in test problems
where the radiation propagation direction is known beforehand
and will almost never occur in realistic simulations. To elucidate
this point, we perform the simulations also on a regular staggered
mesh (bottom panels of Figs 6 and 7) with 2 × 963 resolution
elements. The photon flux is no longer parallel/perpendicular to the
cell interfaces, therefore the PC-HLL scheme no longer produces
accurate and sharp shadows, and this is particularly evident after
15 Myr. It still performs better than the PC-GLF scheme, but
performs unfavourably compared to fiducial schemes, which use
gradient extrapolations, regardless of the flux function used. These
results reflect the findings of Section 4.1 for a more realistic setup.
Since, the temperature of the gas has a sharp dependence on the
photon density of the cell, the temperature maps (Figs 8 and 9)
show similar trends.

Fig. 10 quantifies the difference between the various schemes
by plotting the H ionization fraction (top panels) and temperature
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(bottom panels) profiles calculated in a thin cylindrical shell around
the axis of symmetry after 1 Myr (left-hand panels) and 15 Myr
(right-hand panels) of evolution. The temperature of the surrounding
gas increases slightly from 8000 K to about 3 × 104 K very quickly.
Inside the clump, however, the I-front is trapped and its velocity
slows down considerably. In the pre-ionization zone ahead of the
main I-front, all schemes agree quite well at all times. Slight
differences emerge in the position of the I-front (defined as the point
of 50 per cent ionized fraction) at 15 Myr, with the less diffusive
fiducial schemes propagating to a slightly smaller distance into the
cloud.

The main differences arise in the shadow region behind the
clump. The temperature and the ionization fraction, in particular, of
this low-density gas is extremely sensitive to any photons leaking
into this region due to numerical diffusion. On a Cartesian mesh
(solid curves), the HLL (red curves), GLF (blue curves), and the
PC-HLL (green curves) schemes all perform quite well in the
shadow region. The ionized H fraction stays at 10−6 indicating
very little numerical diffusion perpendicular to the direction photon
flow. The PC-GLF (yellow curves) scheme, however, has difficulty
maintaining the directionality of the photons and this drastically
increases the ionization fraction and temperature in the shadow
region. In fact the gas in the shadow region becomes fully ionized
behind the clump at 15 Myr. The ability of the PC-HLL scheme
to produce accurate shadows is diminished as soon as we move
to a staggered mesh (dashed curves), which mimics cross-mesh
transport of photons. The ionization fraction in the shadow region
increases almost as dramatically as the PC-GLF scheme implying
that there is no longer a sharp shadow. Using an HLL flux function
only slightly improves the numerical accuracy over using a GLF flux
function if a PC approximation is used. Only our fiducial gradient
extrapolated schemes are able to maintain low numerical diffusivity
even when the photon propagation direction is across the mesh
interfaces.

Finally, Fig. 11 shows the time evolution of the average ionization
fraction and temperature of the clump. The evolution matches in
general the range of results seen in tests performed using various
RT schemes presented in Iliev et al. (2006). This confirms that the
position and velocity of the I-front match the expected solution very
well. The evolution in the average quantities only slightly differs
between the schemes, with the more diffusive PC-GLF (on both
meshes) and PC-HLL (only on a staggered mesh) schemes showing
slightly higher ionization fractions and temperatures as expected.

We conclude that this test demonstrates the importance of
implementing higher order, low diffusion schemes for RT in order
to produce accurate results that are independent of the geometry of
the problem and that of the underlying mesh.

4.5 Expansion of a H II region

In this test, we explore the problem of the expansion of an I-front
due to photoheating from a point source (tests 5 and 6 of Iliev
et al. 2009). The temperature of the gas is allowed to vary and
the hydrodynamics is switched on. The photons heat the region
around the source through photoheating (equations 12 and 61),
producing an overpressurized region which drives the gas out with a
certain velocity. The I-fronts are generally classified by comparing
their speed, to two critical speed of the gas: R-critical, defined
as vR = 2cs,I,2 , and D-critical, given by vD ∼ c2

s,I,1
/(2cs,I,2 ), where

cs,I,1 = (p1/ρ1)1/2 and cs,I,2 = (p2/ρ2)1/2 are the isothermal sound
speeds in the gas ahead of and behind the I-front, respectively.

Typically, the I-front is initially R-type (VI ≥ VR ), where it expands
supersonically with respect to the neutral gas ahead, which means
RT post-processing is a fairly good approximation. The I-front then
begins to slow down once it approaches the Strömgren radius. When
vD < vI < vR (sometimes referred to as an M-type I-front), the
I-front is necessarily led by a shock which compresses the gas
entering the I-front sufficiently to slow it down and guarantees that
it is converted to a D-type front (vI ≤ vD ).

We test the performance of our implementation under two
different physical conditions, first, we simulate the expansion of the
I-front in a uniform density medium and then move on to a more
realistic situation where a source is at the centre of a spherically
symmetric, steeply decreasing power-law density profile with a
small flat central core. For the first simulation, we initialize a
box of size 2Lbox = 30 kpc on a side, which is resolved initially
with 2 × 803 resolution elements placed in a regular staggered
grid. As the gas starts to move, the mesh is allowed to move and
distort according to the local fluid motion. The box is initialized
with a pure H gas of density and temperature nH = 10−3 cm−3 and
T = 100 K, respectively. A constant luminosity source is placed
at the centre of the domain that emits a blackbody spectrum
with Teff = 105 K at the rate of Ṅγ = 5 × 1048 photons s−1. We
use a reduced speed of light with fr = 0.01 and the run the
simulation for 500 Myr. A multifrequency RT scheme is employed,
where, the emitted photons are grouped into three separate bins
with frequency ranges [13.6 eV, 24.6 eV), [24.6 eV, 54.4 eV), and
[54.4 eV, 100.0 eV).

Fig. 12 presents cross-section (at z = 15 kpc) maps of the H I

fraction (first column), density (second column), temperature (third
column), pressure (fourth column), and Mach number (M = v/cs;
fifth column) at 10 Myr (top panels), 200 Myr (middle panels),
and 500 Myr (bottom panels). Although the radiation is able to
ionize and heat the gas in the central ∼2 kpc within 10 Myr, there is
very little change in the density of the gas. The gas velocity is still
very low implying that it has not yet started evacuating the central
regions. By 200 Myr, the overpressurized region manages to push
enough gas out of the central regions and a high-density expanding
gas shell is formed around a low-density region. Interestingly, a
second transient density peak forms beyond the I-front, which is
replicated in the pressure and Mach number maps. The I-front
expands almost to Lbox by 500 Myr. We note that the maps show
some asymmetric artifacts that can be attributed to the geometry
of the underlying mesh. In our experiments, these kind of features
emerge only when there is a large-scale coherence in the geometry
of the underlying mesh, and disappear as the mesh becomes more
unstructured as we will demonstrate later in this section.

In Fig. 13, we plot the ionization fraction (ñH I, ñH II), density
(ρ), pressure (P), temperature (T), and Mach number (M = v/cs)
as a function of radius (r) at t = 10 Myr (blue curves), t = 200 Myr
(green curves), and t = 500 Myr (red curves). By 10 Myr, the
temperature increases behind the I-front due to photoheating which
in turn increases the pressure. The density has not changed by much
because the gas has not had time to react to these changes. This
is a classic R-type front which moves supersonically to about the
Strömgren radius (∼ 5.4 kpc), within a single recombination time-
scale (trec � 125 Myr). By 200 Myr, the expansion of the I-front has
progressed beyond what is expected from a pure R-type expansion.
The I-front is now D-type meaning that the front moves along with
the gas. The density behind the front is reduced, as the gas reacts
to the pressure jump inside the front causing it to flow radially
outwards. The gas piles up at the position of the I-front inducing
a small density peak. It is important to note, however, that there is
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Figure 12. Expansion of an H II region: maps showing slices of the domain at z = 15 kpc for the simulation of the expansion of an H II region in a constant
density medium. The H I fraction (first column), density (second column), temperature (third column), pressure (fourth column), and Mach number (fifth
column) are plotted at 10 Myr (top panels), 200 Myr (middle panels), and 500 Myr (bottom panels).

a second density peak beyond the I-front, which is reproduced in
the temperature, pressure, and Mach number profiles. This is the
temporary effect of photoheating by high-energy photons. The front
then expands slowly outwards till a pressure equilibrium is reached.
The final radius of the H II region (rf) is given by,

rf �
(

2T

Te

)2/3

rs ∼ 220 kpc, (85)

where T is the temperature inside the H II region, Te is the back-
ground temperature, and rs is the Strömgren radius (equation 75).
This indicates that the domain needs to be much larger in order to
simulate the equilibrium state of the solution. Therefore, we stop
the simulation at 500 Myr, a time at which the I-front is still within
the domain and plot the profiles as shown. We note that the positions
of the fronts and profiles match previous results in Iliev et al. (2009)
and R13 very well.

Fig. 14 shows the position and velocity of the I-front (defined as
where the radial average of ñH II is equal to 0.5). For comparison, we
also overplot the position of the front obtained using the RAMSES-RT

code presented in R13. The curves for the two codes are virtually
identical, with a very slight difference in the speed at late times,
which can be attributed to improper boundary conditions as the size
of the I-front becomes comparable to the box size.

We now turn our attention to an I-front expansion created by
a point source at the centre of a spherically symmetric, steeply
decreasing power-law density profile with a small flat central core
of density n0 and radius r0:

nH (r) =
{

n0 if r < r0

n0(r0/r)2 if r ≥ r0 .
(86)

Within the central core, the I-front propagates similarly as in the
previous simulation. The propagation of an I-front in r−2 density
profiles with full gas dynamics does not have an exact analytical
solution, but some insights can be gained by comparing the core
radius (r0) to the Strömgren radius (rs). For rs < r0, the I-front
stalls within the core, converts to D-type, but starts to re-accelerate
upon entering the steep density gradient. Alternatively, when rs ≥
r0, the source flash ionizes the cloud on time-scales shorter than the
dynamical time of the gas. We simulate the first case, which is more
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Figure 13. Expansion of an H II region: the ionization (top left panel), density (top middle panel), pressure (top right panel), temperature (bottom left panel),
and Mach number (bottom middle panel) profiles at 10 Myr (blue curves), 200 Myr (green curves), and 500 Myr (red curves) in the simulation of the expansion
of an H II region in a constant density medium. The profiles generally match the results from previous simulations of the same test reported in Iliev et al. (2009,
test 5).
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Figure 14. Expansion of an H II region: the radius (top panel) and velocity
(bottom panel) of the ionization front as a function of time in the expansion of
an H II region in a constant density medium. The evolution of the ionization
front matches well with results obtained for the same test with RAMSES-RT

(dashed black curve) as reported in R13.

interesting and is a better test of the coupling between the radiation
field and the hydrodynamics.

For this test, the domain of side length 2Lbox = 1.6 kpc is
resolved with 2 × 803 resolution elements placed on a regular
staggered grid. As before, the mesh is allowed to move and distort

according to local fluid flow. The central core has a density of
n0 = 3.2 cm−3 and a radius of r0 = 91.5 pc. The central source
is a blackbody spectrum with Teff = 105 K and emits at a rate of
1050 photons s−1. The initial temperature of the gas is 100 K. For
these parameters, rs � 70 pc, meaning that the I-front changes from
R-type to D-type within the core. The simulation is run for 25 Myr,
which is much larger than the recombination time-scale within the
core, which is about trec ∼ 0.04 Myr.

Fig. 15 shows the cross-section (at z = 0.8 kpc) maps of the H I

fraction (first column), density (second column), temperature (third
column), pressure (fourth column), and the Mach number (fifth
column) at 3 Myr (top panels), 10 Myr (middle panels), and 25 Myr
(bottom panels). The photoheated gas pressure is able to evacuate
most of the gas from the central regions, completely changing the
background density profile. We see that the I-front is more spherical
than in the previous simulation because the gas velocities are higher
which distorts the mesh and reduces the large-scale coherence in its
geometry.

Fig. 16 plots the ionization fraction (ñH I, ñH II), density (ρ),
pressure (P), temperature (T), and Mach number (M = v/cs) as a
function of radius (r) at t = 3 Myr (blue curves), t = 10 Myr (green
curves), and t = 25 Myr (red curves). By 3 Myr, the I-front has
moved out of the central core and is expanding rapidly as a D-type
front due to the steep density gradient outside the core. We obtain
very sharp I-fronts and the profiles of the various hydrodynamic
quantities match quite well with same test performed with an array
of numerical schemes presented in Iliev et al. (2009).

Finally, Fig. 17 shows the position and velocity of the I-front
(defined as where the radial average of ñH II is equal to 0.5). For
comparison, we also overplot the position of the front obtained
using the RAMSES-RT code presented in R13.

These tests verify the accuracy and reliability of our RT scheme on
randomly oriented, moving meshes. They also validate the accuracy
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Figure 15. Expansion of an H II region: maps showing slices of the domain at z = 0.8 kpc for the simulation of the expansion of an H II in an r−2 initial density
profile. The H I fraction (first column), density (second column), temperature (third column), pressure (fourth column), and Mach number (fifth column) are
plotted at 3 Myr (top panels), 10 Myr (middle panels), and 25 Myr (bottom panels).

of the coupling between the hydrodynamics and the radiation field
in our implementation.

4.6 Radiation pressure-driven outflows

Next we assess the accuracy of momentum injection into the gas
due to photon absorption, i.e. radiation pressure (equation 62).
During photon–matter interactions, both energy and momentum
are conserved. Photoheating is the product of thermalization of
the leftover energy above the ionization threshold of the ionic
species. The photon’s momentum is also transferred to the ion,
which receives a kick (�v = E/cm) in the direction of the absorbed
photon. An estimate of the change in momentum of a optically thick
shell of gas under spherically symmetric geometry can be written as
Ṗ = L/c, where L is the luminosity of the source. If L is invariant
then the change in velocity of the shell in time �t is

�vshell = L�t

mshellc
, (87)

where mshell is the mass of the shell. In case of a shell expanding
into a uniform background of density ρ0, the velocity of the shell

vshell at any time t is given by (Wise et al. 2012)

vshell = tA(r4
i + 2A t2)−3/4, (88)

where A = 3L/4πρ0c and ri is the starting position of the shell. The
shell will first form once ionization balances recombinations at the
Strömgren radius, therefore ri = rs.

Here, we follow the test setup presented in Sales et al. (2014).
Specifically, we look at the outflow velocities generated when
a constant monochromatic (E = 13.6 eV) source is placed in
the centre of a uniform medium. The luminosity of the source
is L = 106L� which translates to a photon injection rate of
Ṅγ = 1.8 × 1050 photons s−1. The initial density and temperature
of the gas are nH = 1 cm−3 and T = 100 K respectively, with the
gas composed of only neutral H atoms. A monochromatic source
with the energy equal to the ionization potential of the H atom
implies that there is no photoheating and therefore the internal
energy per unit mass of the cells, u, experiences no change due
to the presence of a luminous source. This translates into an
approximately constant temperature in the cells, except the change
in temperature due to the change in the mean molecular weight
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Figure 16. Expansion of an H II region: the ionization (top left panel), density (top middle panel), pressure (top right panel), temperature (bottom left panel),
and Mach number (bottom middle panel) profiles at 3 Myr (blue curves), 10 Myr (green curves), and 25 Myr (red curves) in the simulation of the expansion of
an H II region in an r−2 density profile. The profiles generally match the results from previous simulations of the same test reported in Iliev et al. (2009, test 6).
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Figure 17. Expansion of an H II region: the radius (top panel) and velocity
(bottom panel) of the ionization front as a function of time in the of the
expansion of an H II region in a r−2 density profile. The evolution of the
ionization front matches well with results obtained for the same test with
RAMSES-RT (dashed black curve) as reported in R13.

of the gas due to ionization. For these parameters, rs = 51.7 pc
and the corresponding recombination time is trec = 2.43 × 103 yr.
The simulation domain is Lbox = 200 pc on a side, initialized
with 2 × 803 resolution elements placed in a regular staggered
grid. As with previous RHD tests, the mesh is allowed to move
and distort according to local fluid flow. The simulation is run
for 5 Myr.
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Figure 18. Radiation pressure-driven outflows: velocity as an function of
time for gas with an initial density nH = 1 cm−3 at a fixed temperature of T
= 100 K. The simulation (red curve) agrees well with analytical estimations
from equation (88, dashed black curve).

Fig. 18 shows the velocity (red curve) of the ionized shell defined
as mass-weighted mean velocity calculated within a radius at which
almost all the gas is fully ionized. For comparison, we also plot
(black dashed curve) the expected analytic result from Wise et al.
(2012, equation 88), which is in very good agreement with the
simulated gas velocity. Initially, the I-front has a larger velocity
compared to the analytic result as the light travels to the Strömgren
radius before the gas has time to react to the changes. At later
times (t > 1 Myr), mass entrainment will slow down the gas, an
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effect which can be seen in the Wise et al. (2012) formulation as
well. However, the simulation curves turn over at larger velocities
compared to the analytic estimate which is also seen in Sales et al.
(2014). This test confirms the accuracy of our radiation pressure
implementation.

4.7 Free-streaming radiation from a thin disc

We have demonstrated in previous tests that the M1 closure relation
performs remarkably well for a wide range of problems. However,
the previous tests only simulate the propagation of radiation from
a single source or a plane-parallel wave of radiation. A well-
known disadvantage of the M1 closure is the inability to accurately
model convergent rays (González et al. 2007; R13). The closure
relation tends to produce spurious perpendicular flux when two
rays are converging to a point, instead of passing through each
other. Therefore, it is important to understand the limitations of this
approximation and to test it under realistic conditions.

We therefore perform the test described in R15 to check the
validity of our scheme in a multiple source geometry. Specifically,
we test the distribution of the radiation field intensity, when a
luminous thin disc is surrounded by an optically thick torus. The
rest of the domain is assumed to contain a tenuous optically thin
gas that allows for free transport of radiation. The 2D box of size
Lbox = 1 on a side is resolved by 1282 resolution elements. A thin
luminous disc of height 1/128 (corresponding to one cell width)
and width L = 0.125 is placed parallel to the x-axis and is centred
at (x, y) = (0.5, 0.1). Surrounding this disc is a one cell high torus
that is optically thick and for the purposes of this simulation acts
as a radiation sink. The disc has a constant photon energy density
(E0), which is imposed at every time-step. The disc and the torus
are made up of regular Cartesian cells, while the rest of the domain
is made up of an irregular mesh obtained by randomly deviating
the cell centres of a Cartesian mesh by a 0.2�x, where �x is the
cell width, mimicking a typical deviation between mesh-generating
points and cell centres in real problems (Vogelsberger et al. 2012).

The field morphology can be obtained analytically for this set-up
as shown in R15

E(x, y) = E0

2π

[
arctan

(
L/2 − x

y

)
+ arctan

(
L/2 + x

y

)]
, (89)

in a coordinate system, whose centre is defined at the centre of the
disc, i.e. at (x, y) = (0.5, 0.1) cm.

In Fig. 19, we present the histogram of the radiation field intensity
in the box, with the dashed contours plotting the simulation results
and the solid lines representing the analytic solution. The small
irregularity in the contours arises because of the irregularity of
the underlying mesh. We see that the simulation matches the
analytic result at least qualitatively. However, there are a few
important differences which highlight the shortcomings of the
M1 closure approximation. Namely, the radiation field intensity
contours overshoot the analytic solution in the y-direction by
a small amount and undershoot the solution in the x-direction.
This is because the photons from the right-hand side of the disc
are not able to propagate to the left-hand side of the domain,
because they interact with the photons that emanate from the left-
hand side of the disc going in the opposite direction. This causes
spurious perpendicular fluxes, thus overshooting the solution in the
y-direction and undershooting the solution in the x-direction. We
note that R15 finds similar results with their M1 closure scheme
and that we have a qualitative agreement with the analytic estimate
for the radiation field morphology.

Figure 19. Free-streaming radiation from a thin disc: the radiation field
morphology around a thin disc surrounded by an optically thick torus. The
solid lines depict the analytic radiation field contours that are expected from
this set-up, while the dashed lines plot the simulation results. The simulation
slightly overshoots the analytic solution in the y-direction and undershoots
it in the x-direction.

4.8 Dust absorption in an optically thick medium

In this section, we test the coupling between dust, gas, and the IR
radiation field. Specifically, we examine how well the IR dust–gas
coupling performs in the case of absorption in an optically thick
regime. It is well known that in highly optically thick media, the
photons propagate in a random walk reducing the radiation transport
equations to an isotropic diffusion equation.

Previous works (Liu 1987; Bouchut 2004) have shown that
if the numerical diffusion of the scheme becomes larger than
the true radiation diffusion then the operator split approach to
solve the RT equations is not valid anymore as the source terms
become extremely stiff compared to the hyperbolic transport terms.
Therefore, the ability of a numerical scheme to model radiation
transport in an optically thick regime is very sensitive to the inherent
numerical diffusivity of the scheme. There are a couple of ways
to overcome this problem. Berthon, Charrier & Dubroca (2007)
proposed to modify the Riemann solution such that it explicitly
takes care of the source terms. This solution to the Riemann
problem becomes much more complicated but it does recover the
right asymptotic limit in the optically thick regime. However, it
is unclear how radiation pressure can be accounted for in such a
scheme.

R15 on the other hand propose an alternative method based
on the isotropic diffusion source approximation methodology
(Liebendörfer, Whitehouse & Fischer 2009). The IR photon group
is split into two components, a trapped component (Et) and a free
streaming component (Es). The trapped radiation energy is assumed
to be strictly isotropic in angular space, corresponding to the
asymptotic limit of vanishingly small mean-free path. The amount
of trapped photons within a cell can be obtained by comparing
the numerical diffusivity of the scheme with the expected analytic
diffusivity in the diffusion limit. Specifically, the free streaming flux
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Figure 20. Dust absorption in an optically thick medium: the maps showing the stationary results from 2D runs with a constant flux of photons into the box
from the left. The colour represents the radiation temperature, Tr, as indicated by the colour bar and contours indicated by the solid black lines. The left-hand
panel shows the result using a PC–GLF scheme, which matches very well with the solution obtained in the 322 simulation of R15 (dashed green curves). The
plot on the right-hand side shows the results from the same simulation but now run with our fiducial scheme. The radiation temperatures are about two times
higher and is able to match the 10242 simulation of R15.

in the diffusion limit is

Fs � c̃

3κR ρ
∇Et, (90)

and the numerical diffusion for a PC-GLF scheme is

Fs � c̃ �x

3
∇Es. (91)

Equating these two equations gives Et = 3τc Es/2, where τ c is
the optical depth of the cell. The trapped photons are advected
along with the gas and the radiation pressure from trapped photons
is accounted for by adding an additional non-thermal pressure
component from the radiation field, P = Ptherm + Prad, where
Prad = c̃Et/(3c), to the momentum conservation equation (11). This
method produces accurate results in the diffusion limit.

There are, however, a few drawbacks with this scheme. First, we
note that equation (91) is only valid if the Riemann problem at the
interface is solved using a GLF flux function and more importantly,
the left- and right-state inputs to the Riemann solver must be the
cell centred values and no longer works if the left and right states
of the interface are the gradient extrapolated values. This forces
the underlying numerical scheme to follow a PC approach, which,
as seen before, is very diffusive and has suboptimal convergence
properties (see Section 4.1 for more details). Secondly, even at
relatively low optical depths (∼1), 60 per cent of the total radiation
flux is deposited into the trapped component. This component is
isotropic in angular space and hence the diffusion is isotropic.
Therefore, the M1 scheme reverts back to a flux-limited diffusion
(FLD; Lucy 1977; Krumholz et al. 2007) scheme, thereby, erasing
the directionality of the initial photon field. By the same rationale,
the radiation pressure will be isotropic and will generate isotropic

velocities even when the underlying radiation field has an inherent
directionality.

For these reasons, we chose not to implement sub-grid schemes
to model the diffusion limit. Our fiducial scheme is extremely
accurate and has very low diffusivity. Moreover, the convergence
order of our scheme is ∼2.0. This implies that a small improvement
in the resolution will decidedly improve the accuracy of the
solution. Since, AREPO is a moving mesh code, which automatically
refines the high-density regions (and correspondingly high opacity
regions), we are able to obtain accurate solutions in many realistic
problems as we will show in the present and forthcoming tests.

To elucidate the points made in this section, we perform a
quantitative test, proposed in R15, as a simple demonstration of
the accuracy of our scheme. We initialize a 2D domain of size 1 pc
on a side. The opacity is κRρ = 6.48 × 10−17 cm−1, which sets
τ box = 200. The underlying mesh is a regular Cartesian grid with 32
resolution elements on a side, translating to an optical depth in the
cell of τ c = 6.25. We chose a Cartesian grid so as to compare our
scheme to that of R15. The left boundary emits a constant IR flux
of 5.44 × 104 erg s−1cm−1. The rest of the boundaries act as sinks
for radiation. The hydrodynamics is turned off and the only source
of cooling and heating of gas is through the gas–dust IR coupling.
For this test, we use the full speed of light. The initial temperature
of the gas is 10 K. The simulation is run till the result has converged
to a steady-state solution.

We perform two different simulations, one with a PC approxi-
mation and a GLF flux (PC–GLF) function and another with our
fiducial scheme. The PC–GLF run mimics the scheme outlined in
R15. The left-hand panel of Fig. 20 shows the temperature map in
the PC–GLF run. The solid black lines show the contours of the
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temperature map for the simulation and the dashed green lines are
the contours from the same test performed by R15. The PC–GLF
run matches quite nicely with the 322 run of R15, confirming that
our PC approximation performs equally well with their scheme.
The maximum temperature reached is about ∼ 260 K.

As the optical depth of the cell is quite high, the numerical
diffusion of the PC–GLF scheme exceeds that of the analytic value
and hence the IR heating of the gas is massively underestimated.
We rerun the same low-resolution 322 simulation with our fiducial
scheme. The right-hand panel shows the temperature map in our
fiducial run with black solid contours indicating the temperature
obtained in our simulation and the dashed green line now instead
shows the results from R15’s high-resolution 10242 simulation. We
see that our low-resolution 322 simulation using the fiducial scheme
accurately reproduces R15’s 10242 simulation. This is because our
scheme is able to reduce the numerical diffusivity by a large amount,
thereby accurately capturing the diffusion limit without the need for
sub-grid diffusion models.

4.9 Diffusion of constant luminosity source

In this subsection, we redo the test proposed in R15 (Section 3.6),
with the aim to quantify the numerical diffusivity of our scheme
in the radiation diffusion regime. A 3D domain of Lbox = 500 pc
on a side is initialized with 323 resolution elements arranged
in a Cartesian mesh. A source with a constant luminosity of
L = 1050 photons s−1 is placed in the centre of the domain. The
gas is assumed to have an opacity of κR = 10 cm2 g−1. The hydro-
dynamics is turned off, but the radiation is allowed to propagate
radially outward and the simulation is stopped when a steady-
state solution is reached. The density of the gas is varied from
nH = 5 − 104 cm−3 corresponding to cell optical depths of τ c =
0.004−8.

The diffusion equation in a uniform optically thick medium is
given as

∂N

∂t
− c̃

3κR ρ
∇2 N + L = 0, (92)

where ρ is the density of the gas,L is the luminosity per unit volume,
and N is the number density of photons. The steady-state solution
of this equation is then

c̃N (r) = 3ρ κR L

4π r
, (93)

where r is the distance from the source. So, ideally, we should expect
the photon number density to diminish as 1/r.

The analytic expectation is derived assuming an infinite homo-
geneous medium and the diffusion equation only formally achieves
a steady-state solution at t = ∞. Both these approximations are
broken in our simulation set-up. In order, to approximate the infinite
spatial medium, the values of the radiation variables are set such
that they roughly match the expected slope of equation (93), i.e.

Us = Uf

(
1 − �x

Lbox

)
, (94)

whereU = (N, F), �x is the distance between the cell centres at the
boundary and the subscripts s and f refer to the solid layer cell and
the fluid layer cell at the boundary, respectively. The steady-state
solution is assumed to have been reached once the change in U is
less than 1 per cent throughout the domain.

Fig. 21 shows the simulated (solid curves) and analytic (dashed
curves) photon number density profiles for runs with gas densities,

Figure 21. Diffusion of constant luminosity source: the plots show time-
converged radiation profiles from the source at the centre of the box
in radiation tests with optical depths of 0.004 (red curves), 0.4 (green
curves), 4 (blue curves), and 8 (cyan curves). The simulation results (solid
curves) match the analytic solution (dashed curves) up to a cell optical
depth of about τ c ∼ 4 above which the numerical diffusion starts to
dominate.

nH = 5 cm−3 (red curves), nH = 5 × 102 cm−3 (green curves),
nH = 5 × 103 cm−3 (blue curves), and nH = 104 cm−3 (cyan
curves). The simulation with the lowest density (and hence the
lowest optical depth) gas is optically thin to the radiation and hence
the photons stream out of the box without any hindrance. This leads
to a N∝1/r2 dependence which is reproduced by the simulation as
expected.

As the density increases the gas gradually becomes optically thick
and the radiation field starts to diffuse through the medium rather
than streaming out and the photon density profiles gradually starts
to follow the 1/r relation given by equation (93). In the simulations
with nH = 5 × 102 cm−3, the cells have optical depths of τ c = 0.4,
which can just be resolved by the R15 scheme. We do recover the
results with great accuracy in our scheme as well. However, this is
the limit to which the R15 scheme can resolve the photon diffusion
and it has troubles capturing the correct solution for higher optical
depths as evidenced by very little change in the simulation result for
higher densities (left two panels of Fig. 8 in R15). This is because,
beyond this opacity the numerical diffusion of their scheme becomes
larger than the expected analytic diffusion. This is corrected by
using a sub-grid diffusion model which has its own drawbacks as
discussed in the previous section (Section 4.8). However, in our
simulation with a gas density of nH = 5 × 102 cm−3 having an
optical depth of τ c ∼ 4, our scheme is able to reproduce the analytic
solution very well. This implies that the numerical diffusion of the
fiducial scheme is so low that it captures the right solution even
when the photon mean-free path is under resolved. This is also
seen in the previous section, where the scheme was able to obtain
the right results even when the cell optical depth was τ c ∼ 6.25.
There is a slight discrepancy between the analytic and simulation
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results at large radii which is attributed to the fact that the boundary
conditions are imperfect.

Obviously, the numerical diffusion of our scheme can-
not be identically zero. The results from the highest density
(nH = 5 × 102 cm−3) show the limitation of the scheme. The cell
optical depth is about τ c ∼ 8, and the simulation undershoots the
photon number density at all radii in this regime, indicating that the
numerical diffusion is larger at such high optical depths.

To conclude, our numerical algorithm performs well up to about
a cell optical depth of τ c ∼ 6. Above this threshold, the numerical
diffusion dominates, degrading the accuracy of the solution. We
note that this threshold is about an order of magnitude larger than
the one for the scheme presented in R15. This allows us to capture
the accurate solutions even at high optical depths without resorting
to sub-grid diffusion models. Additionally, our scheme converges
at a much higher rate ∼2.0 and can therefore efficiently achieve
higher accuracy by improving the spatial resolution.

4.10 Levitation of optically thick gas

Radiation pressure, both from direct UV and multiscattered IR,
has been hypothesized to drive significant galactic-scale outflows
(∼100 km s−1; Hopkins et al. 2011; Agertz et al. 2013; Hopkins
et al. 2014). While the momentum injection rate of the single-
scattered UV photons is just ṖUV = L/c, the reprocessed IR
radiation field can be trapped in a high optical depth medium
boosting the momentum injection, i.e. ṖIR = τIRL/c. The efficiency
with which the gas can trap the IR radiation field is unknown and
different RT schemes seem to produce different results (Krumholz
& Thompson 2012; Davis et al. 2014; Rosdahl & Teyssier 2015;
Zhang & Davis 2017).

In this section, we perform the experiment first outlined in
Krumholz & Thompson (2012), which tests the radiation pressure,
radiation–temperature coupling, and the multiscattering of IR ra-
diation. A thin layer of gas is placed in an external gravitational
potential, and a certain amount of IR flux is injected in the direction
opposite to gravity. This set-up mimics the physical conditions
found in stellar nurseries or in the central plane of an optically thick
galactic disc. It allows us to study how gravitationally bound gas
responds to multiscattering IR radiation. Krumholz & Thompson
(2012) argue that as the gas lifts, it becomes Rayleigh–Taylor
unstable, which leads to a significant reduction in the coupling
between the IR radiation and the gas. The RTI creates chimneys
through which the radiation escapes rather than coherently lifting
the gas. In their work, the radiation field has been modelled using
the FLD approach, which assumes that the radiation flux always
points in the direction of gradient of the photon energy density. As
discussed in Section 2, the directionality of the underlying photon
field is washed out by using this scheme. It is therefore possible that
the radiation field diffuses out through the path of least resistance.

Davis et al. (2014) performed the same experiment using a
more accurate VET closure scheme, which constructs the radiation
flux vector for every volume element by sweeping the whole
domain with short characteristics rays, effectively incorporating the
contribution from all sources and sinks. Their results show that the
VET closure relation coherently lifts the gas even in the presence
of RTI. The velocity of the gas also significantly increases with the
VET scheme. This is despite the fact that the average optical depths
and the radiation force on the gas is quite similar to the FLD runs.
The difference stems from the fact that VET scheme manages to
maintain the average Eddington ratio to just above one, while the
FLD only achieves Eddington ratios which are below unity.

This discrepancy between the different numerical schemes can
be explained by their varying accuracy in estimating the direction
of the underlying photon field. The diffusion approximation only
transports photons in the direction of energy gradient, which is a
very good approximation in highly thick media, but fails in optically
thin or even slightly optically thick systems. R15 performed the
same test but using the M1 closure relation and a PC–GLF scheme
(called M1–R15 scheme from now on) and found results which
were closer to the FLD results rather than the VET. They argue
that although the M1 closure locally stores the bulk direction of the
radiation field, its inability to accurately capture the propagation
direction in the presence of multiple sources creates artificial
diffusion. This causes the radiation to escape out of the chimneys
created by the RTI. As we also employ the M1 closure relation,
we expect to get similar results as R15. However, it is interesting
to see if our low diffusion, higher order scheme will perform
better. Moreover, the quantitative results using the FLD, VET, and
M1 closures in terms of optical depths, Eddington ratios and gas
velocities are close enough that this experiment can act as a good
test of our implementation.

The simulation set-up consists of a 2D domain of boxsize L(x,
y) = (Lbox/2, 2Lbox) = (512, 2048)h∗, where h∗ is the characteristic
scale height of the initial density profile. A layer of gas is placed at
the bottom of the box and given an exponential density profile
ρ(y) = ρ∗exp (− y/h∗), where h∗ = 2 × 1015 cm and ρ∗ =
7.1 × 10−16 g cm−3. The column density of the box is then �∗
= 1.4 g cm−2. On top of this initial density profile a perturbation of
the form

∂ρ

ρ
= 0.25(1 ± χ ) sin(2πx/Lbox), (95)

is added, where χ is random number uniformly distributed between
[−0.25, 0.25]. This mimics the turbulent nature of the gas present
in the star-forming birth cloud and in the ISM. The density profile
has a floor at 10−10ρ∗ and the initial temperature of the gas is
uniformly set to T∗ = 82 K. The gas is acted upon by a homogeneous
gravitational acceleration pointing downwards with a magnitude of
g = 1.46 × 10−6 cm s−2. We note that under these conditions the
system is unstable as gas pressure cannot counteract gravity.

The initial mesh consists of a high-resolution Cartesian mesh
at the bottom in order to resolve the high-density gas, with the
volume of the resolution element set to (0.5h∗)2 (similar to the
resolution used in Davis et al. 2014 and R15). The resolution is then
degraded slowly till a minimum resolution with a volume of (8h∗)2 is
reached. The initial configuration of the mesh is not that important,
as the mesh moves and distorts according to local fluid flow. The
mesh is regularized where needed and refined and derefined such
that the minimum ((0.5h∗)2) and maximum ((8h∗)2) cell sizes are
approximately maintained throughout the simulation run.

The bottom boundary of the domain emits a constant IR radiation
flux of F∗ = 2.54 × 1013 L� kpc−2(1.03 × 104 erg cm−2 s−1) and
the box is initialized to contain an upwards radiation flux of the
same magnitude, with c̃E = Fy = F∗ and Fx = 0. This sets the
radiation temperature to

Tr∗ =
(

F∗
ca

)1/4

= T∗, (96)

where a is the radiation constant. The radiation is coupled to the
gas–dust fluid using the equations described in Section 3.2.2. The
radiation energy density and the radiation flux are coupled to the
gas using the Planck (κP ) and Rosseland (κR ) mean opacities, given
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by

κP = 0.1

(
T

10 K

)2

cm2 g−1, (97)

κR = 0.0316

(
T

10 K

)2

cm2 g−1, (98)

which sets the initial value of the Rosseland mean opacity to
κR∗ = 2.13 cm2 g−1. These opacity functions are the same as the
ones used in previous works (Krumholz & Thompson 2012; Davis
et al. 2014; Rosdahl & Teyssier 2015) and mimic the observed dust
opacity functions in cold (T ≤ 150 K) gas obtained by Semenov
et al. (2003). We note that the only non-adiabatic source of heating–
cooling for the gas is through IR radiation–dust–gas coupling

∂u

∂t
= −∂E

∂t
= κP ρ(c̃E − c a T 4). (99)

The gravitational force and the radiation pressure compete with
each other and the eventual motion of the gas will be determined by
the Eddington ratio

fE = fy,rad

gρ
, (100)

where fy, rad is the radiation force in the vertical direction

fy,rad = κR ρ Fy

c
. (101)

Therefore, the Eddington ratio at the start of the simulation is fE∗
= 0.5, implying that the radiation is initially unable to overcome
gravity and lift the gas. However, the gas is optically thick to the IR
radiation with an initial optical depth of

τ∗ = κR∗ �∗ = 3, (102)

and the radiation can get trapped by the gas, increasing the
Eddington ratio and driving the gas upwards.

The simulation domain is periodic in the x-direction for both
gas and the radiation field. The top layer boundary cells have fixed
values of temperature and density of ρ = 10−13ρ∗ and T = 10−3T∗
respectively. The velocity of the gas is set to zero at this boundary
and the energy density and flux of the radiation field is also set to
zero. This allows for free flow of gas and radiation field out of the
top boundary. For the gas, the bottom boundary is reflective and
allows for no escape or entry of gas. The bottom boundary should
also emit radiation vertically at a the rate of F∗. This is accomplished
by setting the radiation energy density and flux at the bottom solid
layer to Es and Fs = (0, F∗), where

c̃Es = F∗ − Fy,f + c̃ Ef, (103)

where the subscripts ‘s’ and ‘’f’ refer to the solid layer and
fluid layer cells respectively. We use our fiducial scheme to solve
the transport equations. The simulation is run for t = 150t∗,
where t∗ = h∗/c∗ is the characteristic sound crossing time and
c∗ = √

kBT /(μmp) = 0.54 km s−1 is the sound speed. The mean
molecular weight is set to μ = 2.33. We run the simulation with a
reduced speed of light fraction set to fr = 0.01.

Fig. 22 shows the maps of normalized density (top panels),
radiation temperature (middle maps), and the radiation flux in the
vertical direction (Fy; bottom panels) at t = 25t∗ (first column), t
= 50t∗ (second column), t = 75t∗ (third column), t = 100t∗ (fourth
column), t = 100t∗ (fifth column), and t = 150t∗ (sixth column).
Initially, the trapped radiation field greatly increases the radiation
temperature (T∗), which in turn increases the gas temperature due

to the close coupling between the dust, gas, and the radiation
field. The increased gas temperature leads to an increase in κR ,
resulting in increasing the radiation force and pushing fE > 1.
The gas becomes super-Eddington and it can be driven upwards
in a thin shell. By t = 25t∗, the gas becomes Rayleigh–Taylor
unstable, creating dense filamentary structures punctuated with
diffuse chimneys through which the radiation escapes (as seen in
the bottom left panel). However, the gas continues to lift and a
significant fraction (∼15 per cent) of the gas lifts beyond 1024h∗
by 75t∗. Some of the most dense filaments stall and fall back, but the
radiation is still trapped within turbulent medium as evidenced by
the temperature map at this time. However, as the chimneys widen
the radiation eventually escapes and the gas falls back down to the
bottom (� 500h∗) where it is kept turbulent by the competition
between the radiation pressure and gravity.

Fig. 23 shows the mass-weighted mean vertical velocity (top
panel), the mass-weighted vertical (middle panel), and horizontal
(bottom panel) velocity dispersions as a function of the simulation
time in units of the characteristic time-scale (t∗). The velocity
and velocity dispersions are plotted in units of the characteristic
sound speed c∗. The initial gas acceleration obtained using our
simulation set-up (red curves) is much higher than either of the VET
(blue curves), FLD (cyan curves), or the M1−R15 (green curves)
schemes. The maximum average velocity reached by the gas in our
simulation is about 〈vy〉max ∼ 15c∗ which is about 50 per cent larger
than the velocities achieved by the other schemes. This velocity is
maintained for a brief amount of time (∼25t∗) and then the velocity
starts to decrease quickly as the gas starts to fall back to the bottom
of the domain. The chimneys created by the RTI also allow the
radiation to escape, reducing the radiation pressure on the gas.
This causes strong deceleration and the minimum velocity reaches
〈vy〉min ∼ −10c∗. As the gas falls back the radiation pressure starts
to build up again and eventually reaches a turbulent state, with
velocity dispersions larger than the ones obtained by the M1–R15
and FLD schemes.

To understand this behaviour quantitatively, we plot the volume
averaged Eddington ratio

fE,V =
〈
fy,rad

〉
Fy

, (104)

as a function of characteristic time in the top panel of Fig. 24. As
mentioned earlier, this ratio reveals the competition between the
radiation pressure and gravity with fE, V > 1 corresponding to the
case where the radiation pressure wins and drives outflows, while
fE, V < 1 indicates that gravity wins and the gas just falls back to the
bottom of the box. The Eddington ratio quickly jumps to fE, V ∼ 2
from an initial value of 0.5 within the one t∗ and maintains that value
for about 15t∗. This behaviour is different from the VET and M1–
R15 schemes, where the gas motions cause their Eddington ration
to drop below 1.5 very quickly. The reason for this discrepancy can
understood by looking at the volume averaged optical depth from
top to bottom (middle panel of Fig. 24),

τV = Lbox

〈
κR ρ

〉
. (105)

The optical depth rises from the initial value of τV = 3 to ∼ 12
within one t∗ similar to the VET simulations. However, while the
optical depth falls below ∼10 quickly in their simulations, it is
maintained for about 15t∗ in our simulation. This increased optical
depth results in larger values of the Eddington ratio, which in turn
drives the gas to larger velocities. This indicates that our scheme is
much more efficient in trapping the photons initially compared to
the other schemes used in literature. The bottom panel of Fig. 24
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Figure 22. Levitation of optically thick gas: maps showing the normalized density (top panels), radiation temperature (middle maps), and the radiation flux
in the vertical direction (Fy; bottom panels) at t = 25t∗ (first column), t = 50t∗ (second column), t = 75t∗ (third column), t = 100t∗ (fourth column), t = 125t∗
(fifth column), and t = 150t∗ (fourth column).

MNRAS 485, 117–149 (2019)



Radiation hydrodynamics in AREPO 143

−10

0

10

v y
/c

∗

0

5

10

15

σ
y
/c

∗

0 20 40 60 80 100 120 140
t/t

0

5

10

σ
x
/c

∗

arepo-rt

M1-R15

VET

FLD

Figure 23. Levitation of optically thick gas: plot showing the mass-
weighted y-velocity (top panel), the vertical velocity dispersion (middle
panel), and the horizontal velocity dispersion (bottom panel) as a function
of characteristic time t∗ in our simulation (}; red curves) compared to M1–
R15 (green curves), VET (blue curves), and FLD (cyan curves) schemes.
Initially the mean y-velocity increases to about 15c∗ due to the efficient
trapping of photons. However, RTIs form low-density chimneys through
which the radiation escapes and the gas falls back to the bottom of the box
and settles into a turbulent state.

shows the ratio between the flux-weighted mean optical depth

τF = Lbox

〈
κR ρ Fry

〉〈
Fry

〉 , (106)

and τV. τ F gives the momentum per unit area transferred from the
radiation to the gas. Therefore, the ratio gives us an estimate of the
fraction of actual momentum in the radiation field transferred to the
gas. This quantity hovers around unity for the initial 15t∗ implying
that there is almost perfect coupling between radiation field and the
gas at these early times. This is again better than the VET and M1–
R15 schemes which only manage to couple about ∼ 85 per cent of
the radiation momentum into the gas. After about 15t∗, all three
quantities decline sharply, as the RTI instabilities build up. There is
a slight rebound at about 25t∗ but declines again quite quickly. All
three quantities rebound slowly as the gas falls back to the bottom,
the optical depth builds up and the gas reaches a turbulent state with
the Eddington ratio hovering around unity.

This test has allowed us to gauge the advantages and limitations of
our scheme. The general results agree well with the FLD, VET, and
M1-R15 schemes used in literature. Our scheme performs better
than the other schemes at early times by trapping the radiation
more efficiently, increasing the optical depth and powering a
higher velocity outflow. The maximum average velocity is about
50 per cent higher than the ones achieved by either of the VET or
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Figure 24. Levitation of optically thick gas: plot showing the volume-
weighted Eddington ratio, optical depth, and the ratio between the flux-
weighted mean optical depth to the volume-weighted optical depth as a
function of the characteristic time in our simulation (AREPO-RT; red curves)
compared to M1–R15 (green curves), VET (blue curves), and FLD (cyan
curves) schemes. All three quantities rise sharply in the beginning and these
high values are maintained for about 15t∗, after which all three quantities
decline sharply as the RTIs build up. It is only after most of the gas falls
back to the bottom (∼50t∗) that the optical depth starts to build up again
and pushes the Eddington ratio closer to unity.

M1–R15 schemes. However, the late time behaviour of the gas is
closer to the FLD scheme than the VET scheme. Most of the gas
in our scheme falls back to the bottom of the domain (like FLD
and M1–R15 schemes), while the VET scheme still continues to
evacuate gas at a significant rate. The reason for this difference
is the approximation made in the M1 closure relation. Although
the M1 closure locally stores the bulk direction of the radiation
field, it is unable to accurately capture the propagation direction
in the presence of multiple sources creating artificial diffusion.
This causes the radiation to escape out of the chimneys created
by the RTI. Unfortunately, this is physical limitation of the of the
M1 closure approximation and not a limitation of the implemented
numerical scheme. It might turn out that the only way to accurately
capture the exact coupling between radiation and gas in this regime
might be to run quite expensive ray tracing short/long characteristic
RT methods. However, we note that our scheme is better at trapping
photons and driving outflows compared to the M1–R15 scheme
which has the same physical limitations as our method.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented AREPO-RT, a novel implementation
of an accurate and computationally efficient RHD scheme on
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unstructured, moving Voronoi meshes. The scheme is based on a
fluid description of the radiation field obtained by taking the zeroth-
and first-order moments of the continuity equation of specific
luminosity. These moment equations are a pair of hyperbolic
conservation laws for photon energy density and photon flux. The
system is then closed using the M1 closure relation that equates
the pressure tensor to the energy density using a specific form of
the Eddington tensor, which locally stores the bulk direction of the
radiation field. The ability of the M1 closure to obtain an estimate
of the Eddington tensor from just the local properties of the cell
renders it very useful for computationally challenging problems.

We employ an operator split approach based on dividing the
moment equations into equations for pure radiation transport and
equations for the source and sink terms. We achieve high-order
accuracy by replacing the PC approximation of Godunov’s scheme
with a slope-limited piecewise linear spatial extrapolation and a
first-order time prediction to obtain the states of the primitive
variables on both sides of the cell interface. The spatial extrapolation
is carried out using an LSF gradient estimator that has been shown to
work well in meshes where the centre of mass of the cell can be offset
from the mesh-generating point. Two different flux functions have
been implemented to solve the Riemann problem at the interface: a
second-order HLL flux function that uses the exact eigenvalues that
represent the wave speeds of the RT transport equation and a GLF
flux functions that sets the eigenvalues to the light speed irrespective
of the geometry of the problem.

A conservative time-integration scheme is implemented using
Heun’s method, which is a variant of the second-order Runge–
Kutta scheme. The fluxes are computed as an average of fluxes at
the beginning and end of the time-step. An RSLA is implemented
in order to overcome the problem of small time-steps required due
to the large speed of light. Additionally, a conservative subcycling
scheme is implemented that is fully compatible with the individual
time-stepping scheme of AREPO.

The radiation field couples to the gas and dust via photoionization,
photoheating, and momentum injection. A multifrequency approach
is used to model UV, optical, and IR radiation fields. We implement
atomic H and He thermochemistry using a semi-implicit approach
that is quite stable and allows for reasonably large time-steps. The
local nature of the M1 closure relation allows the scheme to account
for radiation emitted from collisional recombinations and discard
OTSA. IR radiation is accounted for by coupling it to the semi-
empirical dust model of McKinnon et al. (2016) which treats dust
as a passive scalar, whose motion is closely coupled to the gas
motions. This allows us to assume that the system is close to local
thermodynamic equilibrium, which is a good approximation for
cold high-density regions of the ISM. The main advantage of this
coupling is that the dust opacities are self-consistently calculated
from the properties of the dust in the cell, thereby eliminating the
need for ad hoc scaling relations used in previous works (Bieri et al.
2017; Costa et al. 2017).

We test our implementation on a variety of problems. The
implementation works well overall and reproduces analytic results
in all the tests performed in this work. We first start with a
test designed to gauge the accuracy of our radiation transport
scheme in vacuum by simulating the radial advection of a thin
Gaussian pulse. We find that using different flux functions (GLF
or HLL) to solve the Riemann problem makes little difference to
the obtained solution. It is much more important to use gradient
extrapolated values at the face as inputs to the Riemann solver
instead of the PC approximation used in R13 and R15. Such higher
order fiducial schemes have very low numerical diffusion and the

convergence order is ∼2.0 compared to ∼0.5 for the PC schemes.
In fact, the L1 error in the simulation with 2 × 642 resolution
elements run with the fiducial scheme is much lower than the error
for a simulation with 2 × 2562 resolution elements using a PC
approximation.

The veracity of the multifrequency scheme coupled to the H–He
photochemistry is verified by simulating Strömgren spheres around
an ionizing source in a constant density medium. The ionization
structure and the time evolution of the Strömgren radius match
very well with the analytic expectations. We also simulated the
case of an I-front trapping inside a dense clump of gas. The I-
front is trapped inside the clump forming a shadow behind the
clump. The sharpness of the shadow correlates with the diffusivity
of the scheme. We show that the PC approximation is unable to
produce accurate shadows if the radiation transport is even slightly
non-parallel to the mesh geometry. On the other hand, our fiducial
schemes which use gradient extrapolations are able to produce sharp
shadows irrespective of the flux function or the mesh geometry
used.

The coupling between RT and hydrodynamics is tested by
simulating the expansion of an H II region in both a constant
density medium and in a medium with a steep power-law density
slope which mimics more realistic situations. The evolution of the
ionization structure, density, temperature, pressure, and the Mach
number of the gas matches very well with the results obtained
by previous works. Additionally, we also address the accuracy of
the momentum injection into the gas due to photon absorption by
simulating radiation pressure-driven outflows. We show that after an
initial period of supersonic expansion, a linear relation between the
gas velocity and time is reproduced which is directly proportional
to the luminosity of the source. These tests together validate the
accuracy of the coupling between hydrodynamics and the radiation
field.

One of the main shortcomings of the M1 closure relation is its
inability to accurately determine the direction of the underlying
photon field in a multiple source geometry. We quantify this defi-
ciency by simulating the topology of the radiation field emanating
from a thin disc surrounded by an optically thick torus. Although
we achieve qualitative agreement with the analytic expectation,
the simulation slightly overshoots the field geometry perpendicular
to the disc and undershoots it in the transverse direction. This
is because the rays from one side of the disc intersects the rays
emanating from the opposite side causing spurious perpendicular
flux. We stress that this is a fundamental limitation of the M1
closure approximation. In fact, R15 find similar results with their
M1 closure scheme.

Next, we test the implementation of the multiscattering IR–
dust gas coupling. Especially in optically thick regimes multiple
scatterings lead to an isotropization of the radiation flux and the
radiation tends to diffuse rather than advect through the medium. It is
difficult to capture this transition because if the numerical diffusion
of the scheme becomes larger than the true radiation diffusion then
the operator split approach to solve the RT equations is not valid
anymore. Therefore, the ability of a numerical scheme to model
the radiation transport in an optically thick regime is extremely
sensitive to the inherent numerical diffusivity of the scheme. Our
simulations of dust coupling in a optically thick media show that
our fiducial scheme manages to reproduce accurate results for τ c

� 6, while that limit without using a sub-grid diffusion model
for R15 is τ c ∼ 0.6. We conclude that our scheme is able to
attain the right solution even when the optical depth is moderately
under-resolved.
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As a final test of our scheme, we explore the ability of a trapped
IR radiation field to accelerate a layer of gas in the presence of an
external gravitational field that points in the opposite direction to the
radiation pressure. Simulations using an FLD scheme argue that as
the gas lifts it becomes Rayleigh–Taylor unstable creating chimneys
through which the radiation escapes rather than coherently lifting
the gas. Simulations performed with a more accurate VET closure
scheme, however, coherently lift the gas even in the presence of RTI.
The difference stems from the fact that VET manages to accurately
estimate the direction of the underlying photon field, while the FLD
approximation only transports photons in the direction of energy
gradient. Our scheme performs better than the other schemes at
early times by trapping the radiation more efficiently, increasing the
optical depth and powering a higher velocity outflow. However, the
late time behaviour of the gas is closer to the FLD scheme than the
VET scheme. Most of the gas in our scheme falls back to the bottom
of the domain, while the VET scheme still continues to evacuate
gas at a significant rate. This is because, although the M1 closure
locally stores the bulk direction of the radiation field, it is unable
to accurately capture the propagation direction in the presence
of multiple sources, creating artificial diffusion. Unfortunately,
this is a physical limitation of the M1 closure approximation. It
might turn out that the only way to accurately capture the exact
coupling between radiation and gas in this regime might be to run
quite expensive ray-tracing short/long characteristic RT methods.
However, we note that our scheme is much better at trapping photons
and driving outflows compared to the R15 scheme which have the
same physical limitations as our scheme.

We conclude that we have implemented an efficient, robust
and accurate RHD solver in the moving-mesh code AREPO. In
forthcoming work, we plan to use this implementation to study
timely problems in astrophysics related to RT, such as the role
of radiative stellar feedback in driving galactic scale outflows,
radiation pressure from quasars, and its role in quenching high-
redshift galaxies and modelling the reionization history of the
Universe.
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Strömgren B., 1939, ApJ, 89, 526
Thacker R. J., Couchman H. M. P., 2001, ApJ, 555, L17
Thompson T. A., Quataert E., Zhang D., Weinberg D. H., 2016, MNRAS,

455, 1830
Tielens A. G. G. M., 2005, The Physics and Chemistry of the Interstellar

Medium. Cambridge Univ. Press, Cambridge, UK
Tombesi F., Meléndez M., Veilleux S., Reeves J. N., González-Alfonso E.,
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APPENDI X A: SUBCYCLI NG OF THE RT S TEP

In this section, we describe a scheme designed to subcycle multiple
RT steps for each hydro step that is compatible with the local time-
stepping scheme of AREPO. Implementing such a scheme relies on
how well the artificial domain boundaries created by inactive cells
are handled. It was shown that the imposition of Dirichlet boundary
conditions (Commerçon et al. 2014) can lead to a violation of energy
conservation which can get quite acute in the presence of large

MNRAS 485, 117–149 (2019)

http://dx.doi.org/10.1093/mnras/stu1738
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1111/j.1365-2966.2006.10775.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15558.x
http://dx.doi.org/10.1093/mnras/stv944
http://dx.doi.org/10.1093/mnras/stx2212
http://dx.doi.org/10.1093/mnras/stt2098
http://dx.doi.org/10.1093/mnras/stt2144
http://dx.doi.org/10.1093/mnras/stw294
http://dx.doi.org/10.1093/mnras/stw463
http://dx.doi.org/10.3847/2041-8213/aa624b
http://dx.doi.org/10.3847/0004-637X/819/2/148
http://dx.doi.org/10.1086/192305
http://dx.doi.org/10.3847/1538-4357/aa9b80
http://dx.doi.org/10.1088/0004-637X/760/2/155
http://dx.doi.org/10.1093/mnras/stt1174
http://dx.doi.org/10.1086/520791
http://dx.doi.org/10.1051/0004-6361/201117808
http://dx.doi.org/10.1086/172149
http://dx.doi.org/10.1016/0022-4073(84)90112-2
http://dx.doi.org/10.1088/0004-637X/698/2/1174
http://dx.doi.org/10.1007/BF01210707
http://dx.doi.org/10.1086/112164
http://dx.doi.org/10.1086/306975
http://dx.doi.org/10.3847/1538-4357/aa8328
http://dx.doi.org/10.1086/155591
http://dx.doi.org/10.1093/mnras/stw253
http://dx.doi.org/10.1093/mnras/stx467
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1093/mnras/sts261
http://dx.doi.org/10.1088/0004-637X/709/1/191
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1086/192179
http://dx.doi.org/10.1111/j.1365-2966.2006.10989.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06751.x
http://dx.doi.org/10.1093/mnras/stv2380
http://dx.doi.org/10.1086/444589
http://dx.doi.org/10.1111/j.1365-2966.2008.13601.x
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1093/mnras/stw3216
http://dx.doi.org/10.1111/j.1365-2966.2009.14843.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18986.x
http://dx.doi.org/10.1093/mnras/stx2656
http://dx.doi.org/10.1071/AS07022
http://dx.doi.org/10.3847/0004-637X/828/2/108
http://dx.doi.org/10.1088/1364-7830/5/3/301
http://dx.doi.org/10.1093/mnras/stv567
http://dx.doi.org/10.1093/mnras/stt1722
http://dx.doi.org/10.1093/mnras/stv937
http://dx.doi.org/10.1093/mnras/stw2153
http://dx.doi.org/10.1088/0004-637X/759/1/36
http://dx.doi.org/10.1093/mnras/stu1548
http://dx.doi.org/10.1093/mnras/stu155
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1046/j.1365-8711.2000.03815.x
http://dx.doi.org/10.1051/0004-6361:20077965
http://dx.doi.org/10.1051/0004-6361:20031279
http://dx.doi.org/10.1086/185015
http://dx.doi.org/10.1111/j.1365-2966.2005.09860.x
http://dx.doi.org/10.1088/1674-4527/12/8/004
http://dx.doi.org/10.1088/0067-0049/206/2/21
http://dx.doi.org/10.1086/186504
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://dx.doi.org/10.1086/428772
http://dx.doi.org/10.1111/j.1365-2966.2006.11097.x
http://dx.doi.org/10.1093/mnras/sts028
http://dx.doi.org/10.1137/0705041
http://dx.doi.org/10.1086/144074
http://dx.doi.org/10.1086/321739
http://dx.doi.org/10.1093/mnras/stv2428
http://dx.doi.org/10.1038/nature14261
http://dx.doi.org/10.1086/522566
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1093/mnras/stu1536
http://dx.doi.org/10.1038/nature13316
http://dx.doi.org/10.1111/j.1365-2966.2012.21590.x
http://dx.doi.org/10.1093/mnras/stt1789
http://dx.doi.org/10.1111/j.1365-2966.2012.21767.x
http://dx.doi.org/10.1086/309053
http://dx.doi.org/10.1093/mnras/stw2944
http://dx.doi.org/10.1086/499072
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.1111/j.1365-2966.2012.21809.x
http://dx.doi.org/10.1088/0004-637X/777/1/39
http://dx.doi.org/10.1093/mnras/stw718
http://dx.doi.org/10.3847/1538-4357/aa6935
http://dx.doi.org/10.1086/382351


Radiation hydrodynamics in AREPO 147

Figure A1. Subcycling of the RT step: the radius (top panel) and velocity
(bottom panel) of the ionization front as a function of time for the expansion
of an H II region in a r−2 density profile, in a simulation with N sub = 1 (black
curves), N sub = 2 (red curves), N sub = 4 (blue curves), and N sub = 8
(green curves). The simulation results are converged with respect to the
number of subcycles used.

energy gradients. We instead chose to follow the method outlined
in Pakmor et al. (2016). The number of RT subcycles to every hydro
step (Nsub ) is an input variable. The hydro time-step of every cell in
the simulation is then set as

�thydro = min
(
Nsub�tRT, �thydro

)
. (A1)

In order to maximize the impact of subcycling, the number of
subcycles should be set to Nsub = 2n, since the local time-stepping
scheme of AREPO uses a discretization of the allowed time-step sizes
into a power-of-two hierarchy (Springel 2010).

For every hydro step, the following RT loop is executed Nsub

times:

(i) The time-step of each subcycle step is set to
�t = �thydro/Nsub .

(ii) The thermochemistry and momentum injection steps are
executed for all the active cells.

(iii) A list of all active interfaces, i.e. interfaces with at least one
adjacent active cell is made.

(iv) All cells that share at least one corner with an active interface
are collected. This includes a layer of inactive cells around the active
cells.

(v) The fluxes are exchanged over the active interfaces (as
described in Section 3.1), with the time-step set to the minimum of
the time-steps of the two adjacent cells divided by Nsub .

(vi) The primitive variables of the active cells are then updated.

This form of subcyling is fully conservative and only requires to
solve the RT equations on the active cells plus a one-cell boundary
layer.

As a test of this scheme, we resimulate the expansion of an H II

region in a varying density field as described in Section 4.5, with a
varying number of RT subcycles. Briefly, a constant luminosity
source with a blackbody spectrum (T eff = 105 K) emitting at a

Figure A2. Subcycling of the RT step: the total run time (solid black line)
of the simulation (in CPU hours) as a function of the number of RT subcycles
used (Nsub ) compared to the ideal ∝ 1/Nsub scaling (dashed line).

rate of 1050 photons s−1 is placed at the centre of a spherically
symmetric, steeply decreasing power-law (−2) density profile
with a small flat central core of gas. A domain of side length
2Lbox = 1.6 kpc is resolved by 2 × 803 resolution elements placed
on a regular grid. The central core has a density of n0 = 3.2 cm−3

and a radius of r0 = 91.5 pc. The simulation is run for 25 Myr. For a
fiducial run with Nsub = 1, the position and velocity of the ionization
front are plotted in Fig. 17 and the corresponding quantities are
shown in Fig. A1 for Nsub = 1 (black curves), Nsub = 2 (red curves),
Nsub = 4 (blue curves), and Nsub = 8 (green curves). All the runs
reproduce the same result irrespective of the number of subcycles
used, proving the validity and accuracy of our scheme. We also note
that during the simulation the time bin hierarchy reaches up to 4
bins deep, proving that the subcyling scheme is compatible with
AREPO’s local time-stepping scheme.

Fig. A2 shows the total amount of time taken to run the simulation
(in CPU hours) as a function of Nsub (solid black curve). Satisfyingly,
the run time of the simulation reduces by the expected factor of
∼1/Nsub. This drop in the run time is attributed to the fact that
the time-consuming routines are called less frequently due to the
larger hydro step (equation A1). This can be seen more clearly in
Fig. A3, which compares the amount of time taken by individual
sub-routines, such as, RT (red shaded region; including cooling and
chemistry), tree-based time-step calculation (cyan shaded region),
domain decomposition (yellow shaded region), hydro (green shaded
region), and Voronoi mesh construction (blue shaded region) for a
simulation with Nsub = 1 (left-hand panel) and Nsub = 8 (right-
hand panel). The time taken by the RT routine stays about constant
because it still has to follow the time-step imposed by the speed of
light. The increased hydro step reduces the frequency with which
the other routines are called thereby massively reducing the time
spent on them.

It is important to note that although Voronoi mesh construction is
a computationally expensive process, it does not usually take up as
much time as depicted in our simulation (∼ 70 per cent). This only
happens because we start out with a regular mesh and this introduces
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Figure A3. Subcycling of the RT step: the total amount of computing time taken by RT (red region), tree-based time-step estimate (cyan region), domain
decomposition (yellow region), hydrodynamic flux calculation (green region), and Voronoi mesh construction (blue region) routines in simulations with
Nsub = 1 (left-hand panel) and Nsub = 8 (right-hand panel). Increasing the number of subcycles reduces the frequency with which the computationally
expensive routines (such as the Voronoi mesh construction) are called, thereby reducing the total computing time.

a lot of degeneracies in mesh geometry which require a large number
of geometric predicates that need to be carried out with exact floating
point arithmetic to lift the degeneracies, thereby, artificially boosting
the computing time. Starting from more realistic, and therefore less
regular, particle geometries will drastically bring down the time
taken by this routine. However, this high computing time for Voronoi
mesh construction acts as a proxy for other routines not included
in the simulation such as gravity and galaxy formation physics that
will definitely be present in realistic simulations.

Finally, the speed of AREPO-RT, compared to the parent code
AREPO is problem dependent. Specifically, it depends on the value
of the reduced speed of light used in the simulations. If the time-
step due to the speed of light is comparable to the time-step
obtained from hydrodynamic considerations, then the overhead due
to the RT flux calculations is pretty small, of order ∼10 per cent.
The non-equilibrium chemistry and cooling can cause significant
(∼30 per cent) overhead in simulations with high-density gas due
to extremely small cooling times. The weak scaling of AREPO-RT

is as good as AREPO (which has shown excellent weak scaling
upto tens of thousands of cores) because it uses the same domain
decomposition, parallelization, and communication algorithms.

A P P E N D I X B : H – H E T H E R M O C H E M I S T RY

In this section, we describe in detail the semi-implicit scheme used
to solve the thermochemical network of H and He (equations 47–
54). First let us define

A = �t σeH I (ne)n,

B = �t c̃
∑

i

σ̄iH I
(
Ni

γ

)n
and

C = �t αH II (ne)n ,

(B1)

where �t is the time interval over which we are integrating the
equation and the superscript ‘n’ denotes the values of the quantity

at the present time. Then, equation (49) then can be written in a
semi-implicit form

(
ñH II

)n+1= (
ñH II

)n +A(1 − (
ñH II

)n+1
)+B(1− (

ñH II
)n+1

)

−C
(
ñH II

)n+1
,

(B2)

which gives

(
ñH II

)n+1 =
(
ñH II

)n + A + B

1 + A + B + C
(B3)

where {ñH I, ñH II} = {nH I, nH II}/nH, therefore ñH I + ñH II = 1

which in turn sets the value of
(
ñH I

)n+1
.

For He chemistry, we represent ñj = nj/nHe and define

D = �t σeHe II (ne)n,

E = �t αHe III (ne)n ,

F = �t σeHe I(ne)n,

G = �t αHe II (ne)n ,

H = �t c̃
∑

i

σ̄iHe I
(
Ni

γ

)n
, and

I = �t c̃
∑

i

σ̄iHe II
(
Ni

γ

)n
.

(B4)

Therefore, the change in nHe III (equation 51) can be written as

(
ñHe III

)n+1 = (
ñHe III

)n + D
(
ñHe II

)n+1 − E
(
ñHe III

)n+1

+ I
(
ñHe II

)n+1
,

(B5)

which gives

(
ñHe III

)n+1 =
(
ñHe III

)n + (D + I )
(
ñHe II

)n+1

1 + E
. (B6)
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We note that
(
ñHe II

)n+1
is still an unknown, which is given by(

ñHe II
)n+1 = (

ñHe II
)n − D

(
ñHe II

)n+1 + E
(
ñHe III

)n+1

− G
(
ñHe II

)n+1 − I
(
ñHe II

)n+1

+ F
(

1 − (
ñHe II

)n+1 − (
ñHe III

)n+1
)

+ H
(

1 − (
ñHe II

)n+1 − (
ñHe III

)n+1
)

.

(B7)

Substituting the value of
(
ñHe III

)n+1
from equation (B6) into

equation (B7), we get

(
ñHe II

)n+1 =
(
ñHe II

)n + F + H − H + F − E

1 + E

(
ñHe III

)n

1 + D + F + G + H + I + (H + F − E)(D + I )

1 + E

.

(B8)

Then, the value of
(
ñHe II

)n+1
is used in equations (B6) to obtain(

ñHe III
)n+1

. Finally,
(
ñHe I

)n+1
is given as(

ñHe I
)n+1 = 1 − (

ñHe II
)n+1 − (

ñHe III
)n+1

, (B9)

and the electron density is set to

(ne)n+1 = (
nH II

)n+1 + (
nHe II

)n+1 + 2
(
nHe III

)n+1
. (B10)

Finally, the photon number density and flux are updated as

(
Ni

γ

)n+1 =
(
Ni

γ

)n + �t
∑

j sij

1 + �tc̃
(∑

j

(
nj

)n
σ̄ij + κi ρ

) , (B11)

and

(
Fi

γ

)n+1 =
(
Fi

γ

)n

1 + �tc̃
(∑

j

(
nj

)n
σ̄ij + κi ρ

) . (B12)

APP ENDIX C: DUST OPACITIES

The coupling between dust and radiation is a function of both dust
grain size and wavelength (or frequency) of incident radiation. A
grain of size a and geometric cross-section πa2 subject to incident
radiation at wavelength λ has radiation pressure cross-section Q(a,
λ)πa2, where Q is the dimensionless radiation pressure coefficient
Q(a, λ) = Qabs(a, λ) + (1 − g(a, λ)) × Qsca(a, λ). Here, Qabs

is the contribution from absorption, Qsca is the contribution from

scattering, and g = 〈cos θ〉 is the average cosine of the angle of
scattered light.

We use tabulated values of Q(a, λ) from Draine & Lee (1984)
and Laor & Draine (1993), who present absorption and scattering
data for 10−3 ≤ λ/μm ≤ 103 and for graphite and silicate grain
compositions. Since we do not follow detailed grain chemistry, we
average the radiation pressure coefficients for graphite and silicate
grains to calculate effective Q(a, λ) values. We note that Q(a, λ)
is related to grain opacity by κ(a, λ) = 4Q(a, λ)/3aρgr, where
ρgr ≈ 2.4 g cm−3 is the internal density of a solid dust grain.

Astrophysical dust grains come in a range of different sizes,
and the size distribution is typically defined in terms of a function
dn/ da, where dn/ da × da gives the number of grains with size in
the interval [a, a + da]. We assume that dust grains follow a power-
law size distribution dn/ da ∝ a−3.5 (Mathis, Rumpl & Nordsieck
1977), with minimum size amin = 0.001μm and maximum size
amax = 1μm.

Using these radiation pressure coefficients, the Planck mean
opacity κP at gas temperature T for the frequency interval [νmin,
νmax] averaged over the grain size distribution is given by

κP =

∫ amax

amin

∫ νmax

νmin

Bν(T )κ(a, c/ν)
dn

da
dν da∫ amax

amin

dn

da
da

∫ νmax

νmin

Bν(T ) dν

, (C1)

and the Rosseland mean opacity κR is calculated from

1

κR

=

∫ amax

amin

∫ νmax

νmin

∂Bν(T )

∂T

1

κ(a, c/ν)

dn

da
dν da∫ amax

amin

dn

da
da

∫ νmax

νmin

∂Bν(T )

∂T
dν

, (C2)

where Bν(T) is Planck blackbody function. By calculating mean
opacities over specific frequency ranges, these values can be used
in the multifrequency approach detailed in Section 3.2.1.

In practice, we create a lookup table by pre-computing these dust
opacities over a range of gas temperatures and during simulations
calculate the opacities of individual gas cells by interpolating
to the cells’ temperatures. Additionally, since the opacities from
equations (C1) and (C2) are given in units of area per unit mass of
dust, we multiply by a gas cell’s dust-to-gas ratio so that opacities
are per unit mass of gas.
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