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A B S T R A C T 

We introduce a machine learning method for estimating the sensitivity of strong lens observations to dark matter subhaloes in 

the lens. Our training data include elliptical power-law lenses, Hubble Deep Field sources, external shear, and noise and PSF 

for the Euclid VIS instrument. We set the concentration of the subhaloes using a v max –r max relation. We then estimate the dark 

matter subhalo sensitivity in 16 000 simulated strong lens observations with depth and resolution resembling Euclid VIS images. 
We find that with a 3 σ detection threshold, 2.35 per cent of pixels inside twice the Einstein radius are sensitive to subhaloes 
with a mass M max ≤ 10 

10 M �, 0.03 per cent are sensitive to M max ≤ 10 

9 M �, and the limit of sensitivity is found to be M max = 

10 

8.8 ± 0.2 M �. Using our sensitivity maps and assuming CDM, we estimate that Euclid-like lenses will yield 1 . 43 

+ 0 . 14 
−0 . 11 [ f 

−1 
sub ] 

detectable subhaloes per lens in the entire sample, but this increases to 35 . 6 

+ 0 . 9 
−0 . 9 [ f 

−1 
sub ] per lens in the most sensitive lenses. 

Estimates are given in units of the inverse of the substructure mass fraction f 

−1 
sub . Assuming f sub = 0.01, one in every 70 lenses 

in general should yield a detection, or one in every ∼ three lenses in the most sensitive sample. From 170 000 new strong lenses 
detected by Euclid, we expect ∼2500 new subhalo detections. We find that the expected number of detectable subhaloes in 

warm dark matter models only changes relative to cold dark matter for models which have already been ruled out, i.e. those with 

half-mode masses M hm 

> 10 

8 M �. 

Key words: gravitational lensing: strong – dark matter. 

1  I N T RO D U C T I O N  

In cosmological models involving dark matter, galaxies reside in 
dark matter superstructures called haloes. Numerical simulations 
show that these haloes form hierarchically merging with their 
neighbours and agglomerating smaller haloes (Springel et al. 2008 ). 
The distribution of these subhaloes in mass called the subhalo mass 
function (SHMF) depends on the free-streaming properties of the 
dark matter, which is typically parametrized as a thermal relic dark 
matter particle mass, m TR . In the canonical model, cold dark matter 
(CDM), the mass function is scale free and the number of objects 
at a given mass scales inversely with mass. For warmer models, 
i.e. smaller m TR , we expect a suppression in dark matter structure 
formation for objects below a certain mass called the half mode mass, 
M hm 

. Therefore, measuring the number and mass of dark matter 
subhaloes in galaxies provides a constraint on the dark matter model 
m TR . 

Strong gravitational lensing provides one method for measuring 
the distribution of dark matter subhaloes in the Universe amongst 
others (e.g. Mao & Schneider 1998 ; Dalal & Kochanek 2002 ; 
Koopmans 2005 ). Subhaloes in the proximity of lensed images have a 

� E-mail: conor@mpa-garching.mpg.de 

miniscule, but measurable effect on the local magnification. For point 
source objects like quasars, the effect of the subhalo is to produce 
anomalous flux ratios in the lensed images (Brada ̌c et al. 2002 ; Xu 
et al. 2015 ). When the source is an extended object, a technique 
called gravitational imaging is used (Vegetti & Koopmans 2009a ; 
Galan et al. 2022 ; Vernardos & Koopmans 2022 ). In gravitational 
imaging, small corrections to the potential, beyond that of the smooth 
lens galaxy, are found that impro v e the fit to the lensed images. The 
density field for this corrected potential can then reveal the locations 
and masses of subhaloes. Alternatively, the presence of substructures 
can be described analytically (e.g. Daylan et al. 2018 ; He et al. 
2022 ), or via the power-spectrum of mass-density fluctuations (e.g. 
Chatterjee & Koopmans 2018 ). So far, a small number of dark matter 
substructures have been detected (Vegetti et al. 2010 , 2012 ; Hezaveh 
et al. 2016 ). In any CDM or WDM model, the number of detectable 
subhaloes expected in a typical lens with current instrumentation 
is of order unity, and so non-detections of subhaloes are common 
(Vegetti et al. 2014 ; Ritondale et al. 2019 ; Nightingale et al. 2022 ). 
It is therefore crucial to quantify the limits in subhalo mass of any 
non-detection in order to constrain the SHMF. 

Traditionally, the ability of a strong lens observation to detect 
subhaloes is quantified via the sensitivity function. In this procedure, 
the strong lens is modelled both with and without a subhalo in every 
pix el o v er a range of subhalo masses (Vegetti et al. 2014 ; Ritondale 
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et al. 2019 ). Bayesian model comparison then gi ves the dif ference 
in the log-evidence, � log ε, between the models with and without 
subhaloes as a function of subhalo mass and position. By defining a 
threshold in � log ε, at which a detection would be acceptable, one 
finds the minimum detectable subhalo mass in every pixel. 

The nature of evidence calculations and the complexity of strong 
lens modelling mean that the sensitivity function is e xpensiv e to 
compute, often taking hundreds or thousands of CPU hours for a 
single observation. Calculating the sensitivity function is in fact the 
most e xpensiv e component of a gravitational imaging study. This 
is not necessarily an issue when the number of lenses available for 
study is small, as has been the case in the past. Ho we ver, automations 
in lens finding and the advent of the sky-survey era means the number 
of known lenses is growing rapidly, and will continue to do so in the 
near future. The Euclid surv e y alone is predicted to yield more than 
10 5 new strong lenses, alongside similarly impressive contributions 
from the Dark Energy Surv e y (DES) and the Vera Rubin Observatory 
(Collett 2015 , hereafter C15 ). It would be infeasible to conduct 
gravitational imaging studies on such a large number of objects with 
the current method, and so, we are moti v ated to find a more efficient 
method for calculating the sensitivity function. 

In this paper, we demonstrate a new method for calculating the 
sensitivity to dark matter subhaloes in strong lens observations. 
Our method relies on machine learning, which is now widely used 
in strong lensing. This is especially true in lens finding, where 
convolutional neural networks (CNNs) are a natural choice (Lanusse 
et al. 2018 ; Shu et al. 2022 ; Wilde et al. 2022 ). Machine learning 
has also been used to estimate parameters for lens models (Hezaveh, 
Perreault Le v asseur & Marshall 2017 ; Chianese et al. 2020 ; Schuldt 
et al. 2021 ; Gu et al. 2022 ). In our area of interest detecting dark 
matter substructure, ML is also proving to be useful for replacing all 
or part of the traditional gravitational imaging pipeline. For example: 
Vernardos, Tsagkatakis & Pantazis ( 2020 ) show that a CNN can 
reliably estimate potential corrections in the lens; Wagner-Carena 
et al. ( 2023 ) use simulation-based inference to estimate the SHMF in 
a population of lenses; Ostdiek, Diaz Rivero & Dvorkin ( 2022 ) and 
Diaz Rivero & Dvorkin ( 2020 ) show that direct detections with ML 

are possible in mock observations; and Coogan, Karchev & Weniger 
( 2020 ) develop a source light and lens potential modelling tool using 
ML. 

Our approach for estimating subhalo sensitivity consists of two 
steps. In the first part, a CNN is trained to classify strong lens obser- 
vations as either containing substructure or not. In the second step, the 
trained CNN is used to quantify the detectability of a single subhalo 
in every pixel over a range of masses in a given mock observation. 
In this way the method resembles the traditional approach, although 
without the e xpensiv e evidence calculations or forward modelling, 
these parts having ef fecti vely been replaced by the neural network. 
The mock observations we use in training are produced with realistic 
source brightness distributions from the Hubble Deep Field (Rafelski 
et al. 2015 ). They include elliptical power-law lenses and external 
shear, as well as a lens light subtraction. 

The mock observations are intended to mimic the Euclid VIS 

instrument. The excellent angular resolution seeing and wide observ- 
ing area of Euclid makes it particularly attractive for strong lensing 
studies, and so we focus solely on Euclid VIS in this paper. Ho we ver, 
the method we propose can readily be adapted to other instruments. 
A particular focus in this work is whether observations with the 
resolution of Euclid VIS will themselves be able to constrain the 
SHMF in a useful way. Subhalo sensitivity is primarily a function of 
the instrument angular resolution and signal to noise ratio (Despali 
et al. 2022 ). Hubble Space Telescope ( HST ) observations at 0.04 

arcsec resolution and total S/N � 100 are sensitive to subhaloes down 
to a mass of M vir ∼ 10 8 M � in the best cases, which allows M hm 

to 
be constrained to roughly the same value (Ritondale et al. 2019 ). 
Constraints from other sources, including the abundance of Milky 
Way satellites, strong lensing flux ratios, gravitational imaging, and 
the Lyman- α forest have already ruled out a half mode mass abo v e 
∼10 8 M � (Gilman et al. 2020 ; Hsueh et al. 2020 ; Enzi et al. 2021 ; 
Nadler et al. 2021 ). Even if the sheer number of Euclid VIS images 
cannot constrain the SHMF below the subhalo mass range of HST 

images, they will at least provide candidates for follow-up in higher 
resolution instruments that can. This is another moti v ation for this 
work, and for our interest in Euclid in general. If the sensitivity 
of images can be cheaply estimated a priori, then Euclid strong 
lenses can be ranked by sensitivity, and only the most promising 
candidates followed up in higher resolution instruments, e.g. the 
European Extremely Large Telescope (E-ELT). 

The paper is organized as follows. In Section 2 , we describe the 
procedure for producing mock strong lens observations. In Section 3, 
we detail the machine learning method and the training process. 
In Section 4, we present results from simulated Euclid images. In 
Section 5, we discuss our results and summarize our conclusions. 
Throughout this paper, we assume a Planck 2015 cosmology with 
H 0 = 67 . 7 km s −1 Mpc −1 and �m,0 = 0.302 (Planck Collaboration 
XIII 2016 ). 

2  SIMULATED  STRO NG  LENS  OBSERVATIO NS  

A population of realistic Euclid strong lenses has already been 
simulated by C15 . As such we follow the procedure therein wherever 
possible. In this section and the rest of the paper, we refer to three 
types of data: training, testing, and e v aluation. Each type uses the 
same method to produce the data, which we describe in this section, 
but their underlying model parameters are drawn from different 
distributions. 

Evaluation data is that used to estimate sensitivity statistics for 
Euclid in our results. Training and testing data are used to train the 
network, and test its performance during training, respectively. The 
e v aluation data is sampled in a realistic way such that distributions 
of redshifts, Einstein radii, image configuration, signal to noise ratio, 
etc are consistent with those expected in nature. These parameters are 
drawn from a simulation procedure, described below, and compiled in 
a catalogue. Ho we ver, when we produce training and testing data, we 
first resample these parameters from uniform distributions wherever 
possible. The intent is to prevent the neural network from specialising 
on specific cases that are more common in the physically sampled 
e v aluation data set. The training and testing data can be thought to 
co v er, as uniformly as possible, all possible strong lenses, whereas 
the e v aluation data are the actual strong lenses that we expect to 
observe with Euclid. 

In training the network, complexity is added to the training data in 
stages. This section essentially describes the final stage, with previous 
stages either excluding some part, or using a simplified version of it. 
The details of these stages are given in Table 2 . 

2.1 Source galaxies 

We begin with a population of sources to be lensed. For this we use 
the Hubble Deep Field (HDF) catalogue assembled by Rafelski et al. 
( 2015 ). To obtain realistic statistics for substructure detectability, 
it is vital to use complex source brightness distributions. This is 
because the local change in image surface brightness produced by 
substructure can be absorbed, to an extent, by a change in source 
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surface brightness distribution. A CNN used to detect substructure 
must take this de generac y into account, during training, to produce 
reliable results. 

We denoise the sources using the method of Maturi ( 2017 ). The 
method uses expectation maximization principal component anal- 
ysis (EMPCA), where images can be reconstructed from principal 
components. The lowest-order components fit the largest structures 
in the images, and the highest-order components fit only to the noise. 
By omitting some number of the largest principal components from 

the reconstruction, one obtains a denoised version of the original 
image. We divide the HDF images into six bins according to their 
angular size given in Rafelski et al. ( 2015 ). We then fit 200 principal 
components separately in each bin. We determine the number of 
principal components to use in the reconstruction individually for 
each source. To do this, we compute a reduced chi-squared statistic 
between the reconstruction and the original noisy image, after 
adding each component. We stop adding principal components when 
the reduced chi-squared statistic no longer impro v es. The simplest 
sources, which are also the most numerous, require < 4 components 
for a good fit. The more complicated sources in the sample require 
up to 40 principal components. The median number of components 
used in the entire sample is 11. 

At selection time, the source redshift is resampled from a normal 
distribution centred on the original redshift in the HDF catalogue 
with a standard deviation σ z = 0.2. This helps the network generalize 
by smoothing out the underlying redshift distribution in the source 
catalogue, but keeps each source close to its original redshift when 
imaged. The angular size of the source is adjusted accordingly. The 
sources are themselves split into a training and testing set, with 
testing sources also used for the e v aluation data set. None of the 
sources used in our results were seen by the network during training. 
The final number of sources used is 4548 in the training set and 1581 
in the testing and e v aluation set. 

2.2 Lens galaxies 

For the lens galaxy, we follow the same procedure as C15 and 
that reference should be consulted for details. We draw a velocity 
dispersion σ V from the elliptical galaxy velocity dispersion function 
in the range [50, 400] km s −1 , and a lens redshift z l from the comoving 
volume function in the range [0, 4]. The lens is placed in a random 

angular position ( θl x , θl y ) within the HDF field of view. For all HDF 

sources in the light cone behind the lens galaxy, the Einstein radius 
is calculated, 

θE = 4 π
σ 2 

V 

c 2 

D ls ( z l , z s ) 

D l ( z l ) 
, (1) 

where c is the speed of light and D ls and D l are the angular diameter 
distances between the lens and the source, and the observer and the 
lens, respectively. The source position β is found relative to the centre 
of the lens galaxy and sources with β < θE are accepted. 

The lens galaxy mass profile is a singular power-law ellipsoid. 
The dimensionless projected surface mass density, or convergence, 
is given by 

κ( θε ) = 

2 − t 

2 

(
b 

θε 

)1 −t 

, (2) 

where t is the slope of the mass profile and b is the lensing strength, 
where b = θE 

√ 

q and q is the axis ratio of the elliptical mass 
distribution (Tessore & Metcalf 2015 ). The axis ratio q also defines 
the elliptical radius θ2 

ε = θ2 
x q 

2 + θ2 
y . The axis ratio is drawn from the 

axis ratio function for elliptical galaxies, as in C15 , and b can then be 

set from the already dra wn v elocity dispersion and Einstein radius. 
The slope of the mass profile is drawn from a normal distribution 
centred on t = 1 (an isothermal slope) with standard deviation σ t = 

0.1, approximately the distribution of slopes in lens galaxies (Bolton 
et al. 2008 ). We use a S ́ersic profile for the lens galaxy surface 
brightness distribution with ef fecti ve radius r eff l and magnitude M l 

drawn from the fundamental plane relation for elliptical galaxies. 
The S ́ersic index is drawn from a scaling relation with the magnitude. 
Finally, to simulate the lensing effect of objects in the proximity of 
the main lens, we add external shear with a random angle and a 
random strength between 0.0 and 0.1. This is typical of the shear 
strength found in strong lens observations (Bolton et al. 2008 ). 

2.3 Subhaloes 

In the training and testing data, we add with equal probability, either 
zero subhaloes or, one to four subhaloes. The subhaloes are placed 
uniformly in a 6 × 6 arcsec square centred on the lens galaxy. The 
largest lens used has θE < 3 arcsec, so the subhalo area al w ays 
encloses θE . For the subhaloes, we use an NFW density profile, 

ρ( r ) = 

ρs 

( r /r s )(1 + r/r s ) 2 
, (3) 

where r is the radius in three dimensions, r s is the scale radius, and 
ρs is the normalization itself given by 

ρs = 

v 2 max C(1 + C) 2 

4 πGr 2 max 

, (4) 

where v max is the maximum circular velocity of particles in the 
subhalo and C is a constant that relates r s to r max , the radius at which 
v max occurs, 

C = 

r max 

r s 
≈ 2 . 163 . (5) 

Typically, the mass of the subhalo M sub is taken to be the mass 
enclosed within the subhalo virial radius, r vir prior to infall, which 
is labelled M vir . In this work, we instead use M sub = M max , the mass 
enclosed by r max . This more closely approximates the masses of 
subhaloes in simulations. 

In training and testing, the subhalo mass is drawn from a log- 
uniform distribution with limits 10 8.6 M � ≤ M max ≤ 10 11 M �. The 
concentration of the halo is typically set by the concentration mass 
relation given by Duffy et al. ( 2008 ). This relation for subhaloes is 
an extrapolation from that for larger haloes, and may not be accurate 
at smaller masses underestimating the concentration for subhaloes. 

Instead, we set the concentration by applying a v max –r max relation 
obtained using the ShinUchuu simulation (Ishiyama & Ando 2020 ; 
Molin ́e et al. 2023 ), 

r max = A 

(
v max 

10 km s −1 

)B 

, (6) 

where A = 0 . 344 kpc and B = 1.607. 1 ShinUchuu is a higher reso- 
lution simulation with 6400 3 particles co v ering a 140 h 

−1 Mpc side 
length box, with resulting mass resolution of 8 . 97 × 10 5 h 

−1 M �. 
Halo catalogues are available for public download, 2 and we use the 
results for v max and r max . We grouped subhaloes in bins of v max of 
equal size and obtained the mean of r max . Based on these results, we 
propose the v max –r max relation of equation ( 6 ). The parametrization 

1 This version of the relation does not include a redshift dependence, although 
more recent versions do, see Molin ́e et al. ( 2023 ). 
2 http://www.skiesanduniver ses.or g 
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Table 1. Characteristics of the subhaloes used in this work, using an 
example redshift z = 0.5. The first column is a given virial mass, and 
the next three columns give the equi v alent M max , v max , and r max for a 
subhalo using our relation in equation ( 6 ). The final two columns are: 
the concentration c vir that a subhalo with the given M vir would have 
according to Duffy et al. ( 2008 ), and, the concentration c vir ∗ that the 
equi v alent subhalo has using equation ( 6 ), and assuming an NFW profile. 

M vir M max v max r max c vir c vir ∗
[M �] [M �] [km s −1 ] [kpc] 

10 8.0 10 6.2 6.3 0.16 13.5 60.2 
10 9.0 10 7.4 13.6 0.56 11.2 42.5 
10 10.0 10 8.6 29.2 1.92 9.3 29.9 
10 11.0 10 9.8 62.6 6.56 7.7 20.9 
10 12.0 10 11.0 134.0 22.27 6.4 14.6 

works well for subhaloes with v max between 38 and 300 km s −1 in 
host haloes with masses between ∼9.8 × 10 12 and 1.2 × 10 13 h −1 M �
(its accuracy being better than 5 per cent at all v max values within this 
range). 

In training and testing, we use the relation to set limits on a log- 
uniform distribution with 1 . 5 kpc < r max < 28 . 0 kpc , from which we 
draw a random r max . In e v aluation, we convert the chosen M max to 
v max and take r max directly from equation ( 6 ) for the given v max . 
The NFW scale radius is then given in either case by equation ( 5 ). 
It is important to note that this relation produces subhaloes which 
are more concentrated than those used in previous gravitational 
imaging studies (e.g. Despali et al. 2018 ). To make this clear, subhalo 
characteristics in our mass range are printed in Table 1 . 

2.4 Instrument characteristics 

Using the described sampling procedure, we ran simulations to 
collect a large number of lens and source parameters. From this 
catalogue, we then build the mock observations for training, testing, 
and e v aluation. The source surface brightness distribution is ray- 
traced through the mass model onto a grid with pixel size 0.1 arcsec 
and a field of view of 10 arcsec. To ensure an accurate source 
reconstruction in the image plane, we subsample each pixel with 
10 × 10 subpixels and use the mean over these subpixels. We add 
the lens light and convolve with a Gaussian PSF with FWHM = 

0.16 arcsec. To this we add a uniform sky brightness of M VIS = 22.2. 
We then compute the total expected counts for an observation with a 
zero-point of M VIS = 25.2 and an exposure time of 3 × 565 = 1695 s. 
The Euclid Wide Surv e y uses four e xposures of 565 s each, although 
due to gaps in the detector array and other technical considerations, 
the full surv e y area is only co v ered by three e xposures (Euclid 
Collaboration et al. 2022 ). VIS technical details are taken from 

Vavrek et al. ( 2016 ) and Cropper et al. ( 2018 ). We use the expected 
counts in each pixel as the mean of a Poisson distribution from which 
we draw the actual total counts. Finally, we subtract the original 
S ́ersic profile describing the lens light from this noisy image, leaving 
a Poisson-limited lens light subtraction. An example set of training 
observations are shown in Fig. 1 . 

3  M E T H O D  

Our method comprises a number of steps. First, a neural network 
is trained on realistic mock observations that contain either zero or 
between one and four subhaloes, randomly placed in the image. The 
training is performed in stages where the complexity of the data is 
gradually increased and the model retrained. In the training stage, 

the observation parameters (Einstein radius, signal to noise ratio etc) 
are drawn uniformly from a wide range. Second, the trained model 
is used to predict the sensitivity in a second set of observations. 
In this stage, the observation parameters are drawn from realistic 
distributions, intended to match the expected population of Euclid 
strong lenses. For a given system in this population, we produce 
realizations of the same observation with a single subhalo, iterating 
o v er all subhalo positions and masses. For every position and mass, 
the trained network gives the probability that a subhalo is in the 
image. By defining a probability threshold at which a detection would 
be acceptable, we obtain the minimum detectable subhalo mass in 
each pixel. We repeat this process for a large number of mock Euclid 
observations to obtain our results. 

3.1 Machine learning 

We use the ResNet-50 architecture, commonly used in image classi- 
fication tasks (He et al. 2016 ). ResNet is a residual CNN that utilizes 
skip connections between network layers. These skip connections are 
designed to o v ercome the ‘v anishing gradient’ problem, and allo w 

for the training of very deep networks. The architecture we use is 
unmodified from the original 50 layer implementation so we defer 
to the previous reference for details. 

F or a giv en image d , the neural network returns the probability 
Pr( C = i | d ) that the image belongs to class i . In our case, there are 
only two classes, C = 0 for an image with no substructure, and 
C = 1 for an image with one or more substructures. We train using 
the Adam optimizer and minimize the cross-entropy between the 
network’s predictions and the truth. We use a batch size of 1024. At 
training time, images are rescaled to the range [0, 1], then randomly 
rotated, flipped, and cropped to a size of 8 arcsec, producing 80 × 80 
sized images from the original 100 × 100. The random crop ensures 
that the lens is not at the centre of the image, and impro v es training 
performance without discarding any useful information given that all 
lenses have θE < 3 arcsec. 

Training takes place in stages, with slight increases in the difficulty 
of the task at each stage. The stages are detailed in Table 2 and each 
stage’s data set consists of 2 × 10 6 images. To achieve changes in the 
range of total signal to noise ratios, source magnitudes were changed 
from an initially constant M VIS = 20 in stage one, to a uniformly 
sampled range 20 < M VIS < 26 in stage three onwards. The lower 
limit of the subhalo mass range was mo v ed down to 10 8.6 M � in stage 
five from 10 9 M � in stages one to four once it was found that a small 
number of lenses had sensitivity below this limit. External shear is 
added in stage four. At the start of each new stage, we conduct a 
parameter search to find the optimum learning rate and the network 
starts with the converged parameters from the previous stage. As 
training progresses, the learning rate is multiplied by a decay factor 
of 10 −0.25 whenever the testing loss has not decreased for ten epochs. 
The network is assumed to hav e conv erged when three decreases in 
learning rate do not impro v e the test loss. 

3.2 Model performance 

The performance of the model on the testing data at the end 
of each training stage is given in the final columns of Table 2 . 
The performance gradually degrades as the problem gets more 
difficult aside from in the final stage, where the addition of multiple 
subhaloes makes the problem slightly easier. After the final stage, the 
performance is only slightly better than a random binary classifier, 
which would have a loss of 0.693 and an accuracy of 0.5. Ho we ver, 
this is to be expected considering the difficulty of the problem. 
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Figure 1. A representative sample of the simulated strong lens observations used in the final stage of training (see Table 2 ). These observations contain all the 
ingredients described in Section 2 . The lens light has been subtracted. Systems are ordered in the figure by their maximum brightness. To adequately show detail 
at different signal to noise ratios, each row is normalized with a different colour scale. As training observations, these data are not intended to be realistically 
sampled, especially in signal to noise ratio. The upper two rows most resemble the more realistic Euclid VIS data that we use in Section 4 . 

Table 2. Changes in the training data during training. The columns are: 
minimum signal to noise ratio, minimum subhalo mass, maximum external 
shear strength, number of subhaloes, final testing loss, and, final testing 
accuracy. The maximum signal to noise ratio in all stages is 10 3 and the 
maximum subhalo mass in all stages is 10 11 M �. 

Min. S/N 

Min. 
M max M �−1 E.S. N sub Loss Acc. 

1 10 2 10 11 0.0 0 or 1 0.307 0.867 
2 10 2 10 9 0.0 0 or 1 0.575 0.673 
3 20 10 9 0.0 0 or 1 0.610 0.638 
4 20 10 9 0.1 0 or 1 0.641 0.599 
5 20 10 8.6 0.1 0 or 1 0.678 0.538 
6 20 10 8.6 0.1 0 or 1–4 0.658 0.569 

Most of the subhaloes in the training and testing data are simply 
undetectable with any method for data of this quality. Primarily this 
is because they are too small, or too far from the lensed images to have 
a detectable effect on the local deflection angle. Even if a massive 
halo is in the right position, an unfa v ourable signal to noise ratio, 
source structure, lens or source redshift, or subhalo concentration 
could all prevent it from being detected. 

It is more instructive to evaluate the performance in specific 
situations, where we e xpect positiv e classifications to be possible. 
We test the network’s response to specific subhalo positions ( x sub , 
y sub ) and masses M sub by creating many realizations of the same 
system where the subhalo position and mass change, but everything 
else stays fixed. The macro properties of the observation: lens light 
and mass model, source model, sky noise realization, and external 
shear are kept the same. Passing each realization through the network 
gives the probabilities Pr( C = 0 | d ) for no substructure and Pr( C = 

1 | d ) for any substructure, where d is the image for the realization 
with that subhalo position and mass. The detection significance s sub 

for a subhalo of a given position and mass is then 

s sub ( x sub , y sub , M sub ) = 

√ 

2 erf −1 [ Pr ( C = 1 | d)] , (7) 

where erf −1 is the inverse error function. 
In Fig. 2 , we plot maps of this significance for five different 

example systems. We iterate the subhalo position across all image 
pixels in the central 6 × 6 arcsec area and sample three masses 
of M max = { 10 9 , 10 10 , 10 11 } M �. The figure shows some general 
behaviour common to all systems. Areas away from the lensed 
images do not produce detections, except at very high masses, and 
detections close to or on the lensed images are easier. This is also the 
case in traditional modelling techniques (Minor et al. 2021 ; Nadler 
et al. 2021 ). Despite the statistics in Table 2 , we see that the model 
performs well in situations where a detection should be physically 
possible. Systems B, C, and D have a very small number of pixels 
where a 10 9 M � subhalo can be detected with low significance, but 
the performance impro v es rapidly with subhalo mass. At 10 10 M �, 
all systems e xcept E hav e detections at 5 σ , and significant areas with 
detections abo v e 3 σ . 

Comparing the performance of the method with the traditional 
forward modelling approach of e.g. Vegetti & Koopmans ( 2009a ) 
at this stage is difficult. This and previous gravitational imaging 
studies use different definitions of subhalo mass, different subhalo 
concentration relations, different definitions of sensitivity (e.g. we 
account for the presence of multiple subhaloes), and have funda- 
mentally different priors. A direct comparison with the traditional 
method then requires modifications to that method, and that many 
computationally e xpensiv e sensitivity maps are reproduced with all 
the required similarities. As such, we defer this comparison to a 
future paper. 

In all systems in Fig. 2 , we see that subhalo detectability diminishes 
towards the centre of the lens, i.e. inside the lensed images. In fact at 
the very centre, it is impossible to detect a subhalo of any mass. This 
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(a)

(b)

(c)

(d)

(e)

Figure 2. The detection significance returned by the trained network as a 
function of subhalo mass and position in five dif ferent systems. Observ ations 
are from the e v aluation set and share the same colour scale. White pixels 
on the significance maps indicate a detection significance below 1 σ . Black 
contours outline the lensed images. Subhalo mass is labelled along the bottom. 

is because a subhalo in this position has the same effect on the lensed 
images as adding a small amount of mass to the lens galaxy mass 
model, parametrically equi v alent to increasing the Einstein radius. 
This de generac y is also present in traditional modelling techniques. 
The network has successfully learned this de generac y from the 
training data, although it was not explicitly required to do so. 

A similar phenomenon is observed when we add external shear 
to the training data. Fig. 3 shows the impact on model performance 
when we introduce external shear. A subhalo close to the lensed 
images will produce a local shearing effect. The external shear added 
in stage four to mimic the effect of larger nearby objects can replicate 
this local shear to an extent, depending on configuration. 

The network has learned this de generac y shown by the drop in 
accuracy across all masses in Fig. 3 , as all of its predictions are 
now less confident. The size of this drop is slightly larger at larger 
masses, where the shear produced by a subhalo is less localized, and 
so, more easily replicated by a global external shear. Importantly, the 
accuracy in stage four does not depend on the strength of shear in a 
given image as we see in the lower panel of Fig. 3 . If the network 
was confusing systems with a strong external shear for those with a 
subhalo (or vice versa), we would see a drop in accuracy as shear 
strength increases, rather than the constant accuracy plotted here. 

Figure 3. The effect of adding external shear to the training data on the 
model performance. The upper frame shows the testing accuracy for positive 
classifications only, binned by subhalo mass. Stage 3 data contains no 
external shear, stage 4 contains external shear with a random strength varying 
uniformly from 0.0 ≤ | γ | ≤ 0.1. The lower frame shows the accuracy for all 
(positiv e and ne gativ e) data in stage 4 binned by shear strength. The dashed 
line is the accuracy over the entire data set. 

3.3 Sensitivity estimation 

We can now use our trained model to produce sensitivity maps for 
the simulated observations in our e v aluation data. The process is 
similar to that used to produce the maps in Fig. 2 . For a particular 
system in our simulated catalogue, we produce mock observations 
of that system with a subhalo in each pix el, o v er a range of masses 
of interest. At each iteration the subhalo is placed in the centre 
of the pixel, with a concentration r max given by equation ( 6 ). The 
system is ray-traced as in Section 2.4 , and the resulting image is 
e v aluated by the network giving the probability of a subhalo existing 
in the image for that subhalo position and mass. When the subhalo 
position and mass are iterated o v er, the sk y noise realization, lens 
mass model, external shear, and lens light distribution are kept the 
same. As before, we use every pixel in the central 6 × 6 arcsec 
area, but expand the mass range to 10 8.6 ≤ M max /M � ≤ 10 11 , with 
13 mass steps uniformly distributed in log-space. This means we are 
required to ray-trace and e v aluate 60 × 60 × 13 = 46 800 realizations 
of each system. This takes ∼30 min per system using one A100 
GPU. 

Figs 4 and 5 illustrate the process for computing a sensitivity map 
from these realizations and probabilities for one example system, 
shown in the left-hand frame of Fig. 4 . In each pixel, we are 
required to find the smallest subhalo which can be detected at a 
given significance. To do this we fit a rectified linear unit (ReLU) 
function to the log-odds of a detection as a function of mass in every 
pixel. The log-odds increases linearly with subhalo mass and so is 
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Figure 4. The procedure for estimating the sensitivity in an example system shown in the left-hand frame. Central frame is the detection significance s sub at 
four different subhalo masses in every pixel. Contours showing the lensed image positions are overplotted. The right-hand frame shows the significance s sub at 
all 13 mass steps in four e xample pix els, labelled one to four with white (black) crosses in the left-hand (middle) frame. For simplicity, the pixels all sit on a 
straight line through the centre of the lens. The orange curve shows the best fit ReLU function from equation ( 9 ). The orange shaded area shows the 64, 95, and 
99 per cent confidence regions for the fit, obtained by sampling ReLU realizations using the uncertainties on the fitted parameters. 

Figure 5. Sensitivity maps at four different detection thresholds for the 
example system in Fig. 4 . Contours show the position of the lensed images. 
White pixels in the map indicate those where no sensitivity was found, 
either because the detection threshold was not reached by any mass in that 
pixel, or because the minimum detectable mass was outside the sampled 
range. 

more useful here than the significance. The log-odds R is defined as 

R = log 

[
Pr ( C = 1 | d ) 
Pr ( C = 0 | d ) 

]
, (8) 

and can be converted to significance using equation ( 7 ) and the fact 
that Pr( C = 1 | d ) = 1 − Pr( C = 0 | d ). This is because the probabilities 
are the output of a softmax function in the final layer of the neural 
network. The ReLU function we use is 

R( M max ) = max [ R 0 , a log ( M max − M 0 ) + R 0 ] , (9) 

where R 0 , M 0 , and a are constants found in the fitting process. The 
uncertainty on R ( M max ) can be found using the uncertainties on the 
fitted constants and error propagation of equation ( 9 ). 

The right-hand frame of Fig. 4 illustrates the fitting process in 
four e xample pix els. F or each pix el, we first check that the required 
detection threshold s sub has been met for any mass. If not a fit is 
not performed. The threshold, 3 σ in this case, is not reached for any 
mass in pixels (1) and (3), because they are far away from the lensed 
images, and in the centre of the lens, respectively (see Section 3.2 ). 
They are labelled as having no sensitivity in the sampled mass range. 

Pixels (2) and (4) show typical behaviour for sensitive pixels. At 
low masses, the network returns a probability of substructure close 
to 50 per cent. It is important to note that the network will never 
assign a strong probability to class C = 0 (no substructure) because 
the training data contained many examples labelled C = 1, where the 
subhalo was undetectable. In the majority of cases, the two classes are 
indistinguishable. Strong probabilities are then only ever assigned to 
detections, not non-detections. After a large enough subhalo mass is 
reached, the network probability increases linearly with log-mass. By 
fitting equation ( 9 ) in e very sensiti v e pix el and inv erting for M max , we 
can construct a sensitivity map for a given s sub . The final sensitivity 
maps for our example system are plotted in Fig. 5 . 

4  RESULTS  

We generate 16 000 simulated Euclid-like strong lens observations 
following the procedure in Section 2 , and compute sensitivity maps 
with the method in Section 3 . We impose the same cuts as C15 , 
namely, lenses must have an Einstein radius θE > 0.5 arcsec and a 
total signal to noise ratio S/N > 20. The sample size is approximately 
one tenth the size of the predicted Euclid strong lens sample ( C15 ). 
We perform two checks on the completed sensitivity maps before 
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Figure 6. Mock observations and their 3 σ sensitivity maps chosen from the most sensitive 10 per cent of systems. All observations share the same colour scale. 
Contours on the sensitivity maps indicate the location of the lensed images. White pixels are those with no sensitivity in the tested range, i.e. no subhalo of any 
mass was detected at 3 σ . 

computing the rest of the results. First, we remo v e an y system 

where a single pixel has a poor fit to equation ( 9 ), by checking the 
uncertainty on the sensitivity. This is a conserv ati ve step because only 
0.017 per cent of pixels fail in this way, but 2.1 per cent of systems 
have a failed pixel. Second, we test for false positive detections by 
checking the fitted value of the R 0 parameter in equation ( 9 ). If R 0 

is greater than the threshold, calculated with equation ( 8 ), in every 
pixel in a system, then it is also remo v ed. A further 0.27 per cent of 
systems are remo v ed in this way. The final sample size is then 15 618 
lenses. A small number of example sensitivity maps from the sample 
are plotted in Fig. 6 . 

4.1 Sensitivity statistics 

In Fig. 7 , we plot two distributions of sensitivity statistics computed 
from the sample. The upper frame plots the cumulative fraction of 
area inside 2 θE , which is sensitive at the indicated mass. We find that 
26.7 per cent of the area in our simulated strong lens observations are 
sensitive enough to detect a subhalo with M max ≤ 10 11 M � at 3 σ . The 
same fraction is 2.35 per cent for M max ≤ 10 10 M �, and 0.03 per cent 
for M max ≤ 10 9 M �. The lower frame shows the distribution of 
sensitivity in each system’s most sensitive pixel. With a 3 σ detection 
threshold, the best pixel in the entire sample has a sensitivity of 
M max = 10 8.8 ± 0.2 M �. This represents a fundamental limit of subhalo 
detectability for this instrument. 

4.2 Mass function statistics 

Using the sensitivity maps, we can predict the expected number of 
detectable haloes in each lens for a given dark matter model. The 
number of subhaloes d n of mass m in a mass interval 3 m per projected 
area on the sky is proportional to the SHMF 

d n 

d m 

∝ m 

α1 

[ 

1 + 

(
α2 

M hm 

m 

)β
] γ

, (10) 

Figure 7. Statistics for subhalo mass sensitivity at three detection thresholds 
(coloured). Upper frame: The cumulative distribution of fractional area in all 
strong lens systems as a function of subhalo mass sensiti vity. Lo wer frame: 
the distribution of the minimum sensitivity in each system, as a fraction of all 
systems. At 3 σ , the most sensitive pixel has M max = 10 8.8 ± 0.2 M �. In both 
frames, the dashed vertical line indicates the lower limit on subhalo mass 
used in training. 
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Figure 8. Upper frame: the relative number of subhaloes N sub with mass 
abo v e M sub for the mass function in equation ( 10 ) at different half mode 
masses M hm 

. The dashed black curve is for a CDM model where M hm 

= 

0. In CDM, the number of haloes abo v e a certain mass goes up by roughly 
one decade for every decade lower in mass. Lower frame: the number of 
subhaloes with mass abo v e M sub relativ e to the same number in CDM, at the 
same half mode masses. 

where the constants have the follo wing v alues; α1 = −1.9, α2 = 

1.1, β = 1.0, and γ = −0.5. The mass function comes from fitting 
to the data in Lo v ell ( 2020 ), but the fit parameter values have been 
recalculated so that the mass function is in terms of M max , rather 
than M sub . The half-mode mass, M hm 

, is the mass scale at which the 
square-root of the power-spectrum ratio between WDM and CDM 

is half. When M hm 

= 0, the mass function is just that for CDM, i.e. 
d n/ d m ∝ m 

α1 . In Fig. 8 , we plot the mass function for different half 
mode masses. The expected number, μsub , of subhaloes in a mass 
range m 

′ 
0 ≤ m ≤ m 

′ 
1 inside a projected radius θ = 2 θE is given by 

μsub = f CDM 

sub M 2 θE 

∫ m 

′ 
1 

m 

′ 
0 

d n 

d m 

d m 

∫ m 1 

m 0 

m 

α1 + 1 d m 

, (11) 

where M 2 θE is the mass of the lens inside that radius and f sub is 
the fraction of mass contained in substructure (Vegetti & Koopmans 
2009b ). In this way f sub normalizes the mass function. 

F or each pix el in each image, we calculate μsub . We first choose a 
dark matter model, parametrized with M hm 

and f sub . We then e v aluate 
the integrals in equation ( 11 ), using the mass limits m 0 = 10 6 M � and 
m 1 = 10 11 M � in the denominator. In the numerator m 

′ 
1 is the same 

but the lower limit, m 

′ 
0 comes from the sensitivity map value for that 

pixel and the chosen detection significance. This lower mass limit has 
an associated uncertainty, as a result of the fitting procedure referred 
to in Section 3.3 . In order to account for this, we draw 10 4 realizations 
of each sensitivity map from a Gaussian distribution centred on the 
fitted value of m 

′ 
0 with standard deviation given by the associated 

uncertainty. Multiplying by the ratio of pixel area to area inside 2 θE 

then gives the detectable μsub in that pixel, at that significance, for 
that realization. The expected number is then summed over all pixels 
to find a distribution of μsub for each lens and dark matter model. 

In Fig. 9, we plot the expected number of detectable haloes per 
lens, av eraged o v er our entire sample for a range of M hm 

. F or a 
CDM univ erse, we e xpect μsub = 1 . 43 + 0 . 14 

−0 . 11 [ f 
−1 
sub ] subhaloes to be 

directly detectable per lens at 3 σ . This number scales linearly with 
f sub , according to equation ( 11 ). The expected number of detectable 
subhaloes is consistent with CDM for any value of M hm 

below the 
current constraints on that parameter. Three such constraints are 
shown in the figure, each a 95 per cent upper limit. These come 
from a combined analysis of the abundance and properties of Milky 
Way satellites and flux ratio anomalies in strong gravitational lenses 
(Nadler et al. 2021 ); a combined analysis of gravitational imaging 
in strong lenses with extended sources, Milky Way satellites, and 
the Lyman- α forest (Enzi et al. 2021 ); and, strong lensing flux ratio 
anomalies alone (Hsueh et al. 2020 ). Using the more conserv ati ve 
1/20 of the maximum likelihood, Enzi et al. ( 2021 ) also rule 
out models with M hm 

> 4.8 × 10 8 M � h −1 . To place competitive 
constraints on the half mode mass, the number of detections would 
need to be suppressed relative to CDM for M hm 

< 10 8 . The sensitivity 
limit we find in Fig. 7 therefore places the constraining power of 
strong lens images with the characteristics of Euclid VIS outside the 
region of interest for gravitational imaging. 

4.3 Substructure fraction 

The expected number depends crucially , but straightforwardly , on 
f sub , which is as yet a poorly constrained quantity. Despali & Vegetti 
( 2017 ) find f sub ≈ 1 × 10 −2 in dark matter only simulations, and f sub ≈
5 × 10 −3 in the Illustris and EAGLE hydrodynamic simulations. 
Hsueh et al. ( 2020 ) measure f sub ≈ 2 × 10 −2 in seven lensed quasars. 
These values have been converted to cover our larger mass range, but 
not our different definition of subhalo mass. In any case, both studies 
indicate that the order of magnitude of f sub is 10 −2 . For such an f sub 

our results predict that at 86 (99) per cent confidence, between one in 
64 (51) and one in 76 (86) Euclid VIS lenses will yield a 3 σ subhalo 
detection. This number is consistent with the results of gravitational 
imaging studies in HST data, where detections have been rare so 
far. Vegetti et al. ( 2014 ) detected one subhalo in 11 lenses, and 
Nightingale et al. ( 2022 ) report only two convincing detections in 54 
lenses. Considering the superior resolution of HST versus VIS, and 
the selection of lenses in those studies relative to the broader sample 
used here, a smaller number of detections in Euclid VIS should be 
expected. 

4.4 Population statistics 

The number of expected detections differs greatly between strong 
lens systems. Fig. 10 plots the distribution of detections per system 

for different half mode masses and detection significances. The 
distribution is highly skewed towards the most sensitive systems. 
Specifically, 50 per cent of all expected detections at 3 σ in a 
CDM universe come from the top 2 per cent of systems, and 
90 per cent of detections from the top 14 per cent of systems. 
For 32.6 per cent of systems, no detections are expected at 3 σ
in CDM. The reason for this highly skewed distribution is ob- 
vious upon inspection of the mass function in Fig. 8 . Every 
factor of 10 impro v ement in sensitivity brings a factor of 10 
increase in the number of detectable subhaloes. This also ac- 
counts for the behaviour at different half mode masses. As M hm 
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Figure 9. Detectable subhaloes per lens, averaged over all lenses, as a function of half mode mass M hm 

. The left-hand axis gives the value per f sub , the right-hand 
axis gives the value at f sub = 0.01. All values scale linearly with f sub . Each curve is for subhalo detections at different significances, which are labelled. The 64, 
95, and 99 per cent confidence areas are plotted with each curve. Horizontal dotted lines show the expected detectable subhaloes in CDM ( M hm 

→ 0). Vertical 
dotted lines show the current 95 per cent upper limits on M hm 

from other studies, with the vertical dashed line showing the more conserv ati ve 1/20th of the 
maximum likelihood from Enzi et al. ( 2021 ). 

Figure 10. The distribution of the number of expected detections in each lens for different labelled detection significances, and different half mode masses, 
M hm 

. As in Fig. 9 , the expected number is given in units of 1/ f sub . In the top right of each frame, the fraction of lenses for which the detectable number of haloes 
is zero, f 0 , is given. 

increases, the most sensitive systems, i.e. those with the highest 
number of expected detections are affected most strongly. This 
is because their expected detections are predominantly at lower 
masses, which are suppressed sooner than larger masses as M hm 

increases. 

4.5 Selecting for sensitivity 

In the near future, analysis of strong lens images in large surv e ys 
will be used to constrain dark matter models. Ho we ver, Fig. 10 
shows that the constraining power for a majority of the images 
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Figure 11. Expected number of 3 σ detectable haloes per lens as a function of half mode mass for an average lens expected from the Euclid survey, the top 100 
lenses with the largest sensitive area, and, the top 100 lenses with the deepest sensitivity. Horizontal dashed lines show the expected number in CDM. Vertical 
lines show the same upper limits as in Fig. 9 . 

in the sample is weak or non-existent. This is a result of the fact 
that we have as yet never had such a large and homogeneous 
sample of strong lenses. According to C15 , the majority of strong 
lenses we find in Euclid will have smaller Einstein radii and 
lower S/N than samples used for gravitational imaging in the past 
e.g. SLACS (Bolton et al. 2006 ) or BELLS (Brownstein et al. 
2012 ). The selection effects in these smaller samples produced 
lenses which were already relatively sensitive to substructure. Pre- 
selecting the most sensitive systems from a large sample, which 
are mostly poor in sensitivity should drastically impro v e the con- 
straints in a gravitational imaging study where analysis time is 
limited. 

We propose two selection criteria. Sensitivity depth ranks systems 
by their most sensitive pixels, with the lowest mass being the best. 
This selection gives us systems at the low-mass end of the distribution 
in the lower frame of Fig. 7 . Sensitivity area ranks them by the total 
number of pixels which are sensitive at any mass. For both selections, 
we choose the best 100 systems. These two selections are mass 
function independent, which is why we do not propose selecting for 
μ directly. 

In Fig. 11, we show the effect of pre-selection on the expected 
number of detections at 3 σ . With selection, the expected number of 
3 σ detections in CDM increases to 32 . 6 + 0 . 8 

−0 . 8 [ f 
−1 
sub ] and 35 . 6 + 0 . 9 

−0 . 9 [ f 
−1 
sub ] 

per lens for selection by area and by depth, respectively. Using 
our fiducial f sub = 10 −2 , pre-selection then gives one detection in 
every ∼ three lenses, up from one in ∼70 with no selection. The 
limit of sensitivity cannot impro v e with selection, so we do not 
expect constraints on M hm 

to change. Ho we ver, the prospects for 
constraining f sub impro v e dramatically. 

We illustrate this in Fig. 12 which shows the possible constraints 
on f sub in a data set of non-detections where, before analysis for 
subhaloes, the lenses are selected randomly versus the selection 
methods we described previously. Assuming CDM, we plot the 

Figure 12. The 95 per cent upper limit on f sub from N non-detections in data 
sets of systems with no pre-selection, and with pre-selection by sensitivity 
area and depth. These data assume a CDM mass function ( M hm 

= 0) such 
that μsub only depends on f sub . 

95 per cent upper limit on f sub from N non-detections in data sets using 
no selection and the two selection methods described previously. It is 
important to note that non-detections are only informative in this case 
because μsub for the three different sets of lenses has been calculated 
from the sensitivity maps. The probability of a non-detection in the 
mass range which the lens is sensitive to can then be calculated 
with Poisson statistics. The figure shows that 10 non-detections in 
an analysis of 10 random Euclid strong lenses can place an upper 
limit on f sub of only 0.46, because the probability of non-detections 
in those lenses is already very high. With selection, this decreases to 
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0.14 with either method. With 100 non-detections, the same limits 
are 0.26 without selection and 0.016 with selection. The latter is 
well within the region of interest for f sub indicated from simulations. 
Considering also that any detection in this sample immediately gives 
a strict lower limit on f sub , it is clear that a reasonable number of 
highly sensitive Euclid strong lenses can place useful constraints on 
the substructure mass fraction. With such a large number of lenses 
available f sub could also be characterized as a function of galaxy 
environment and redshift, providing useful data for galaxy evolution 
studies. 

5  DISCUSSION  

5.1 Limits of training data 

As with any machine learning method, the extent to which our results 
are useful depends on the realism of the training data. In our case, the 
question is whether there are shortcomings in the training data which 
make the neural network’s subhalo detection task easier relative to 
that in real data. Here, we discuss three possible extensions and their 
likely effect on the results. 

Our choice of HDF sources is intended to reflect the complexity of 
real lensed sources and account for the de generac y between source 
brightness and dark substructure which is often neglected in other 
similar work. Ho we ver, in a traditional forward modelling approach, 
there is no imposed constraint that the source must be realistic. 
Typically, a regularization condition is imposed on a pixelated source 
such that is must be locally smooth but as long as this is satisfied, 
the shape can be arbitrarily complex. Addressing this would require 
training a new model with sources of arbitrary shape and complexity 
and comparing the results in terms of sensitivity. This space of all 
possible sources is not well defined which makes performing this 
test difficult. 

In our mock observations, the lens light surface brightness is 
al w ays a perfect S ́ersic profile, which is also perfectly subtracted 
leaving only the Poisson noise from the very bright centre of the lens 
in the mock observation. See, for example, the noise in the centre 
of the lower left image in Fig. 6 . This choice was moti v ated by 
simplicity and computation speed when generating many millions of 
images. Lens galaxies, being almost al w ays ellipticals, are often well 
described by S ́ersic profiles. Ho we v er, an y non-S ́ersic component 
in the lens light leaves residual surface brightness which can be 
degenerate with the effect of the subhalo. We expect that a network 
trained with imperfect subtractions can learn to take this de generac y 
into account, as our current model did with other degeneracies 
discussed in Section 3.2 . 

For the lens galaxy mass profile, our choice of an elliptical power- 
law also simplifies the problem slightly for the network, relative to 
reality. If the lens mass model cannot absorb smaller, local changes 
in mass then detecting substructure becomes easier and sensitivity 
impro v es. In strong lensing studies a po wer-law, e ven with a fixed 
isothermal slope, is typically sufficient to fit the positions and fluxes 
of the lensed images. For gravitational imaging, more complexity in 
the mass model is needed to a v oid false positive subhalo detections. 
Adding multipole, disc, or e xtra power-la w components to the lens 
mass would complicate its structure and make subhaloes in certain 
positions relative to the lens harder to detect. The exact nature of the 
degeneracies between lens mass and light models, and the presence 
of substructure will be the subject of future papers. 

For the three problems just discussed, we expect that extensions of 
the training data to address them would degrade model performance 
specifically because they introduce effects which are degenerate with 

the subhalo signal. They can make it harder to detect subhaloes in 
specific systems, where these effects might be strong, but they cannot 
change the fundamental sensitivity limit that we observe in Fig. 7 , 
which is ultimately set by the instrument resolution and seeing. We 
therefore expect that with these extensions, the total expected number 
of detectable subhaloes could decrease, but the dependence of this 
number on the half mode mass would not change. 

5.2 Subhalo concentration 

The concentration of a subhalo has a significant effect on its 
detectability (Amorisco et al. 2022 ). As the concentration of a 
subhalo’s mass profile increases, its effect on the lensed images 
becomes more localized. This makes it easier to differentiate the 
signal of the subhalo from that of other sources which tend to have 
smoother effects, e.g. from the lens mass macro model, the lens light 
subtraction, or from other perturbing objects in the field of view. 
When the subhalo is less concentrated, the opposite is true, making 
them harder to detect. 

To produce the results in Section 4 , we used the concentration 
from equation ( 6 ) which is that for CDM. In simulations, subhaloes 
in warmer dark matter models are found to be less concentrated 
relative to CDM. In theory, subhaloes in warmer models are then 
harder to detect. This causes a further suppression in the expected 
number of detections at large values of M hm 

. If this suppression is 
significant relative to that from the mass function, then the difference 
between CDM and WDM in e.g. Fig. 9 may be more exaggerated. 
This in turn allows for stronger constraints on M hm 

. 
The concentration is parametrized by the subhalo’s r max , and the 

correction to r max in WDM relative to CDM is given by 

r CDM 

max 

r WDM 

max 

= 

[ 

1 + α

(
M hm 

M max 

)β
] γ

, (12) 

where α, β, and γ are constants derived from simulations with the 
values 2.0, 0.4, and −0.3, respectively. This fit is obtained using the 
data sets discussed in Lo v ell ( 2020 ) together with an adaptation of 
their method, as applied to the halo mass- r max instead of the halo mass 
function. We consider six pairs of hydrodynamical simulation data 
sets that describe WDM and CDM, with values of M hm 

for the WDM 

model that span the range of M hm 

= [1.3 × 10 8 , 3.5 × 10 9 ] M �. 
For the subhaloes of each data set, we compute the median r max as 
a function of M max , and then calculate the ratio of the counterpart 
CDM and WDM simulations’ median relations. We then perform a 
simultaneous fit to all six data sets using the functional form presented 
in equation ( 12 ), and obtain the parameter values discussed abo v e. 
We have also performed this procedure for isolated haloes, using the 
M 200 mass definition in place of M max , and in that case obtain α = 

4.0, β = 0.3, and γ = −0.6. Note that both mass- r max ratio fits place 
CDM in the numerator and WDM in the denominator: this choice 
is made because r max increases with M hm 

. We plot the change in 
concentration in Fig. 13 . 

It is not clear if such a change in concentration is large enough 
to effect subhalo detectability. As such, we test this effect explicitly 
by computing sensitivity maps at 10 different half mode masses for 
a small number of systems with concentrations set now by equa- 
tion ( 12 ), rather than the CDM concentration used previously. This 
is possible without retraining our original neural network because 
the subhaloes in the training data did not use any concentration-mass 
relation. Rather, r max was drawn from a log-uniform distribution 
spanning more than the range to be tested here. Computing new 

sensitivity maps with many values of M hm 

is a prohibitiv ely e xpensiv e 
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Figure 13. The change in subhalo concentration in warm dark matter models 
relative to that in CDM. Each curve plots the change in concentration 
for different values of M sub , which is labelled. The dashed black curve 
is the sensitivity limit in subhalo mass which we found in Section 4 . All 
subhaloes detectable at 3 σ in our results are abo v e this mass. An increase 
(decrease) in r max relative to CDM corresponds to a decrease (increase) in 
concentration. 

task, so we choose to use the 100 best systems selected for sensitivity 
depth in Section 4.5 . These systems have the best sensitivity in the 
region where the concentration correction is strongest, and so, if 
the effect of concentration is significant, it will be apparent in these 
systems more readily than others. 

In Fig. 14 , we plot the number of detectable subhaloes in these 
systems for the corrected and uncorrected sensitivity functions. For 
the relati vely lo w detection threshold of 3 σ used in our earlier results, 
we find a change in the expected number of detections consistent 
with zero. This changes as we increase the detection threshold. At 
the largest M hm 

tested (10 10 M �), the suppression in the number of 
detections relative to the CDM concentration is (4 ± 2) per cent 
at 5 σ , and (5 ± 4) per cent at 7 σ . As a subhalo’s concentration 
strongly effects its detectability, it follows that for higher detection 
thresholds, concentration has a stronger effect. At the detection 
thresholds typically used for gravitational imaging studies, i.e. ∼10 σ
or equi v alent, we expect the ef fect to be stronger still, as others have 
already shown. 

We should also note that for the subhaloes considered here, the 
actual change in concentration in warmer dark matter models is 
relatively small. Consider the region above the dashed curve in 
Fig. 13 . This area co v ers all the detectable subhaloes in Euclid images 
in the ‘best-case’ concentration scenario, CDM. A 10 10 M � subhalo 
only undergoes a change in concentration of ∼20 per cent at the 
largest M hm 

tested, and changes by only a few per cent in the region of 
interest for M hm 

≤ 10 8 M �. Subhaloes where the WDM concentration 
has a significant effect are already undetectable in CDM, especially 
at the higher detection thresholds where concentration matters more. 
The suppression due to concentration changes should therefore 
not significantly effect the ability of Euclid images to constrain 
M hm 

. 

5.3 Field haloes 

In this work, we only considered subhaloes, i.e. haloes inside the 
main lensing galaxy’s halo. For these haloes, it is sufficient to treat 
them as being in the same plane as the lensing galaxy. Ho we ver, 
numerical simulations show that small haloes also exist in the field, 

Figure 14. The expected number of detectable subhaloes at 3 σ , 5 σ , and 
7 σ for a sample of 100 high sensitivity lenses using a fixed CDM subhalo 
concentration (dashed line) and a concentration corrected for WDM (points). 
The 1 σ error bars are plotted with the corrected concentration points. 

separated from any galaxy-sized halo. Despali et al. ( 2018 , see their 
table 3) give estimates for the number density of field haloes in 
the volume along the line of sight between observer and source for 
different lens and source redshifts. For subhalo masses and lens and 
source redshifts probed by Euclid, the number of field haloes is much 
greater than the number of subhaloes. Ho we ver, including these field 
haloes does not necessarily boost the number of detections. This is 
because objects away from the plane of the lens are harder to detect. 
Amorisco et al. ( 2022 ) gi ve sensiti vity maps for field haloes placed 
at different redshifts in front of and behind the lens. Differences 
in method and definitions mean we cannot directly compare with 
these maps but the general result is still useful. In all cases, the 
sensitivity for these objects degrades relative to subhaloes in the lens 
plane. 

There are two implications for our own results. First, field haloes 
are more numerous than subhaloes but in general, harder to detect. 
The increase in expected number is larger than the decrease in 
detectability so the net effect would be to boost the number of 
detections in general. Ho we ver, this increase does not improve 
possible constraints on f sub , as this quantity is only related to the 
fraction of mass in substructure in the lens galaxy halo. Second, 
according to Amorisco et al. ( 2022 ), there is no situation where a 
field halo is more detectable than its equi v alent substructure and so 
the fundamental sensitivity limit we found in Section 4 would not 
impro v e. The addition of field haloes to our work would therefore 
not impro v e the prospects for constraining the half mode mass with 
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Euclid VIS images, but their detection will provide constraints on 
the SHMF’s normalization. 

6  C O N C L U S I O N S  

We have developed a machine learning based method for estimating 
sensitivity to dark substructures in strong lenses. We specifically 
targeted the Euclid surv e y and its VIS instrument, as this will provide 
the largest single sample of strong lens images to date. Our CNN is 
trained to detect dark matter subhaloes in mock images with elliptical 
power-law lenses, sources from the HDF, external shear, and noise 
and PSF resembling Euclid VIS. Our neural network successfully 
learned some of the degeneracies present in traditional strong lens 
modelling, although it is not explicitly trained to do so. For example, 
it learns that the effect of a subhalo in the centre of the lens is 
degenerate with the lens mass model, where an increase in lens mass 
can produce the same ef fect. Sensiti vity maps accordingly sho w no 
sensitivity to subhaloes in the centre of the lens. 

We simulated 16 000 strong lens images with the resolution and 
S/N of Euclid VIS, and realistic parameter distributions modelled 
after Collett ( 2015 ). We then used our trained network to estimate the 
subhalo sensitivity in every image. Assuming a 3 σ subhalo detection 
threshold, we found that 2.35 per cent of pixels inside twice the 
Einstein radius were sensitive to subhaloes with a mass M max ≤
10 10 M �, 0.03 per cent were sensitive to a mass M max ≤ 10 9 M �, and 
the limit of sensitivity in the instrument was found to be M max = 

10 8.8 ± 0.2 M �. 
From the generated sensitivity maps, we were also able to 

predict the number of detectable subhaloes per lens, given a dark 
matter model and subhalo mass function. In CDM, we expect 
μsub = 1 . 43 + 0 . 14 

−0 . 11 [ f 
−1 
sub ] detectable subhaloes per strong lens imaged 

in a Euclid-like surv e y. Assuming a substructure mass fraction of 
f sub = 0.01, this gives a detectable 3 σ subhalo in one in every ∼70 
lenses. This low number reflects the diversity and magnitude of the 
Euclid strong lens sample. If one selects only the best lenses in 
terms of sensitivity, the expected number of detections increases 
to 35 . 6 + 0 . 9 

−0 . 9 [ f 
−1 
sub ] per lens for the 100 most sensitive lenses. Again 

assuming f sub = 0.01, this gives one detectable subhalo in every 
∼ three lenses. With selection, gravitational imaging in images like 
those of Euclid VIS can therefore give useful constraints on the 
substructure mass fraction f sub . We show for example that 100 non- 
detections in the most sensitive lenses would give f sub < 0.016, an 
upper limit close to estimates from simulations. If Euclid indeed finds 
∼170 000 new strong lenses as predicted, the number of subhalo 
detections should number in the thousands. 

We also find that the expected number of detectable subhaloes 
does not change relative to CDM in WDM models which have not 
already been ruled out. This is a consequence of the sensitivity limit 
we find at 10 8.8 ± 0.2 M �, for a 3 σ detection. A number of methods 
have already placed upper limits on M hm 

below this mass. This limit 
is primarily a function of the instrument pixel scale and seeing, and 
is higher in mass than the typical sensitivity of HST images which 
have a pixel scale roughly half as small. 

Finally, we consider the suppression in the number of detectable 
subhaloes due to reduced subhalo concentration in warmer dark 
matter models. At the 3 σ detection threshold used for our main 
results, we find no suppression in μsub due to reduced concentration. 
The actual change in concentration for the subhalo masses that our 
images are sensitive to is relatively small. However, at detection 
thresholds of 5 σ and 7 σ , we find a small suppression. At higher 
thresholds therefore a subhalo needs to be more concentrated to 
remain detectable. 
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