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Abstract—Battery State of Charge (SoC) estimation systems 
play a crucial role in modern energy infrastructures challenges, 
including the integration of renewable energy, grid stability, and 
the electrification of transportation. The established 
technologies of Artificial Intelligence (AI) and Machine 
Learning (ML) have proven instrumental in achieving 
heightened accuracy and efficiency within battery state 
estimation frameworks. Highlighting a critical gap in current 
applications, the research underscores the need for a 
comprehensive treatment of measurement uncertainty in AI-
driven battery state estimation. The proposed methodology 
introduces a novel approach that incorporates measurement 
uncertainty into the evaluation of the ML model, investigating 
how the SoC estimation system is influenced by the 
measurement accuracy, and contributing to a deeper 
understanding of uncertainties associated with AI systems. The 
investigation focuses on the application of data-driven ML 
techniques, particularly the Nonlinear AutoRegressive with 
eXogenous inputs (NARX) model for its proficiency in SoC 
estimation. The results provide valuable metrological insights 
into the ML model and a starting point toward reliable battery 
SoC estimation systems. 

Keywords—SoC, uncertainty, artificial intelligence, batteries, 
Monte Carlo 

I. INTRODUCTION 
Artificial Intelligence (AI) and Machine Learning (ML) 

technologies have become indispensable assets across a 
spectrum of research areas, each yielding profound benefits. 
In healthcare, these advanced technologies are revolutionizing 
diagnostics and treatment strategies [1]. By analysing 
extensive datasets derived from patient information, ML 
algorithms can predict diseases, identify patterns, and 
contribute significantly to drug discovery. This not only 
enhances the accuracy of medical diagnoses but also 
facilitates the development of personalized treatment plans. 
Environmental science has witnessed a transformative impact 
through AI applications. These technologies play a pivotal 
role in monitoring and analysing environmental changes, 
offering invaluable insights for predicting natural disasters 
and optimizing resource management. By processing complex 
climate data, AI assists scientists in understanding and 
addressing critical issues such as climate change and 
biodiversity loss [2]. In the financial sector, algorithms are 
deployed to great effect in detecting fraudulent activities, 
optimizing trading strategies [3], and enhancing risk 
management. Real-time data analysis empowers financial 

institutions to make informed decisions, contributing to 
overall financial stability. Manufacturing processes benefit 
from the integration of AI and ML, leading to cost reductions 
and increased efficiency [4]. Predictive maintenance models, 
powered by ML, identify potential equipment failures, 
minimizing downtime and optimizing resource utilization in 
manufacturing plants. In agriculture, AI optimizes crop 
management by monitoring soil conditions and predicting 
yields. By providing farmers with actionable insights, these 
technologies contribute to increased productivity and 
sustainability in the face of growing global food demands [5]. 
Finally, in the energy sector, AI and ML optimize production 
and consumption, increasing efficiency and reducing 
environmental impact. Smart grids, powered by these 
technologies, enable better management of power plants and 
facilitate the integration of renewable energy sources into the 
power grid, contributing to a more sustainable future [6].  

The focus of this paper lies within the energy sector, with 
specific attention given to batteries and their State of Charge 
(SoC). As detailed in Section II, numerous studies in the 
literature have introduced analytical and AI methods for 
estimating the SoC or the State of Health (SoH) of batteries. 
Accurately determining the SoC is crucial for providing 
reliable information to end-users. This paper builds upon 
existing research by not only contributing to the accurate 
estimation of SoC but also by introducing an uncertainty 
evaluation that quantifies the reliability of these estimations. 
Recognizing that measurements without associated 
uncertainties lack meaningfulness [7,8], this paper takes a 
crucial step in elevating AI estimations to the status of 
measurements. The proposed methodology involves assessing 
these estimations against accuracy parameters comparing 
them to reference values obtained through accurate laboratory 
instrumentation. The paper employs a quasi-Monte Carlo 
method [9,10] during the testing phase of the ML algorithm, 
resulting in the derivation of distribution patterns and 
confidence intervals for the estimations. Consequently, the 
primary contribution of this paper is not only the enhancement 
of SoC estimation but, more significantly, the establishment 
of a rigorous process for uncertainty evaluation. The 
subsequent sections of this paper are organized as follows: 
Section II provides an overview of the SoC and batteries. 
Section III provides a brief introduction to AI, ML, and the 
adopted algorithm. The experimental activity is described in 
section IV. It includes the tests, the measurement setup, and 
the results. Finally, Section V summarizes the achievements 
and presents the conclusion of the work. 



 

Fig. 1. Parallel and Series-Parallel NARX Architectures 

II. BATTERIES AND STATE OF CHARGE 
Battery energy storage systems (BESSs) are becoming 

essential elements of a sustainable power system. Their use is 
rapidly expanding in different applications, including the 
integration with renewable energy, grid stability, and the 
electrification of transportation [11]. Renewable energy 
sources are strongly intermittent, related to weather conditions 
and time of the day. To overcome this issue, BESS is used to 
store the excess energy during peak production periods and to 
release it during high demand, ensuring a smoother and more 
reliable power supply [12]. Moreover, BESS plays a crucial 
role in ensuring grid stability, mitigating the insufficient 
power supply during peak hours, providing peak shaving for 
the system, and providing backup power during outages and 
emergencies. Finally, the progress of vehicle electrification is 
intricately linked to advancements in battery energy storage 
technology [13]. Among the variety of battery chemical 
compositions, Lithium-ion is the most competitive and 
promising technology because of its advantages in terms of 
efficiency, extended life cycle, energy density, compact size 
and weight, fast charging, and low self-discharge rate [14,15]. 
Nevertheless, different factors can influence the correct 
performance and the health of Lithium-ion batteries, such as 
the number of charge and discharge cycles, the temperature at 
which the cells operate, the aging effects, and other 
environmental factors. Appropriate management and accurate 
monitoring of the battery parameters are therefore crucial. 
Among these, SoC, the level of charge of a battery relative to 
its capacity, represents one of the most important indicators of 
battery performance and life. SoC returns the percentage of 
the total charge that remains available for use, providing a 
vital metric for users and system controllers. Since SoC cannot 
be directly measured, the study of a proper estimation method 
is topical. Many algorithms have been proposed to predict 
SoC, and the most widely used are the open circuit voltage 
(OCV) measurement, the Coulomb Counting method, and 
model-based methods such as Kalman Filters (or a 
combination of such methods). Each one of these has its 
benefits and limitations depending on the application, type of 
battery, computation availability, and required precision. In 
the literature, numerous studies have also introduced 
analytical and AI methods for estimating the battery SoC [16-
19]. For example, to accurately estimate the SoC of lithium-
ion batteries, Wei et al. [16] proposed a novel machine-
learning method to address the risk of gradient explosion and 
gradient descent using the dynamic nonlinear auto-regressive 
models with exogenous input neural network (NARX) with 
long short-term memories (LSTM). Similarly, Wang et al. 
[17] proposed a method based on a NARX regression neural 
network to get a better lithium-ion battery SoC estimation 
model. Nefraoui et al. [18] presented an effective battery SoC 
forecasting approach utilizing the NARX time’s series 
optimized Levenberg-Marquardt training algorithm, and 
Bayesian-Regularization (BR). Finally, Feraco et al. [19] 

presented a method to estimate the SoC in Lithium-ion 
batteries of Hybrid Electric Vehicles (HEVs) with Artificial 
Neural Networks (ANNs). The performance of the 
investigated technique is demonstrated by estimating the SoC 
with a low estimation error for both the considered battery 
sizes. Coulomb counting is used to compute the reference 
value of the SoC during the real charge/discharge cycles. An 
analysis of the robustness of the proposed estimation method 
to offset errors on the measured input current is also 
performed. 

III. SOC ESTIMATION MODEL 
In the accurate SoC estimating domain, data-driven ML 

techniques have garnered attention for their immense potential 
[20]. In the literature, several ML algorithms have been 
employed and discussed in terms of accuracy and efficiency 
[21]. Notably, among Recurrent Neural Networks (RNNs), the 
NARX model stands out for its capability of dynamic 
nonlinear modeling, memorizing past inputs, and handling 
exogenous inputs [19]. ANNs are defined as structures made 
of elementary units, called neurons. Neurons are organized in 
vertical structures, called layers. Mainly, three kinds of layers 
can be identified: the input, the hidden, and the output layer. 
Depending on how layers are connected and how information 
flows through the network, feedforward and recurrent ANNs 
are identified. The former are characterized by a unidirectional 
data flow, from the input layer to the output layer, while the 
latter are bidirectional networks. In fact, RNNs allow the 
output value from some layer to become the input of some 
previous layer. As an RNN, the NARX model shows the 
timing characteristics, being suitable for SoC estimation 
applications [17]. In particular, the values of the NARX output 
layer are fed into the input layer in the subsequent iteration. 
The number of considered previous values determines the 
network delay. For the implementation of the NARX model, 
two building approaches are available: parallel and series-
parallel architecture, represented in Figure 1. The parallel 
architecture, also known as closed-loop implementation, 
involves using estimated values as input of the network. On 
the other hand, the series-parallel architecture, i.e., the open-
loop implementation, feeds to the network the real output 
values. The timing characteristics are included in the model 
through the implementation of Time Delay Layers (TDLs). 

In this work, the open-loop network architecture has been 
selected, as it represents a valid and manageable option for 
SoC estimation tasks [16]. The NARX network has been 
implemented using the Keras module of the TensorFlow 
library in Python language. Following the implementation of 
the network structure, the training and testing stages are 
needed to build the SoC estimation model. To this end, a 
dataset has been created based on laboratory experimental 
measurements of the battery discharge profile. Voltage, 
quantity of charge, current, cell and ambient temperature have 
been fed to the network as input features, while the target, i.e., 
the output value, has been the percentage SoC. 

IV. EXPERIMENTAL ACTIVITY 
 As previously described, this paper aims to treat the 
implementation of ML algorithms like a measurement 
process, to associate a rigorous uncertainty evaluation with the 
algorithms’ results. Therefore, the following subsections 
describe the designed case study, the adopted measurement 
setup, and the uncertainty evaluation process, respectively. 

 



TABLE I.  SPECIFICATIONS OF THE TESTED LFP CELL 

Feature LFP 

Shape (-) Cylindrical 

Weight (g) 86 

Nominal capacity (Ah) 3.2 

Set-point voltage (V) 3.65 
Minimum discharge voltage 

(V) 2.5 

Cut-off current (A) 0.032 

Temperature limits (°C) –20 to 45 

 

 

Fig. 2. Estimated and reference SoC values 

TABLE II.  METRICS VALUES OF THE NARX MODEL 

Metric (-) Value (-) 

MAE 9.6x10-6 

MSE 3.8x10-10 

 

A. Case study  

The case study selected to explore the uncertainty 
evaluation of the ML algorithm is the battery SoC estimation. 
To this purpose, the measurements performed in the 
controlled laboratory environment with accurate 
instrumentation are used as a reference. On the contrary, the 
algorithm estimations are treated as the set of measurements 
on which to run the uncertainty estimation to be compared 
with the reference values. The comparison of the confidence 
intervals of the estimated and reference quantities will prove 
when and in which circumstances the estimations can be 
considered accurate. 

B. Reference Tests and Setup 

The experimental setup employed in this work comprises 
a power supply (TDK Lambda GEN 10-240) with a rated 
output of 10 V and 240 A for voltage and current, respectively, 
and a DC electronic load composed of two Agilent N3306A 
modules, with operative limits of 60 V and 240 A for voltage 
and current, respectively [22]. The power supply and the DC 
load are controlled by a software developed in LabVIEW2018 
through a National Instruments data acquisition Board (NI 
PCIe 6553). The battery voltage was acquired at its poles with 
an accuracy of 981 μV. The experimental system was 
completed with three “copper disc” k-thermocouples to 
measure the temperature at the battery poles and shell and with 
a standard thermocouple to measure room temperature, whose 

signals are acquired with NI 9211 modules (only two 
thermocouples provide the model input measurements, i.e. 
cell and ambient temperature). To gather reference values for 
uncertainty evaluation during SoC estimation, one Lithium 
Iron Phosphate battery – LFP – cell was subjected to a 
constant current discharge at 2C, according to the 
manufacturer’s indications. Battery specifications are reported 
in Table I. During the discharge, each quantity was acquired 
every 0.1 seconds for a total of 18432 acquisitions. The 
voltage measurements have been used to compute the 
respective reference SoC percentage values, based on the 
nominal capacity of the battery (corresponding to a SoC equal 
to 100 %) and the chosen depth of discharge (80 %). Of note, 
with the aim to assess the role of uncertainty in SoC 
prediction, we conducted a pilot test on a small-size battery in 
an extremely controlled environment. However, the obtained 
findings can be then used to predict the behavior on large-size 
batteries [23]. 

C. Uncertainty Analysis 

As previously mentioned, the uncertainty analysis has 
been conducted through the metrological comparison of 
reference and estimated SoC values. The reference SoC is 
obtained from the voltage measurements (as described in 
previous sections) at each time step. Its confidence interval 
was fixed according to the accuracy specifications of the 
voltage sensor (a type B evaluation of the uncertainty). As for 
the estimated SoC, a quasi-Monte Carlo method was applied. 
Specifically, 10, 100, and 1000 datasets were generated by 
modifying the values of voltage and current input features. 
The choice of the minimum value has been made considering 
an acceptable number of measurements performed by a 
Battery Management System (BMS) per minute, while the 
maximum value aims to confirm the goodness of the method. 
Regarding the generation, each value has been randomly 
extracted from a uniform distribution centred on the original 
value. The upper and lower limits are fixed both at ± 0.1 % 
and ± 1 % of the original value. In other terms, the random 
values were generated first with an uncertainty of 0.1 % and 
then with 1 %. The idea is that, in realistic applications, the 
voltage/current is measured with sensors featuring various 
accuracy values (depending on the budget available for the 
distributed measurement system). Consequently, for every 
voltage/current value, a distribution of 10, 100, or 1000 
estimated SoC values is obtained and the mean value is 
calculated. In addition, the 95 %-confidence interval is 
extracted and then compared with the one of the reference 
SoC. A small note on the training and testing of the method. 
The reference SoC can be obtained from voltage and current 
measurements, or both. Therefore, the algorithms can be 
trained and tested using one or both quantities. 

In the first place, the NARX model has been trained and 
tested using the original dataset, i.e. the dataset composed of 
input features measurements and SoC reference values (the 
acquisition and computational details are given in subsection 
IV.B). Figure 2 depicts the SoC reference values (yellow line) 
and those estimated by the NARX model (blue line), trained 
with 80 % of the dataset and tested with the remaining portion 
(a zoomed view is added in the graph). Table II presents the 
achieved values of the Mean Absolute Error (MAE) and Mean 
Squared Error (MSE) metrics, defined in equations (1) and (2) 
with 𝑦! the  

 



 

Fig. 3. Distribution of the estimated SoC values 

 

Fig. 4. Comparison between estimated and reference SoC values intervals 

TABLE III.  PERCENTAGE OF OVERLAPPED SOC INTERVALS 

Iterations (-) 
Uncertainty (%) 

0.1 1.0 

10 39.31 % 95.74 % 

100 58.25 % 99.66 % 

1000 58.49 % 99.69 % 

 

generic reference SoC value, 𝑦""  the corresponding estimated 
SoC value, and 𝑛 the total number of SoC estimations. It is 
crucial to note that the MAE e MSE metrics refer to the 
accuracy of the NARX model in estimating the SoC and are 
not associated with the measurement uncertainty and the 
metrological evaluation of the model. 

𝑀𝐴𝐸	 = 	∑ |%!&'(!|
"
!#$

)
,                       (1) 

𝑀𝑆𝐸	 = 	∑ |%!&'(!|%
"
!#$

)
.                     (2) 

In the second place, the simulations of the quasi-Monte 
Carlo method have been executed. Figure 3 graphs the 
distribution of estimated SoC values in the case of uncertainty 
equal to 0.1 % and 1000 generations of datasets. In terms of 
the metrological evaluation of the NARX model, the results 
obtained from comparing the 95 %-confidence intervals of the 
estimated and reference SoC values are reported below. 
Figure 4 illustrates a comparison of three pairs of intervals. In 
each pair, the first interval (circle-shaped) is centered on the 
reference, while the second (square-shaped) is centered on the  

 
corresponding estimated value. The points were consecutively 
chosen from the results obtained in the case of uncertainty 
equal to 1 % and 100 iterations. In this instance, all three 
intervals overlap. A note from the figure, the confidence 
intervals of the reference values cannot be seen because they 
are too small compared to the estimated ones. However, they 
are included in the intervals generated with the 95 %-
confidence limits of the estimated values.  

Table III displays the percentage of overlapping 95 %-
confidence intervals in all simulated cases. Logically, the 
percentage increases with both the rise in uncertainty applied 
to the input values and the increase in the number of dataset 
generations. Table III demonstrates that, by employing highly 
accurate sensors to collect measurements, even AI features are 
insufficient for accurately estimating the SoC. However, in 
realistic applications, a 0.1 % accuracy sensor is seldom 
deployed (due to its cost).  

From all results, it is possible to conclude that (i) the quasi-
Monte Carlo method is a valid solution to metrologically 
confirm the results from the implementation of AI algorithms 
for the estimation of the SoC; (ii) it is possible to treat AI 
estimations as measurements and assess them properly with 
the basic metrology theory; (iii) defining a priori target 
uncertainty, considering also the available equipment, is 
fundamental to perform a realistic uncertainty evaluation on a 
specific application. 

V. CONCLUSION 
This paper presents a novel procedure for treating 

measurement uncertainty in AI-driven estimation systems. To 
ensure a rigorous analysis of artificial intelligence and 
machine learning models, it is crucial to assess their 
performances from a metrological perspective. The objective 
is to validate the NARX model’s application in estimating the 
state of charge of batteries. In this context, the machine 
learning algorithm is treated as a measurement tool, and a 
quasi-Monte Carlo method is applied for assessment. The 
obtained results not only affirm the validity of the method but 
also provide valuable metrological insights for AI-based state 
of charge estimation systems. Furthermore, the derived 
considerations can guide decisions regarding the selection of 
measurement instruments installed in the BMS. 
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